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Abstract
Using historical salinity data from nine drought periods in the Pearl River Delta of China, this study utilized two machine

learning approaches to forecast the salinity time series for multistep lead times: random forest (RF) models and extreme

learning machine (ELM) models. To improve conventional RF and ELM models, three signal decomposition techniques

were applied to preprocess the input time series: empirical mode decomposition (EMD), wavelet decomposition (WD) and

wavelet packet decomposition (WPD). The study results indicated that in contrast to conventional RF/ELM, a hybrid RF/

ELM method accompanied by decomposition techniques displayed better forecasting performance and yielded reasonably

accurate prediction results. More specifically, hybrid models coupled with WPD displayed the best performance for all

three forecast lead times of one, three and five days, whereas EMD underperformed both WPD and WD because of the

limited predictability of the components. Both the WPD and WD hybrid models using the coif 5 wavelet basis performed

better than those using the other two bases (db8 and sym8). In addition, ELM method performed better for conventional and

WD/WPD hybrid models, whereas the RF method worked better for EMD hybrid model. The findings of the study showed

that the nonstationary salinity series could be transformed into several relatively stationary components in the decom-

position process, which provided more accurate salinity forecasts. The developed hybrid models coupling RF/ELM method

with decomposition techniques could be a feasible way for salinity prediction.
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1 Introduction

Saltwater intrusion is a natural phenomenon in estuary tidal

river network regions. However, in recent years, intensive

human activity, such as dredging, damming and bulk-

heading, has significantly changed the natural pattern of

previous channel characteristics. This has given rise to the

extended incursion of saltwater, which deteriorates the

water quality and ecosystems of tidal rivers (Cai et al.

2012; Zhu et al. 2015), and high salinity levels induced by

saltwater intrusion are a major concern because they exert a

significant adverse effect on the ecological environment

and urban drinking water (Rengasamy 2006). In several

tidal rivers, water is pumped and withdrawn for irrigation,

industry and drinking purposes, but it is unavailable when

the river water is contaminated and salified by saltwater

intrusion from the ocean. Therefore, accurate predictions of

estuary salinity are critical in water resource management

to alleviate the adverse effects caused by these changes.

In the last few years, computer modelling has been

widely used for the prediction of dynamic salinity variation

processes because of its ability to perform complex simu-

lations. Considering a variety of physical processes and a

wide range of spatial and temporal scales, conventional

numerical models are an important tool for solving critical

environmental problems and have also been applied for

salinity prediction (Hamrick 1992; Sheng 1987; Sun et al.

2016). However, the models require detailed information

on the boundary and initial conditions covering freshwater

flow, tide, wind effects and riverway terrain. Although

& Bingjun Liu

Liubj@mail.sysu.edu.cn

1 Department of Water Resources and Environment, Sun Yat-

sen University, Guangzhou 510275, People’s Republic of

China

2 School of Civil Engineering, Sun Yat-sen University,

Guangzhou 510275, People’s Republic of China

123

Stochastic Environmental Research and Risk Assessment (2019) 33:1117–1135
https://doi.org/10.1007/s00477-019-01691-1(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-019-01691-1&amp;domain=pdf
https://doi.org/10.1007/s00477-019-01691-1


these numerical models are available to provide detailed

solutions to several critical problems, a large amount of

field data and effort are also required to calibrate and verify

the parameters for model application. When reliable fore-

casts are needed but there are inadequate data reflecting

influential factors, the machine learning (ML) approach,

which emphasises higher nonlinear fitting and efficiency, is

more effective than conventional numerical methods (Qiu

et al. 2008; Qiu and Wan 2013). Dozens of researchers

have used ML models for various applications. For

instance, Suen and Lai (2013) used back-propagation

neural networks (NN) to simulate and forecast salinity

changes at several locations in a Taiwanese river under

assumed climate change influences; Rohmer and Brisset

(2017) set up a support vector machine-based (SVM)

model to predict the short-term (3 h) occurrence of the

forthcoming conductivity peak’s characteristics for

detecting and analysing water salinity. More salinity pre-

diction studies based on other ML approaches can be found

in the literature (Bowden et al. 2005b; Fang et al. 2017;

Huang and Foo 2002).

Although ML models can map nonlinear relationships,

the effective information embedded in nonstationary data

sequences is often hard to capture sufficiently. As a con-

sequence, the ability of regular ML models to forecast

nonstationary time series is limited (Belayneh et al. 2014).

To address this issue, forecasting hydrological time series

using hybrid ML models with decomposition techniques

has been proposed and is becoming a very active field of

hydrological research in recent years (Nourani et al. 2014).

Empirical mode decomposition (EMD) and wavelet

decomposition (WD) are mathematical technologies used

to analyse signals by decomposing them into various fre-

quencies. These two decomposition techniques are widely

recommended and applied to decompose nonstationary and

nonlinear signals into a series of simpler components,

which improves simulation accuracy. A significant body of

literature has reported that EMD and WD have been

combined with classic ML models, such as NN, SVM and

adaptive neuro fuzzy inference system (ANFIS), to forecast

urban water demand (Adamowski et al. 2012; Campisi-

Pinto 2013), stream flow (Kisi et al. 2014; Shiri and Kisi

2010), precipitation (Feng et al. 2015; Ouyang and Lu

2018), groundwater levels (Moosavi et al. 2013) and water

quality including parameters such as temperature and dis-

solved oxygen (Alizadeh and Kavianpour 2015; Liu et al.

2016; Yang et al. 2014). The ML models developed from

EMD and WD pre-processed data have demonstrated better

performance than models provided with raw data. As the

generalization form of WD, wavelet packet decomposition

(WPD) is able to capture more details of the signal than

WD, thereby offering a richer range of features for signal

analysis. In recent years, the conjunction of WPD and ML

approaches has also been successfully applied for predic-

tion problems (Moosavi et al. 2017; Seo et al. 2016).

