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Abstract
Understanding the factors influencing urban water use is critical for meeting demand and conserving resources. To analyze

the relationships between urban household-level water demand and potential drivers, we develop a method for Bayesian

variable selection in partially linear additive regression models, particularly suited for high-dimensional spatio-temporally

dependent data. Our approach combines a spike-and-slab prior distribution with a modified version of the Bayesian group

lasso to simultaneously perform selection of null, linear, and nonlinear models and to penalize regression splines to prevent

overfitting. We investigate the effectiveness of the proposed method through a simulation study and provide comparisons

with existing methods. We illustrate the methodology on a case study to estimate and quantify uncertainty of the asso-

ciations between several environmental and demographic predictors and spatio-temporally varying household-level urban

water demand in Tampa, FL.
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1 Introduction

Statistical modeling of water use is important for efficiently

managing water utilities to meet demand and conserve

resources (Lee et al. 2010; Donkor et al. 2014). Under-

standing the relationship of important environmental and

demographic drivers with water use are critical for

assessing and forecasting future demand. Quality house-

hold-level forecasts may be used to meet demand and to

target high-demand and low-efficiency users for water

conservation through, e.g. special pricing and rebate

programs. Accurate high-resolution analyses and forecasts

require the selection of important predictive features and

the estimation of their possibly nonlinear effects from

large, correlated data (Lee et al. 2015; Duerr et al. 2018).

This paper motivated by the need of a fully Bayesian

framework for model selection and analysis of urban water

demand at fine spatial scale (e.g. household or census block

level). However, our methodology is highly translational

and is applicable to general environmental and geostatis-

tical problems where variable selection and nonlinear

associations between covariates and the response need to

be identified.

A general model for the analysis of spatio-temporal data

is

yi ¼ gðxiÞ þ �i; ð1Þ

where the response yi at the space-time index i potentially

depends on predictors xi ¼ ðx1i; . . .; xGiÞ and the errors �

may be spatio-temporally structured or unstructured. An

application of this model requires selecting a subset of

significant predictors, choosing an appropriate form for

gð�Þ, and estimating space-time dependence parameters

associated with �, possibly in computationally demanding

settings. A formal statistical model selection framework

that can address these challenges is needed to complement
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scientific expertise to inform about the inclusion and shape

of covariate effects in future studies. The goal of this paper

is therefore to develop a methodology to address variable

selection in additive regression models with correlated

errors in high-dimensional settings so that it can be applied

to analyzing and forecasting urban water demand.

The generalized additive model (GAM; Hastie and

Tibshirani 1986) is a useful extension of the generalized

linear model (GLM) in which the linear predictor is mod-

eled as a sum of smooth, unknown functions of covariates.

GAMs may be fit by maximization of a penalized likeli-

hood, where the penalty is placed on some measure of the

‘‘wiggliness’’ of the functions (Wood 2004). Bayesian

GAMs may be fit using Markov Chain Monte Carlo

(MCMC) methods (Crainiceanu et al. 2005; Wood 2016;

Merrill et al. 2017) or by using fast approximations, e.g.

the mean field variational Bayes (MFVB) approach, in

which the full posterior distribution is approximated by a

product of distributions (Wand and Ormerod 2011; Luts

et al. 2014), or the integrated nested Laplace approxima-

tion (INLA) approach, which exploits a link between

Gaussian random fields and Gaussian Markov random

fields along with computationally efficient approximations

of densities (Rue et al. 2009; Lindgren and Rue 2015).

Extensions of the additive model for Gaussian data with

correlated errors have been studied (see e.g. Opsomer et al.

2001; Francisco-Fernandez and Opsomer 2005; Bliznyuk

et al. 2012). They showed that uncovering the true function

g becomes difficult in the presence of correlated data, as

the correlated observations can introduce additional

‘‘structure’’ not attributable to the mean trend which can

lead to overfitting and poor trend estimates. Several

methods are available to address correlated data; notably,

the R package mgcv provides a generalized additive mixed

model (GAMM) framework for estimating trends and

correlation parameters in a semiparametric model with

spatially and temporally correlated errors. The INLA

method can also fit GAMs for spatio-temporal data by

representing the spatio-temporal effect using stochastic

partial differential equations (Lindgren et al. 2011; Blan-

giardo et al. 2013).