Owing to the interaction of marine and terrestrial ele-

ments, salinity time series often present complex and

nonstationary characteristics. For example, there are some

short-term factors such as wind and storm surge, which can

bring about abrupt shift of salinity (Shu et al. 2014; Wong

2003). In addition, human activities (e.g., river topography

change induced by dredging) and the sea level rise are

found to have been aggravating intrusion in the long run

(i.e., an increasing trend of salinity) (Liu et al. 2017;

Xinfeng and Jiaquan 2010). Thus, it is difficult to establish

a reliable model for accurate prediction. In this regard,

decomposition techniques can be used as pre-processing

tools to simplify the characteristics of raw data in the

framework of a hybrid ML model, which may accurately

predict salinity levels in water. Recently, two outstanding

ML approaches, random forest (RF) models and extreme

learning machine (ELM) models, have been recognised in

the field of hydrology. They have been successfully applied

in numerous hydrological cases (Abdullah et al. 2015;

Shortridge et al. 2016; Wang et al. 2015; Yang et al. 2017;

Yaseen et al. 2016) such as stream-flow prediction, evap-

otranspiration prediction and flood hazard risk manage-

ment. It is possible that the RF and ELM approaches have

distinct advantages over other ML models (e.g. NN, SVM

and General Regression Neural Network (GRNN)) owing

to their lower computational power consumption yet higher

generalisation ability in modelling complex nonlinear data.

However, very few studies have been conducted on fore-

casting the salinity time series with either RF or ELM

modelling. More specifically, there are few studies on

coupling RF/ELM with decomposition techniques in

hydrology and water resource literature (Barzegar et al.

2017). Hence, this study proposes and evaluates RF and

ELM models and their hybrid models coupled with EMD,

WD and WPD techniques for multistep lead time salinity

prediction in the Modaomen waterway located in the Pearl

River Delta of China, and then further examines and

compares the performance of all the forecast models to

determine their potential.

2 Study area and data

The Pearl River Delta (PRD) in China is located between

21�300 N and 23�420 N latitude, and between 112�260 E and

114�240 E longitude, lying in a subtropical region with

features of a subtropical monsoon climate. Its annual pre-

cipitation ranges from 1200 to 2200 mm, and the precipi-

tation of April–September accounts for 82–85% of the

annual total. It is considered to be one of the most com-

plicated river networks in the world, with a drainage
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density per unit area of 0.68–1.07 km/km2 and a catchment

area of 9750 km2 (Chen and Chen 2002; Zhang et al.

2010). There are three main tributaries that merge in the

PRD region: West River, North River and East River. The

runoff discharges into the South China Sea through eight

outlets, which are, in sequence from east to west, the

Humen, Jiaomen, Hongqimen, Hengmen, Modaomen,

Jitimen, Hutiaomen and Yamen waterways.

Figure 1 presents the Modaomen waterway (MW) in the

PRD and the Pinggang (PG) salinity gauge station from

which salinity time series data have been used for this

study. MW is located in the downstream part of the West

River, which has the largest amount of runoff among the

eight outlets. Flows from the West River and North River

combine to provide critical freshwater resources for MW.

The PG station is one of the major pumping stations for

water supply to Macao and Zhuhai City, located at

approximately 35 km upstream of the MW outlet. Over the

past three decades, dramatic anthropogenic activities in

MW, including abundant and frequent reservoir construc-

tion, an enormous amount of sand excavation and large-

scale extension of land reclamation, have greatly altered

both the hydrological and hydrodynamic conditions of the

river system (Wei et al. 2010). As a result, the water

salinity at the PG station is severely intensified by the

worsening saltwater intrusion problem during the dry sea-

son (from October to March in the following year) even

with an upstream flow of more than 3900 m3/s (Gong et al.

2012). Specifically, the duration in hours for salinity

exceeding the water supply criterion of 250 mg/L at PG

Fig. 1 Study area and PG

station at the Modaomen

waterway
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has been increasing. For example, the duration with ele-

vated salinity levels was less than 400 h before 2003, but

was more than 700 h thereafter, and even more than 1200 h

during the dry seasons of 2005–2006, 2007–2008 and

2009–2010 (Liu et al. 2014a). The increased high-salinity

duration has posed a significant threat to water supply for

almost 15 million people in the region.1

In this study, the average daily salinity time series

covering nine drought periods at the PG station along MW

were used. The data were obtained from the Hydrological

Bureau of Guangdong Province. The periods of the datasets

for the prediction range from October 2001 to February

2010. Generally, the collected data should be divided into

two parts for both model development (training) and model

evaluation (testing). In this study, the full set in a total of

1107 data records was divided into 935 records covering

the first seven drought periods (85% of the set) for the

training phase and 172 records covering the remaining two

drought periods (15% of the set) for the testing phase.

Table 1 displays the statistical characteristics, including the

training, testing and complete data span.

3 Methodology and model development

3.1 Framework of hybrid modeling

To convert nonstationary sequences into relatively sta-

tionary versions, a hybrid modelling framework of ‘de-

composition–prediction–reconstruction’ was used to

combine ML approaches with decomposition techniques

and included the following three steps:

• Step 1: Applying the decomposition technique to pre-

process and convert the original salinity time series into

several components. In this step, three decomposition

techniques were adopted: EMD, WD and WPD.

• Step 2: Developing ML models for all the decomposed

components to make multistep forecasts. In this step,

two approaches were used: RF and ELM.

• Step 3: Accumulating all the forecasted components

from the RF/ELM model of a certain forecast lead time

to obtain the final predicted result. In this study, models

were developed for one-, three- and five-day lead time

salinity prediction.

The primary objective of this study was to find and

compare the performance of the RF and ELM approaches

together with their hybrid models using decomposition

techniques for salinity prediction. Hence, except for the

hybrid models, the regular models were also constructed,

and comparison analysis was used for the following

forecast models: RF, ELM, EMD-RF, EMD-ELM, WD-

RF, WD-ELM, WPD-RF and WPD-ELM. Section 3.2

introduces the principle of the three decomposition tech-

niques used and the determination of decomposition level,

and Sect. 3.3 presents the principles of the two ML models

used in this study and the hyperparameter optimisation

with the model input variables.

3.2 Decomposition technique

3.2.1 Empirical mode decomposition

EMD is an adaptive and efficient signal decomposition

method that is often applied to smooth the nonlinear time

series (Huang 1998; Huang and Wu 2008). Using the EMD

method, any complicated datasets can be decomposed into

a collection of oscillatory functions called intrinsic mode

functions (IMFs) and one residue. An IMF is defined as a

function that satisfies two conditions (Rato et al. 2008): (1)

in the entire time series, the number of zero crossings and

the number of maximum and minimum values must either

be equal to or differ at most by one; and (2) at any point,

the average of the envelope defined by the local maxima

and minima must be zero.

EMD performs the decomposition of time series into

IMFs by an iterative process called ‘sifting’, which can be

organised into the following six steps:

• Step 1: Let s tð Þ; t ¼ 1; 2; . . .; ngf denote a raw time

series that will serve as the input for the sifting process.

• Step 2: Identify all the local maxima and minima in

{s(t)}. Then, obtain the upper envelope u tð Þgf by

connecting all the local maxima using a cubic spline

interpolation (Rilling et al. 2011). Similarly, the lower

envelope {d(t)}. could be obtained with all the local

minima.

• Step 3: Calculate the difference between {s(t)}. and the

mean value of two envelopes found in step 2 to obtain

the first sub time series p tð Þgf .

• Step 4: Check whether p tð Þgf satisfies the IMF criteria.

If not, steps 1–3 are iterated by replacing p tð Þgf with

{s(t)}, and the process is repeated until the sub time

series satisfies the criteria.

• Step 5: The final series p tð Þgf from step 4 is defined as

IMFi, and the resulting residue is Ri(Ri ¼ Ri�1 � IMFi,

where R0 ¼ s tð Þ).
• Step 6: Repeat steps 1–5 a total of N times until the

residue Ri remains nearly unchanged, or just repeat N

times set in accordance with practical needs and

limitations. The original time series can therefore be

expressed as

1 1http://www.water.hc360.com/english/jty/news/1167.htm.
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s tð Þ ¼
XN

i¼1

IMFi tð Þ þ RN tð Þ ð1Þ

3.2.2 Wavelet decomposition

Wavelet transform is a time–frequency technique widely

used in signal processing applications (Rao 1998). It allows

a time series to be decomposed at multiple resolutions by

dividing a given function into different scale components,

where one can also assign a frequency range for each scale

component (Partal and Kişi 2007). Different from the EMD

method, wavelet transform is not adaptive because the

wavelet shape should be chosen or designed to match the

outline of the time series signal (Walden 2001). Wavelet

transform is usually divided into two groups: continuous

(CWT) and discrete wavelet transform (DWT).

CWT for an original signal f(t) with respect to a mother

wavelet function w(t) can be defined as

CWTf a; bð Þ ¼ f tð Þ;wa;b tð Þ
� �

¼
Zþ/

�/

f tð Þ 1ffiffiffiffiffiffi
aj j

p w� t � b

a

� �
dt

ð2Þ

where a is a scale coefficient, b is a translation coefficient,

and * denotes complex conjugation. The wavelet function

w(t) is designed with the following properties:

1. The wavelet must have a zero mean.

Zþ/

�/

w tð Þdt ¼ 0 ð3Þ

2. The wavelet must be localised in both time and

frequency space with a finite energy.

Zþ/

�/

w tð Þj j2dt\1 ð4Þ

In CWT, the scale and translation coefficients are con-

tinuous, which makes CWT very slow because of the

redundant additional data. Therefore, CWT is not used

often for prediction. Instead, the wavelet of DWT is scaled

and translated using certain scales and positions that can

provide the necessary information while reducing the cal-

culation cost (Percival and Walden 2000). In detail, DWT

uses scale and position values based on powers of two, and

the scale and translation coefficients are discretely

expressed as

a ¼ 2 j

b ¼ k2 j

�
ð5Þ

where j, k are integers that control the scale and translation,

respectively.

Mallat’s multiresolution theory is typically executed for

multisolution DWT computations (Mallat 1989). The the-

ory is made up of two primary components: decomposition

and reconstruction. In the decomposition phase (Fig. 2a),

the original signal is divided into high- and low-frequency

components. Then, low frequencies are again divided into

new high- and low-frequency components. The high and

low frequencies are referred to as the detail and approxi-

mation of the signal, respectively. In each division, a high-

pass filter (H) and a low-pass filter (L) are used to down-

sample the original signal. The approximation (A1, A2, A3)

and detail D1;D2;D3ð Þ signals are therefore half the length
of the original signal. Then, in the reconstruction phase

(Fig. 2b), operations are reversed in a combination step

without losing any information. Like decomposition, high-

and low-pass filters are also applied, and the decomposed

signals (detail and approximation) are upsampled and then

summed to obtain the original signal. The reconstructed

original signal can be found in the following way:

f ¼ A1 þ D1 ¼ A2 þ D1 þ D2 ¼ A3 þ D1 þ D2 þ D3 ð6Þ

Several wavelet bases have been used as the ‘mother

wavelet’ for prediction in previous study (Maheswaran and

Khosa 2012). It is recommended that wavelets with com-

pact support such as Haar could be employed for time

series having short memory and transient features, while

wavelets with wide support for time series having long

term memory and nonlinear features. In the present study,

three commonly wide-support mother wavelets were

applied for the time series decomposition: Daubechies

(db8) (Daubechies and Heil 1992), Coiflets (coif5) (Dau-

bechies and Heil 1992) and Symlets (sym8) (Misiti et al.

1996).

Table 1 Statistical

characteristics for average daily

salinity of PG station at the MW

Partition Time period S mg=Lð Þ

Mean Median SD Maximun Minimun

Training 2001/10/8–2008/02/28 304.537 12.500 642.608 4308.125 5.750

Testing 2008/12/25–2010/02/04 445.411 151.833 665.214 2880.292 4.805

Complete 2001/10/8–2010/02/04 326.426 14.000 647.881 4308.125 4.805
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3.2.3 Wavelet packet decomposition

WPD can be regarded as a special format of DWT.

Whereas DWT decomposes only the approximation sig-

nals, WPD can capture the information of both the detail

and approximation signal components (Fig. 3). Hence,

WPD derives more detailed frequency resolution from the

signal being decomposed. To facilitate comparative anal-

ysis with DWT, the same wavelet bases (i.e. db8, coif5 and

sym8) were used for WPD.