An important challenge facing additive modeling of

correlated data is variable selection. Current research of

variable selection in GAMs typically focuses on indepen-

dent errors and addresses two problems: inclusion (whether

a predictor belongs in the model) and linearity (whether

assuming a linear form of the relationship between a pre-

dictor and the response is adequate). Partially linear models

are extensions of the GAM that address linearity (Zhang

et al. 2011). Inclusion was addressed by Ravikumar et al.

(2009) by applying the group lasso penalty (Yuan and Lin

2006), in which the groups are the basis function repre-

sentation of the functional form of the relationship with the

response. Similarly, Lin et al. (2013) applied a lasso-type

penalty to smoothing spline analysis-of-variance models

for variable selection in quantile regression. Hypothesis

testing methods have been proposed to address both

inclusion and linearity (Wood 2006), and two methods for

selection using penalized likelihoods can perform inclusion

selection under certain types of correlation (Marra and

Wood 2011). Until recently, variable selection in GAMs

was limited to problems with a low to modest number of

predictors G. Sparse selection of a high number of pre-

dictors has been accomplished using optimization of a

penalized likelihood, in which the penalty controls the

smoothness as well as the number of significant predictors

(Lou et al. 2016; Chouldechova and Hastie 2017). A major

issue with lasso-type methods is that the limiting distri-

bution of the estimators is complicated, and therefore sat-

isfactory standard errors cannot be easily obtained (Knight

and Fu 2000; He and Huang 2016). Some recent work

(Scheipl 2011; Banerjee and Ghosal 2014) has provided

Bayesian methodology for variable selection in high-di-

mensional GAMs which does provide standard errors, but

are limited by the assumption of independence of the

errors. Duerr et al. (2018) showed that household water

demand are spatio-temporally correlated with strong tem-

poral autocorrelation; therefore there is a need to extend

variable selection methods to the correlated data setting.

In this paper, we propose a fully Bayesian formulation

of the semiparametric regression model defined in Eq. (1)

that allows for simultaneous estimation, variable selection,

and modeling of spatio-temporally correlated high-dimen-

sional data. Our formulation is a hybrid of a Bayesian

geoadditive model (e.g. Kamman and Wand 2003) and a

modified version of the Bayesian group lasso with a spike-

and-slab (BGL-SS) prior (Xu and Ghosh 2015), and is

motivated by the need for variable selection and analysis of

large spatio-temporally referenced urban water demand

data. The proposed method allows selection for each pre-

dictor to iterate between null, linear, or nonlinear. Unlike

the Bayesian group lasso, the point mass mixture in the

BGL-SS prior produces exact zero coefficient estimates,

yielding group variable selection. The proposed method

offers three major advantages over existing methods for

fitting and selecting GAMs: (i) relying on Bayesian

machinery, it provides reliable uncertainty quantification as

judged by posterior distributions and credible intervals for

variables of interest, (ii) it can be implemented in the high-

dimensional (‘‘large p, small n’’) setting, and (iii) it allows

one to account for dependence in the errors. We fit the

Bayesian model using a computationally efficient MCMC

sampler.

The remainder of this article is organized as follows. In

Sect. 2, we describe the urban water demand data from

Tampa, FL. In Sect. 3, we describe the Bayesian additive
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regression model, variable selection extensions, and

simultaneous model selection and parameter estimation,

and use a simulation study to evaluate and compare the

performance of the proposed method with existing meth-

ods. In Sect. 4, we present the results, and Sect. 5 contains

further discussion. Full details on the Gibbs sampler used

to fit this model, as well as additional simulation studies,

are included in the supplementary material.

2 Data

The data consists of potable water billing records from

Hillsborough, Pasco, and Pinellas counties in the South-

west Florida Water Management District (SWFWMD).

Monthly billing records of water usage from approximately

1998 to 2010 were collected from Tampa Bay Water

(TBW) customers (Boyer et al. 2014). Records were pro-

vided for over a million unique customers throughout the

study region. Billing records included total (indoor and

outdoor) water use by parcel for each customer. Only

parcels used by single family residential customers were

used in this study. For more information on data collection,

see Boyer et al. (2014).