3.2.4 Determination of decomposition level

The predictability of the decomposed components largely

depends on the appropriate decomposition level for EMD,

WD and WPD. In early WD studies, a trial-and-error

approach was usually performed to determine the optimum

decomposition level, but an empirical formula in relation to

the size of the time series has also been introduced

(Nourani et al. 2009; Wang and Jing 2003). In general,

when the decomposition level is too small, the residue term

by EMD and the approximation (e.g. A3/AAA3 for three

levels of decomposition) by WD/WPD will be insuffi-

ciently stationary, which is not conducive to the final

forecast accuracy; yet, they will be too simple (e.g.

increase monotonously) for ML models (i.e. RF and ELM)

to accurately forecast owing to the excessive amount of

decomposition. In addition, the most suitable levels vary

for different models according to their different capabilities

of extracting information from data. In this study, the trial-

and-error method was used for decomposition level opti-

misation. With the criteria of the best final forecast results,

the original time series was decomposed as follows: 5

IMFs and 1 residue for the EMD-RF/ELM hybrid models;

5 levels (generating 1 approximation and 5 detail signals)

for the WD-RF/ELM models; and 4 and 3 levels (yielding

16 and 8 decomposed components) for the WPD-RF and

WPD-ELM models, respectively.

The decomposition results of the salinity time series

using the three techniques are given in Fig. 4, which pre-

sents the components from WD and WPD using the coif5

wavelet. The elusive fluctuations of salinity data with sharp

Fig. 2 Mallat’s multiresolution

theory for signal decomposition.

a Decomposition tree of 3

levels. b Reconstruction tree of

3 levels

Fig. 3 Wavelet packet

decomposition tree of 3 levels
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Fig. 4 Decomposition of the observed salinity time series of the PG

station. Subfigure a shows the original salinity time series. The

decomposition results are presented with b EMD results, cWD results

using coif5 wavelet, and d, e 3 and 4 levels WPD results using coif5

wavelet respectively. Hereinto, 3 components out of all the 8

components from 3 levels WPD results are shown while 6 out of 16

from 4 levels WPD

Stochastic Environmental Research and Risk Assessment (2019) 33:1117–1135 1123
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shifts and a trend across the study period are depicted in

Fig. 4a. However, the extraction from the original time

series separates the complex characteristics and allocates

the relatively regular properties for several decomposed

components. For instance, the residue term of EMD and

approximations (i.e. A5/AAA3/AAAA4) of WD/WPD can

all roughly reflect the shape of the original time series,

displaying a trend without a sharp rise or fall (Fig. 4b–e).

All other components had an individual specific and nar-

row range of vibrational frequencies, which displayed no

trend and remained virtually stationary. Therefore, the

exertion of the decomposition techniques can contribute to

the stabilisation and simplification of the nonstationary

salinity time series.

3.3 Machine learning approach

3.3.1 Random forests

RF is an ensemble learning method operated by con-

structing multiple decision trees, where every individual

tree contributes to the final classification and regression

results. Each tree of the RF is grown using randomly

selected samples and features. This method has two major

characteristics: randomness and ensemble learning. The

details of each are described below (Biau and Scornet

2016; Breiman 2001).

Given a training dataset of N samples with M features,

the randomness in RF refers to the random sampling of the

entire dataset and features to build every single decision

tree. The bootstrap resampling method was adopted to

randomly form a sample set of size N (the same size as the

original dataset). In this process, around one-third of the

data in the formed sample set are not used, which is

referred to as out-of-bag data. The remaining data are

called in-bag data. The random selection from the features

of the entire dataset is also performed through the selection

of m (m\M) features from the M features as a subset.

Generally, parameter m needs to be adjusted for optimal

performance. However, the model performance is not very

sensitive to the parameter practically, and sometimes the

RF model performs stably even when m = 1 (Yu et al.

2017). In this study, the adjustment for m showed little

effect on the model performance; hence, the parameter

m was uniformly set as M, which is equal to the number of

model input variables. It could be said that the established

RF in the study took only the randomness of training

samples into account.

The subset of size N with m features obtained from the

random selection is then used to build a single decision

tree. The tree is built following the classification and

regression trees model, but without pruning. This process is

repeated K times to grow a ‘forest’ consisting of K trees.

Every decision tree inside the ensemble ‘forest’ contributes

to the final prediction, which is referred to as ensemble

learning. For classification tasks, the final predicted class is

decided based on the majority rule. The class that receives

the most votes is the final result of prediction. For regres-

sion tasks, the final predicted value is derived by averaging

the results from all trees. This process is also known as

bagging (bootstrap aggregating). In general, increasing the

K value is beneficial to obtain better performance, yet there

is a threshold of Kthreshold beyond which significant

improvement will not be observed (Mayumi Oshiro et al.

2012). In this study, all the developed RF models have no

significant improvement when the K value is larger than

2000. Therefore, Kthreshold ¼ 2000 was adopted. The

python scikit-learn package was applied to perform RF in

this study.

3.3.2 Extreme learning machine

ELM is an emerging learning algorithm for the generalised

single-hidden layer feed forward neural network (SLFN)

(Huang et al. 2012), which has only three layers of neu-

rons: the input layer, the single-hidden layer and the output

layer (Fig. 5). The input layer acquires the input variables

but performs no computations, and the output layer is

linear without any transform function. The single-hidden

layer of nonlinear neurons links two other layers and per-

forms computations with transform functions.

In the ELM model, the input layer weights W and biases

b are both initialised randomly and then fixed. The output

layer weights b are therefore independent and could be

solved directly without an iteration process. Compared

with traditional learning algorithms, the ELM generally

performs well with an extremely fast learning speed.

Fig. 5 The topological structure of the extreme learning machine

network
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A mathematical description of an ELM is as follows.

Assuming a set of N training samples (xt, yt, -

t = 1, 2, …, N) with xt, yt 2 Rm, Rn, an SLFN model with

K number of hidden neurons could be expressed as

XK

i¼1

bif wi � xt þ bið Þ ¼ yt ð7Þ

where wi ¼ wi1;wi2; . . .;wim½ �T are the input weights, bi are

the biases, and bi ¼ bi1; bi2; . . .; bin½ �T are the output

weights. Here,wi � xt þ bi could also be expressed as WX,

where X represents the inputs. The activation function f in a

hidden neuron transforms the projected data (which is

equal to WX) into different representations. In general, a

nonlinear activation function can significantly improve the

learning ability of an ELM. After transformation in hidden

neurons, the data are then used to solve the output weights.