In addition, TBW provided addresses which were used

to geolocate records for spatial analysis. The latitude and

longitude of customer locations were projected to the

Albers Conical Equal Area map projection to preserve

distances for spatial correlation modeling, so that customer

locations are referenced by easting and northing. Several

exogenous environmental and demographic predictors

were collected and merged by location and date with the

billing records. In Florida, outdoor water use, such as

irrigation, can account for almost 75% of total water use

(Haley et al. 2007). Weather and irrigated area can influ-

ence the amount of irrigation and are therefore included in

these analyses. Monthly average rainfall and evapotrans-

poration (the total amount of water lost through evapora-

tion and transpiration) were recorded via satellite

throughout the Tampa Bay region and values were applied

over a grid of 2 km by 2 km pixels and merged with parcel

locations. These data were obtained from the USGS

(2005, 2011) and SWFWMD. Available Water Holding

Capacity (AWHC), the difference in the total amount of

water that soil can hold and the amount of water at which

plants can no longer extract water from the soil, was

available by county and collected from the USDA Soil

Data Mart (USDA, Natural Resources Conservation Ser-

vice, U.S. Dept. of Agriculture 2013). Parcel-specific pre-

dictors were also included: land and building value in US

dollars, the year the most recent structure was built, veg-

etated area within parcel (green space), and the area of

heated structures on the parcel (Heat area), all collected

from the Florida Department of Revenue. A summary of

the exogenous features is shown in Table 1. All data was

managed and analyzed in R (R Core Team 2017).

A subset of the full data described above is used in this

paper. The subset is chosen as follows: parcels may have

been occupied by more than one unique customer during

the study period, so all parcels with multiple unique cus-

tomers were removed from the data before analysis to

ensure that household-level effects are consistent. Fur-

thermore, several records were incomplete, with some

missing monthly billing records. Only parcels with com-

plete monthly billing records for the full study period were

included in this analysis. The final data set consists of over

130,000 observations (137 consecutive monthly water bills

from 973 households). A map of locations used in this

study is shown in Fig. 1. This subset was used in Duerr

et al. (2018) for comparing forecasting and uncertainty

quantification quality obtained from several different

methods. Spatio-temporal correlation (particularly strong

temporal autocorrelation) was identified in this study and

was shown to be crucial in providing accuract forecasts;

however, no formal variable selection was performed.

3 Statistical model

This section provides a description of the proposed model.

First, we introduce the spatio-temporal additive regression

model, then propose priors that allow for partially linear

selection and estimation of covariate effects. Finally, we

describe estimation and prediction with the proposed

model.

3.1 Additive model

The linear predictor has the form

gðxiÞ ¼ b0 þ
PG

g¼1 fgðxgiÞ; ð2Þ

where the fg are continuous functions. The functions

f1; . . .; fG are represented using a linear combination of a

sufficiently large set of basis functions:

fgðxgÞ ¼ bgxg þ
PKg

k¼1 ugk/gkðxgÞ; ð3Þ

where bg and ug ¼ ðug1; . . .; ugKg
Þ are the coefficients

corresponding to the linear term and nonlinear basis

functions /g ¼ ð/g1; . . .;/gKg
Þ, respectively. The spatio-

temporal additive regression model assumes the response

variable y follows a multivariate normal distribution:

y�Nðg; r2XÞ, where X � XðhÞ is a n� n space-time

correlation matrix parameterized by h (Cressie and Wikle

2011; Banerjee et al. 2014).

The likelihood function is given by
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Lðw; h; r2Þ ¼ ð2pr2Þ�n=2jQj1=2 exp � 1

2r2
y� gð Þ|Q y� gð Þ

� �

;

where w ¼ ðb0;w
|

1 ; . . .;w
|

GÞ
|
, wg ¼ ðbg; u|gÞ

|
and

Q ¼ X�1. The intercept b0 is identifiable given that

f1; . . .; fG follow some constraint, typically that they have

mean zero. We represent the fg using basis expansions of

the form in Eq. (3), where ug1; . . .; ugKg
are the coefficients

for each of the Kg known basis functions /g1; . . .;/gKg
for

covariate xg. Basis functions can be constructed by

selecting a set of knots jg1; . . .; jgKg
, e.g. a subset of values

in the range of xg, over which smoothing is required (e.g.

Ruppert et al. 2003) or using knot-free spline bases (e.g.

Wood 2006). For this work, we also require that the span of

f/gkðxÞgk¼1;...;Kg
is orthogonal to x to ensure that variable

selection reliably differentiates between linear and non-

linear effects.

Define the n� G design matrix X ¼ ðx1. . .xGÞ. We

construct the n� Kg-dimensional basis expansion matrices

Z1; . . .;ZG with ðZgÞij ¼ /gjðxgiÞ, and rewrite the model in

vector form as

Table 1 Descriptions of

potential predictors of water use

in Tampa, FL

Predictor Units Mean SD Varying Factora

Easting km 498.1 13.7 Spatially E

Northing km 1326.5 17.8 Spatially E

Available water holding capacity in/ft 0.22 0.08 Spatio-temporally E

Precipitation in/day 0.14 0.13 Spatio-temporally E

Evapotraspiration in/day 0.10 0.06 Spatio-temporally E

Heat area ft2 1377 427 Spatially D

Building value USD 63,079 25,400 Spatially D

Land value USD 43,365 44,230 Spatially D

Greenspace ft2 6856 5181 Spatially D

Year of most recent structure year 1961 13.8 Spatially D

aE environmental, D demographic

0km 5km 10km
27.8

27.9

28.0

28.1

−82.6 −82.5 −82.4 −82.3 −82.2
Longitude

La
tit

ud
e

Fig. 1 Locations of TBW

customers used in this study,

superimposed on a map of

Tampa, FL
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gðXÞ ¼ b01þ
PG

g¼1 Cgwg; ð4Þ

where Cg ¼ ðxgZgÞ. Estimates for the coefficients w ¼
ðb0;w

|

1 ; . . .;w
|

GÞ
|

and the correlation parameters h are

obtained in one of two ways: in the frequentist setting, by

optimizing a penalized log likelihood,

bw; bh; br2
� �

¼ argmin w;h;r2

� � logLðw; h; r2Þ þ
XG

g¼1

cg

Z

f 00g ðxÞ
2
dx

( )

;

where the penalty parameter cg controls the smoothness of

fg and can be chosen by, e.g. cross-validation. The penalty

functionals can be rewritten using a symmetric positive

semidefinite penalty matrix Sg with w|

gSgwg ¼
R
f 00g ðxÞ

2
dx

for each g ¼ 1; . . .;G, where the penalty matrices

S1; . . .; SG are known. Bayesian methods may be used by

noting that the penalized likelihood is proportional to a

posterior distribution in which the coefficients follow a

normal prior with a singular precision matrix. Equivalently,

a flat, improper uniform prior is placed on each linear

coefficient b1; . . .; bG, and the basis function coefficients ug
follow proper normal priors with precision matrices given

by the submatrices cgS
�
g created by removing the row and

column of cgSg corresponding to the linear term. Further-

more, we reparameterize Zgug ¼ Z�
gu

�
g where Z�

g ¼
ZgS

�
g
�1=2 and u�g follows a normal prior with precision

matrix cgIKg
, a scalar multiple of the identity matrix of

dimension Kg (for concise notation, these asterisks are

dropped for the remainder of this paper). This reparame-

terization is useful for defining the variable selection priors

in Eq. (5). For additional details see, e.g. Ruppert et al.

(2003), Crainiceanu et al. (2005), Wood (2016).

3.2 Variable selection priors

The complete model space for regression models is often

too large to exhaustively enumerate with a large number of

predictors. In such a case, stochastic search algorithms are

necessary to find appropriate parsimonious models. For this

work we adopt spike-and-slab (SS) priors for variable

selection in regression models (George and Mcculloch

1997; Piffady et al. 2013). To set notation, let Gam-

ma(a, b) denote the Gamma distribution with shape a and

rate b, d0 a point mass at zero, mg ¼ Kg þ 1 the size of the

group of coefficients wg, and r2 the scale parameter for

some covariance matrix r2X for the response data. The

BGL-GAM prior is given by

bgjug; s2g; r2; p0 �ð1� p0ÞN 0; r2b

� �
þ p0d0ðbgÞ;