In practice, an ELM can be written compactly in matrix

form by gathering outputs of all the hidden neurons into a

matrix H. One may estimate the matrix b directly with the

input and output dataset based on a system of linear

equations (Huang et al. 2006):

Y ¼ Hb ð8Þ

such that:

H ¼ f WXð Þ ¼
f x1ð Þ
� � �

f xNð Þ

2
4

3
5

¼
f w1 � x1 þ b1ð Þ � � � f wK � x1 þ bKð Þ

..

. . .
. ..

.

f w1 � xN þ b1ð Þ � � � f wK � xN þ bKð Þ

2
64

3
75

N�K

ð9Þ

and

b ¼
bT1
..
.

bTK

2

64

3

75

K�n

and Y ¼
yT1

..

.

yTN

2

64

3

75

N�n

ð10Þ

From Eqs. (8) and (9), an ELM can be viewed as two

projections with a transformation between them, and the

number of hidden neurons determines the size of matrices

H; b and W. In most situations, the number of training

samples xt is more than that of hidden neurons, which is an

overdetermined problem. A unique solution for the prob-

lem is adopted by minimising L2, which is the norm of the

training error. The output weights can be deduced by the

Moore–Penrose generalised inverse function (?) (Huang

et al. 2006):

b̂ ¼ HþY ð11Þ

where b̂ represents the estimated output weights.

Appropriate model structure optimisation is necessary

because it prevents the ELM from learning noise data,

which results in overfitting and reduces model perfor-

mance. In most cases, a validation set could be used to

measure it. The hyperparameter, which governs the effec-

tive parameters and the model structure, is the number of

hidden neurons. For hyperparameter optimisation, an

effective ‘optimal pruning’ method was adopted for this

study (Miche et al. 2008, 2010), which can be used to add

and remove hidden neurons or rank the parameters by

relevance to the problem automatically. And the hyperpa-

rameter optimisation is performed using the results of the

leave-one-out validation in this study.

The activation function f0(x) was defined by a logarith-

mic sigmoid transfer function as the following equation:

f 0 xð Þ ¼ 1

1þ exp �xð Þ ð12Þ

For data-driven models, scaling of the input time series

y(t) is necessary to avoid data patterns and attributes with

large numerical ranges dominating the role of the smaller

numerical ranges via:

yi;normalized ¼
yi � ymin

ymax � ymin
ð13Þ

The random generation of matrices W in the hidden

layer makes each ELM distinct; hence, the ELM was run

100 times with the same inputs, and then the outputs were

averaged to produce the final results. Sun et al. (2008) and

Liu and Wang (2010) indicated that the average values are

more stable than the values from a regular ELM. The high-

performance ELM Toolbox (Akusok et al. 2015) was

applied in this study, and the source code is available at

‘https://pypi.python.org/pypi/hpelm’.

3.3.3 Model input variable

The determination of input variables is a significant step in

developing a reasonable data-driven model for prediction

(Bowden et al. 2005a; Maier and Dandy 2000; Nourani

et al. 2012). However, there is no ‘rule-of-thumb’ for input

variable selection in forecasting problems. In the literature,

three common methods have been frequently used for input

selection (Galelli and Castelletti 2013; Maier et al. 2010;

Taormina et al. 2016): (1) determining inputs using filter

approaches with statistical analysis; (2) determining inputs

through wrapper or embedded approaches with model

driving; and (3) determining the number of time series

lagged values that provide the best forecasting performance

using exhaustive search over all potential combinations. In

this study, the last method was used to explore the best

results by setting several potential input combinations,

where the most appropriate combination yields the best

forecast output, which is subsequently considered for fur-

ther analysis. For the hybrid models, the final forecast
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result is calculated using the accumulation of all the best

component forecast outputs.

Successively, the potential input combinations were

designed for one-day ahead prediction:

C
1ð Þ
1 : S tð Þ ¼ f S t � 1ð Þ½ � ð14Þ

C
1ð Þ
2 : S tð Þ ¼ f S t � 1ð Þ; S t � 2ð Þ½ � ð15Þ

C
1ð Þ
14 : S tð Þ ¼ f S t � 1ð Þ; S t � 2ð Þ; . . .; S t � 14ð Þ½ � ð16Þ

three-days ahead prediction:

C
3ð Þ
1 : S tð Þ ¼ f S t � 3ð Þ½ � ð17Þ

C
3ð Þ
2 : S tð Þ ¼ f S t � 3ð Þ; S t � 4ð Þ½ � ð18Þ

C
3ð Þ
12 : S tð Þ ¼ f S t � 3ð Þ; S t � 4ð Þ; . . .; S t � 14ð Þ½ � ð19Þ

and five-days ahead prediction:

C
5ð Þ
1 : S tð Þ ¼ f S t � 5ð Þ½ � ð20Þ

C
5ð Þ
2 : S tð Þ ¼ f S t � 5ð Þ; S t � 6ð Þ½ � ð21Þ

C
5ð Þ
10 : S tð Þ ¼ f S t � 5ð Þ; S t � 6ð Þ; . . .; S t � 14ð Þ½ � ð22Þ

where the difference between combinations lies in the

inclusion of past information; S(t) represents the value of

the target time series, S(t - 1) represents the lagged input,

etc., and f refers to the RF or ELM model.

1. Results and comparison analysis

Each of the hybrid models coupled with WD or WPD

was tested based on three kinds of mother wavelets. All the

developed models generated predictions with one-, three-

and five-day lead times. Specifically, when the forecast

lead time is only one day, it could be a reference for PG

station to pump and store freshwater if high salinity is

predicted. When the forecast lead time is either three or

five days, reservoir in West River and North River could

apply the forecast results for water diversion to restrain

saltwater intrusion.

To evaluate the performance of the models, three sta-

tistical indicators were used: the coefficient of determina-

tion (R2), the root-mean-square error (RMSE) and the

Nash–Sutcliffe efficiency (NSE) coefficients. These statis-

tics are widely used for the evaluation of hydrological and

hydrodynamic models (Legates and McCabe 1999; Moriasi

et al. 2007). The statistical parameters can be denoted

mathematically as follows:

R2 ¼
Pn

i¼1 Oi � �Oð Þ Pi � �Pð Þ
Pn

i¼1 Oi � �Oð Þ2
Pn

i¼1 Pi � �Pð Þ2

" #2

ð23Þ

NSE ¼ 1�
Pn

i¼1 Oi � Pið Þ2
Pn

i¼1 Oi � �Oð Þ2
ð24Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Oi � Pið Þ2

n

s

ð25Þ

where n is the total number of da samples for evaluation, Oi

and Pi denote the observed and predicted daily salinity,

respectively, �O is the mean of the observed daily salinity,

and �P is the mean of the predicted daily salinity. R2 is an

indicator measuring the percent of variation of observed

salinity data, which is explained by the predicted data. NSE

can be used to measure the proximity between the observed

and predicted time series plots, ranging from -! to 1.0,

with NSE = 1 corresponding to a perfect match. RMSE

represents the deviation between the observed and pre-

dicted values, with units of mg=L (units are omitted) for

salinity in this study. The relatively small RMSE and large

R2, NSE values signify an efficient model.