g ¼ 1; . . .;G

ugjs2g; r2; p0 �ð1� p0ÞN 0; r2s2gIKg

� �
þ p0d0ðugÞ;

g ¼ 1; . . .;G

s2gjr2; p0 �Gamma
Kg þ 1

2
;
k2

2

� �

; g ¼ 1; . . .;G

r2jp0 � Inverse Gammaða; nÞ

p0 �Betaða; bÞ:
ð5Þ

Sparsity is introduced via the zero mixture term with prior

probability p0. Here, p0 is the prior probability that a group

of coefficients is equal to zero. Under this formulation and

conditional on r2 and the spike probability p0 ¼ 0, the

marginal prior distribution of ug is given by

pðugÞ / exp � k
r kugk2

� 	
, which is the exponential of the

frequentist group lasso penalty term (Raman et al. 2009;

Kyung et al. 2010). This formulation encourages shrinkage

of the nonlinear coefficients of each group, but posterior

means and medians do not provide exact zero estimates in

the absence of the spike at zero, as does optimization of the

frequentist group lasso. The prior specification is com-

pleted by placing an uninformative normal prior distribu-

tion on the intercept parameter b0.
The linear and nonlinear coefficients have separate SS

priors which allows variable selection to iterate between

null (bg ¼ ug ¼ 0), linear (bg 6¼ 0, ug ¼ 0) and nonlinear

(ug 6¼ 0) functions. In the penalized splines setting, the

prior variances s2 ¼ ðs21; . . .; s2GÞ
|

replace the penalty

parameters c1; . . .; cG and serve to penalize the wiggliness

of the smooth functions. The linear coefficients bg are

conditionally independent of these variances to avoid

‘‘unfairly’’ penalizing linear terms, which could over-

shrink functional estimates to zero.

3.3 Estimation and inference

To complete the model specification, priors are placed on

correlation parameters h. The full posterior distribution is

then given by
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pð�jyÞ / ðr2Þ�
n
2jQj1=2 exp � 1

2r2
ðy� CwÞ|Qðy� CwÞ

� �

�
YG

g¼1

ð1� p0Þð2pr2bÞ
�1

2 exp
�b2g
2r2b

 !

Iðbg 6¼ 0Þ þ p0d0ðbgÞ
( )

�
YG

g¼1

ð1� p0Þð2pr2s2gÞ
�mg

2 exp
�kugk2

2r2s2g

 !

Iðug 6¼ 0Þ þ p0d0ðugÞ
( )

�
YG

g¼1

ðk2Þ
mgþ1

2 ðs2gÞ
mgþ1

2
�1

exp � k2

2
s2g

� �

� ðr2Þ�a�1
exp � n

r2

� �

� pa�1
0 ð1� p0Þb�1

� pðhÞ;

ð6Þ

where Ið�Þ is the indicator function. We use a Gibbs sam-

pler to fit this model in which coefficients are sampled from

their full conditional posterior distributions in blocks. The

spike-and-slab priors for each bg and ug are conditionally

conjugate, so that the draws from the conditional posterior

distributions of bg and ug come from spike-and-slab nor-

mal distributions. The conditional posterior distributions

for s2, r2 and p0 are also conjugate. The full conditional

posterior distribution of h is typically not available in

closed form, so a random walk Metropolis-Hastings (MH)

step is used to sample h. As in the original BGL-SS model,

the estimates are sensitive to the choice of k because it

controls both selection and smoothness. Rather than fix k at

some known value, we update k using the empirical

method as in Xu and Ghosh (2015), in which k is updated

using an empirical estimate of its marginal expectation.

When embedded in the Gibbs sampler, this is a Monte

Carlo EM algorithm for k (Casella 2001). For full details,

see Sect. S1 of the supplementary material.

3.4 Model selection and prediction

The use of MCMC samples for estimation allows for

several options for variable selection. Two notable options

are the highest posterior probability model (HPPM) and the

median thresholding model (MTM). The HPPM can be

obtained by finding the model that appears most often in

the posterior samples, and the MTM is the model obtained

using the posterior median of the samples, which allows

exact zero estimates for the linear and nonlinear coeffi-

cients (George and Mcculloch 1997; Johnstone and Sil-

verman 2004). Xu and Ghosh (2015) showed that for the

BGL-SS model under an orthogonal design matrix and

without dependence in the errors, the MTM has variable

selection consistency under some regularity conditions.