The performance statistical indicators for all the regular

and hybrid models in the testing phase at the PG station are

tabulated in Table 2. Comparison analyses of hybrid

models are made after the description of model forecast

results.

3.4 Regular model forecast results

A comparison between the RF and ELM models showed

that the ELM model worked better than the RF one in terms

of all the evaluation indicators with respect to all three

forecast horizons (Table 2). For the one-day lead time

forecast, the performances of both the RF and ELM models

are acceptable with high R2 and NSE values greater than

0.95 and 0.90, respectively. As expected, it is quite usual

for a certain degree of decrease in accuracy with increasing

lead time in real-time forecasting (Rezaie-Balf et al. 2017).

However, for the three- and five-day lead times, both the R2

and NSE values of the two regular models decreased sig-

nificantly, whereas the RMSE value displayed a substantial

increase, indicating distinct reductions in model accuracy.

From the time series plots displayed in Fig. 6, the

observed values closely coincided with the forecasted

values obtained from the two models with respect to the

one-day horizon, in which the peak and bottom values were

also well matched with only a few time shift errors. From

the scatter plots in Fig. 6, the distribution of scatter points

is relatively far from the trend line for both the three- and

five-day lead times, demonstrating a certain level of

underestimation and overestimation of the RF and ELM

model forecast results that was also reflected in the time

series plot. Further, from the scatter plots, the forms of

prediction deviation were different between the high and
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Table 2 Performance statistics of one, three and five days forecast horizons of all developed models during the testing phase

AI model Decomposition method One day lead time Three days lead times Five days lead times

R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE

Regular models

RF – 0.952 0.905 204.339 0.709 0.489 474.297 0.519 0.182 599.949

ELM 0.970 0.941 161.700 0.811 0.656 388.942 0.636 0.397 514.886

Hybrid models

RF EMD 0.961 0.923 184.051 0.894 0.793 301.425 0.867 0.749 332.023

ELM EMD 0.961 0.922 184.946 0.886 0.779 311.804 0.820 0.669 381.437

RF db8-WD 0.986 0.971 112.922 0.935 0.869 240.325 0.913 0.828 275.356

coif5-WD 0.991 0.981 91.042 0.948 0.893 217.408 0.936 0.873 236.400

sym8-WD 0.984 0.967 120.076 0.937 0.874 235.352 0.903 0.810 288.951

ELM db8-WD 0.999 0.998 27.443 0.984 0.969 117.526 0.944 0.890 219.604

coif5-WD 1.000 0.999 19.942 0.988 0.975 105.336 0.959 0.914 194.009

sym8-WD 0.999 0.999 22.588 0.983 0.966 122.130 0.937 0.876 233.404

RF db8-WPD 0.991 0.982 89.955 0.964 0.929 176.894 0.933 0.870 239.202

coif5-WPD 0.994 0.988 73.414 0.968 0.934 170.371 0.940 0.877 232.260

sym8-WPD 0.992 0.983 86.232 0.960 0.916 192.769 0.913 0.831 273.019

ELM db8-WPD 1.000 0.999 17.770 0.986 0.973 109.501 0.947 0.896 214.215

coif5-WPD 1.000 1.000 12.350 0.992 0.982 88.552 0.964 0.921 186.283

sym8-WPD 1.000 0.999 17.383 0.987 0.973 108.783 0.941 0.886 224.251

Bold value indicates to the one which has best performance among hybrid models coupled with different wavelet bases

Fig. 6 Forecasted and observed time series with respect to one, three and five days forecast horizons during the testing period using ELM and RF

models. The left panel shows time series plots, while the right panel shows scatter plots
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low intervals of the observed salinity values. One can

observe that the predicted results of the salinity in high

value intervals were prone to underestimation, whereas the

results in low intervals tended to be overestimated.

3.5 Hybrid model forecast results

(1) EMD-RF/ELM

As shown in Table 2, the R2, NSE and RMSE values for

the one-day ahead EMD-ELM model were 0.961, 0.922

and 184.946, respectively, which underperformed the cor-

responding regular ELM model with values 0.970, 0.941

and 161.700, respectively. Except for that, the performance

of the hybrid EMD-RF/ELM models demonstrated a sig-

nificant improvement compared with the regular models,

especially for the three- and five-day lead times. For

instance, after integrating EMD, the NSE values for the RF

and ELM models for five-day lead times improved by

62.17% and 18.75% and then reached 0.793 and 0.779,

respectively (Table 2). Moreover, with the longer forecast

horizon, the EMD method can improve the regular RF/

ELM models better. This improvement is associated with

the low prediction accuracy of the regular models in the

forecast of three- and five-day lead times, and it occurs

with other hybrid models for the same reason. Overall, the

performance statistics in Table 2 suggest that the EMD-RF

model performed better than the EMD-ELM model for all

the three forecast lead times, although the difference

between the EMD-RF and EMD-ELM models was very

small with RMSE values of 184.051 and 184.946, respec-

tively, for the one-day lead time. However, the perfor-

mance of the EMD-RF model for the three- and five-day

lead times is distinctly superior to that of the EMD-ELM

model.

The time series plots in Fig. 7 show that the observed

and forecasted values generally fit well for each forecast

horizon, in comparison with the plots of regular models in

Fig. 6. However, it should be pointed out that the signifi-

cant common fitting errors are presented at the end of the

time series plot for all the EMD hybrid models, which

should reduce the prediction accuracy. The scatter plots in

Fig. 7 indicate that, although the points were closer to the

trend line after using EMD for each forecast lead time,

there was still significant overestimation or underestima-

tion with respect to the three- and five-day horizons.

(2) WD-RF/ELM

The use of WD greatly improves the prediction accuracy

of regular models. From Table 2, WD hybrid models yield

excellent outputs for salinity prediction, with the RMSE

values ranging between 19.942 and 288.951 over all three

Fig. 7 Forecasted and observed time series with respect to one, three and five days forecast horizons during the testing period using EMD-RF

and EMD-ELM models. The left panel shows time series plots, while the right panel shows scatter plots
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forecast horizons. With the WD technique, models can

achieve good results for forecast horizons of more than one

day, as the R2 and NSE values are not less than 0.935 and

0.869 for three-day lead times and 0.903 and 0.810 for five-

day lead times, respectively. Besides, the WD-RF model

with any one of the wavelet bases demonstrated better

forecasting ability than the EMD-RF model, and it is the

same for WD-ELM versus EMD-ELM. Table 2 also

illustrates that the WD hybrid model with coif5 demon-

strated the best forecast ability compared with the model

with the other two wavelet bases (i.e. db8 and sym8) using

either the RF or ELM model. Moreover, WD-ELM models

outperformed WD-RF models with any of the wavelet

bases being used for decomposition.

Figure 8 presents the observed data versus forecasted

results from the most suitable coif5 WD-ELM/RF models.

From the time series plots, the performances of the WD-

RF/ELM models are superior to those of the EMD-RF/

ELM and regular RF/ELM models, particularly for the

peaks of the salinity time series for all the forecast hori-

zons. In addition, relatively smaller fitting errors were

observed near the end of the predicted time series. In the

right panels of Fig. 8, the scatters of observed values with

forecasted values are distributed symmetrically on both

sides of the trend line for each lead time. Furthermore, the

overestimation and underestimation problems associated

with the predicted outputs from the EMD-RF/ELM models

were largely resolved.

(3) WPD-RF/ELM

When using the same wavelet basis, the prediction

accuracy of the WPD hybrid model was higher than that of

the WD hybrid model with either RF or ELM across all

three forecast lead times. As shown in Table 2, the eval-

uation indicators R2and NSE of the WPD hybrid models

were not less than 0.913 and 0.831, respectively, each of

which was larger than that of the corresponding WD hybrid

models. The study results also suggest that the WPD model

demonstrated the most significant improvement over the

regular RF/ELM model among the three decomposition

techniques used. Like the WD hybrid models, coif5 was

considered as the most suitable wavelet for the WPD

hybrid models obtaining the best prediction results. Fur-

thermore, when the forecasted lead time results from all the

WPD-RF and WPD-ELM models were compared, the lat-

ter was superior to the former when using the same wavelet

basis.

Consistent with the results of statistical indicators, the

time series and scatter plots of the coif5-based WPD-RF/

ELM models in Fig. 9 also demonstrated the superiority of

Fig. 8 Forecasted and observed time series with respect to one, three and five days forecast horizons during the testing period using coif5 wavelet

based WD-RF and WD-ELM models. The left panel shows time series plots, while the right panel shows scatter plots
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the WPD hybrid models as their predicted results mirror

the observed results more closely than the WD hybrid

models in Fig. 8, across the vast majority of the testing

phase.

3.6 Comparison analysis

In this study, the two regular ML models (i.e. RF and

ELM) demonstrated satisfactory performance in terms of

the one-day lead time prediction. However, the forecasting

ability declined substantially when the forecast horizon

was extended to three- and five-day lead times. The use of

decomposition techniques (i.e. EMD, WD and WPD) can

help to smooth out the salinity time series, thus improving

the forecast accuracy for the regular models to varying

degrees. As might be expected, the forecast performance of

all the models worsened as the forecast lead time increased.

Forecast horizons longer than one day did not result in poor

results from hybrid RF and ELM models as measured by

the values of R2 and NSE, which were respectively not less

than 0.886 and 0.779 for the three-day lead time, as well as

0.820 and 0.669 for the five-day lead time.

(1) EMD versus WD versus WPD

On comparison of the effectiveness among all three

decomposition techniques, the WPD model is considered

the most effective one to improve the RF and ELM models,

whereas the EMD model had the least significant effect. As

for the WPD model, Table 2 indicates that each WPD-RF/

ELM model outperformed the WD-RF/ELM model with

the same wavelet basis, and the only difference between

the two kinds of hybrid models is in the decomposed

components. Although the decomposition level of the

WPD model was less than that of the WD model, the

former provided a more stationary representation of data

through further decomposition of the detailed components

(shown in Fig. 3). Both the RF and ELM models can hence

yield more accurate component outputs to obtain better

final results. As for EMD, we explore it by analysing the

predicted results of EMD components. As the evaluation

indicators of the predicted components suggested in

Table 3, the IMF1 components of all the models performed

significantly worse than any other component (e.g. IMF2,

IMF3) for all the forecast horizons, indicating that the

predicted IMF1 only exerted a limited positive effect (or

even an adverse effect) on the final prediction results.

Previous studies have suggested that IMF1 extracted by

EMD is the most unsystematic and nonstationary

Fig. 9 Forecasted and observed time series with respect to one, three and five days forecast horizons during the testing period using coif5 wavelet

based WPD-RF and WPD-ELM models. The left panel shows time series plots, while the right panel shows scatter plots
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component among all the decomposed components,

resulting in a significant increase in the difficulty of pre-

diction (Guo et al. 2012; Huang et al. 2014). Some

researchers have also reported that the more nonlinear the

original series, the more chaotic IMF1 will be (Liu et al.

2014b; Napolitano et al. 2011). This study also shows that

in addition to IMF1, the first few components are not

highly predictable, especially when the forecast horizon is

more than one day, where the prediction accuracy signifi-

cantly decreased. Accordingly, the limitedly pre-

dictable components decomposed by EMD may explain

why EMD hybrid models underperformed either WD or

WPD hybrid models and why the hybrid EMD-ELM model

underperformed the regular ELM model for the one-day

lead time.

(2) RF versus ELM

The results from all the forecast models generally

showed that ELM had superior performance than RF.

There was also a comparative study regarding environ-

mental regression problems that reported the superiority of

ELM over RF (Lima et al. 2015). In this study, the supe-

riority of ELM was reflected in most of the 48 developed

models (Table 2), except that the EMD-RF models out-

performed the EMD-ELM models. Several components

with large prediction errors by EMD may also explain the

less accurate final results of the EMD-ELM model, espe-

cially for three- and five-day lead times.

Figure 10 shows the flowchart for forecasting salinity

using hybrid models and the comparison analysis.

4 Summary

Under the influence of the intense anthropogenic activities,

high levels of salinity induced by intensified saltwater

intrusion phenomena are becoming a major concern in

river systems, which can contaminate drinking water

sources and cause several other environmental problems.

Hence, it is critical to use effective and accurate approa-

ches for salinity prediction, thus improving the water

resources management of the tidal river network area. The

potential of both RFs and ELM use in forecasting the

salinity time series for multistep lead times (i.e. one, three

and five days) was investigated. To convert the chaotic

salinity time series into relatively stationary data that are

more predictable, the ‘decomposition–prediction–recon-

struction’ hybrid modelling framework was used to

decompose a salinity time series into several components

and forecast them individually, followed by the recon-

struction of all the predicted components yielding final

predicted outcomes. Three widely applied time–frequency

techniques, EMD, WD and WPD, were used for salinity

time series decomposition.

Table 3 Performance statistics

of decomposed components of

EMD-RF and EMD-ELM

models for one, three and five

days lead times forecasts during

the testing phase

Lead time Sub-series RF ELM

R2 NSE RMSE R2 NSE RMSE

1d IMF1 0.829 0.643 174.752 0.781 0.603 184.420

IMF2 0.983 0.963 78.782 0.997 0.993 34.010

IMF3 0.978 0.948 68.921 1.000 0.999 7.789

IMF4 0.976 0.931 92.254 1.000 1.000 3.134

IMF5 0.999 0.999 5.461 1.000 1.000 0.058

Residual 1.000 1.000 4.854 1.000 0.999 8.089

3d IMF1 0.356 0.050 285.199 0.457 0.096 278.172

IMF2 0.831 0.689 227.899 0.919 0.841 162.775

IMF3 0.821 0.666 174.748 0.980 0.959 61.078

IMF4 0.956 0.881 121.277 0.999 0.999 11.925

IMF5 0.996 0.990 14.115 1.000 1.000 0.708

Residual 0.999 0.999 10.384 0.999 0.998 13.139

5d IMF1 0.133 - 0.126 310.396 0.161 - 0.035 297.661

IMF2 0.813 0.657 239.163 0.847 0.716 217.925

IMF3 0.707 0.482 217.366 0.888 0.779 141.988

IMF4 0.914 0.787 162.570 0.995 0.990 34.668

IMF5 0.988 0.970 24.867 1.000 1.000 2.481

Residual 0.998 0.997 16.668 0.999 0.995 19.838
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4.1 Conclusions

Based on the forecast results and comparison analysis

provided in this study, the following can be concluded: (1)

The regular RF and ELM models provided effective pre-

diction for the one-day horizon with an NSE value greater

than 0.90, but were not able to yield acceptable results for

the forecast lead times of three (NSE less than 0.66) and

five days (NSE less than 0.40). (2) Overall, hybrid RF and

ELM models coupled with decomposition techniques were

found to provide better results than regular RF and ELM

models for each forecast lead time except for only one

single case. (3) Hybrid models using WPD performed

better than WD because the former generates more detailed

and stationary components for prediction, whereas hybrid

models using EMD underperform WPD and WD because

of the nonstationary IMF1 and several other components

that are limitedly predictable. For both the WPD and WD

hybrid models, the coif5 wavelet basis was found to be

particularly effective. (4) The ELM approach demonstrated

better performance than the RF approach for the regular

and WD/WPD hybrid models; the contrary was true for the

EMD hybrid models. In general, developing hybrid RF and

ELM models coupled with decomposition techniques can

capture more valuable information from highly nonlinear

data to give reasonably good results for salinity time series

prediction (i.e., even for five days lead time, the NSE

values still range from 0.669 to 0.921).

4.2 Study limitations

In this study, the hybrid modelling framework using ML

models coupled with decomposition techniques can be an

effective approach for multistep salinity prediction. How-

ever, the EMD technique has yet to be improved because

the nonstationary IMF1 component and even other com-

ponents could limit the accuracy promotion for regular RF/

ELM models. Based on this, further pre-processing could

be implemented for IMF1 and other insufficiently decom-

posed components to obtain more stationary components,

thus improving the beneficial effect of EMD in hybrid

models. In doing so, the secondary decomposition method

in Yin et al. (2017) could be considered for reference in

future research.

The investigated forecast models yielded results of

salinity based on past data of salinity itself and hence did

Fig. 10 Flowchart of hybrid models coupling RF/ELM with decomposition techniques
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not include the exogenous drivers (e.g. stream flow, tide,

rainfall and wind speed/direction) that could influence

variations in the salinity time series. Because the research

for response of the estuarine systems to anthropogenic and

natural changes is significant in water resource manage-

ment (Qiu and Wan 2013), it is worth investigating the

effectiveness of the RF/ELM models in combination with

decomposition techniques considering the exogenous

physical factors as inputs. In this regard, a hybrid mod-

elling strategy, including multiple driving factors for

groundwater level prediction applied in Rezaie-Balf et al.

(2017), could be taken into account.

In terms of the prediction outputs, we focus only on

point prediction (i.e. only one predicted value at one

moment) in this study. As a matter of fact, the outputs of a

forecasting model are generally influenced by lots of

uncertainty sources such as model parameters, model

structure and observed data (Zhang et al. 2011). Hence, it is

more reasonable to evaluate one model considering both

point and probabilistic prediction results, while proba-

bilistic results are the final expression of various uncer-

tainties. To our best knowledge, there are still few studies

incorporating the uncertainty quantification into ‘‘decom-

position–prediction–reconstruction’’ hybrid wavelet fore-

casting framework (Bogner and Pappenberger 2011). The

uncertainties of the forecasting framework can be attrib-

uted to model parameters, model structure, wavelet

decomposition levels, wavelet bases and data samples, etc.

In order to generate reliable uncertainty quantification for

the proposed model, further research should also be made

to effectively dump all possible uncertainties into the

prediction outputs. For this purpose, an uncertainty esti-

mation framework, that is applicable to any deterministic

scheme and avoids model likelihood computation, can

probably be used for reference (Montanari and Kout-

soyiannis 2012).
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