Our simulations provide support for the MTM, so we use it

for our analyses. Out-of-sample predictions are computed

from the MCMC trajectory of model parameters using

composition sampling (Bliznyuk et al. 2014; Banerjee

et al. 2014). Details for obtaining predictions are given in

Sect. S1 of the supplementary materials.

3.5 Performance on synthetic data

We now investigate the performance and operating char-

acteristics of our method on low- and high-dimensional

data sets of n ¼ 250, 500, and 1000 spatio-temporally

correlated observations, and make comparisons with other

methods. Three additional simulation studies are provided

in the Supplementary Materials, which investigate perfor-

mance under independent errors, temporally correlated

errors, and spatially correlated errors. The purpose of the

simulation study is to show that, under data scenarios when

other existing methods are applicable, our Bayesian

method is competitive. (However, as we discussed earlier,

our methodology applies to settings that existing methods

cannot accommodate.) In the low-dimensional setting, we

assess the performance of two methods proposed by Marra

and Wood (2011) for three reasons: first, because their

estimates are likelihood-based which facilitates a direct

comparison with Bayesian estimates; second, because their

methods can perform selection under some forms of spatial

and temporal dependence; and third, because their methods

are implemented in the widely used R package mgcv. The

first method is a double penalty approach which penalizes

both the smoothness and the magnitude of each smooth

term. The second is a shrinkage approach in which the zero

eigenvalues of the original penalty matrix are set to some

small number d, which allows the smoothing parameter to

remove the term altogether. These two methods can not

iterate selection between null, linear and nonlinear, but

only select effects as being ‘‘on’’ or ‘‘off.’’ These two

methods are also unable to handle high-dimensional

(n\G) situations. The third method is spikeSlabGAM, a

very flexible R library for Bayesian function selection in

GAMs that does allow selection under high dimensionality

but not under dependence (Scheipl 2011). This method can

iterate between null, linear and nonlinear selection.

For the low-dimensional setting, we simulate twelve

independent predictors for each data set. This avoids the

high dimensionality problem and allows an average max-

imum basis expansion size of approximately 40 for each

term. The predictors xg, g ¼ 1; . . .;G, are drawn indepen-

dently from a uniform distribution on [0, 1]. Six of the

predictors are nuisance predictors and have no effect on the

response variable, while the other six predictors are true

predictors. The true functions of the six predictors are

defined as in Marra and Wood (2011) and are listed here in

Table 2 and illustrated in Figure S6 of the supplementary
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materials. We follow Marra and Wood (2011) and scale the

functions to have range between zero and one. We consider

the same three noise parameters, such that the approximate

squared correlation coefficient between predicted and

observed values is 0.4, 0.55, and 0.7, corresponding to

‘‘low’’, ‘‘medium’’, and ‘‘high’’ signal-to-noise ratios

(SNR).

The data are simulated from temporal locations t ¼
1; 2; . . .; 10 and n / 10 spatial locations drawn at random on

the unit square for each sample size n, representing a

spatial infill design with a fixed temporal extent as sample

size increases. We use the separable exponential correla-

tion function expð�rS=hSÞ expð�rT=hTÞ with spatial dis-

tance rS, temporal distance rT , and correlation parameters

h ¼ ðhS; hTÞ. In this setting, ��Nð0; r2XÞ with X defined

by the spatio-temporal correlation function. We use hS ¼
0:1 and hT ¼ � logð0:75Þ to impose strong spatio-temporal

correlations. Spatio-temporal dependence of this type is not

supported by any of the three competing methods and are

therefore not directly comparable. For these methods, we

attempt to capture spatio-temporal variation of the data

using tensor product smooths. The two methods of Marra

and Wood (2011) use the tensor product of a bivariate

spatial smooth with spatial dimension 25 and a univariate

temporal smooth with dimension 10. The spi-

keSlabGAM method uses the trivariate tensor product of

space and time, as described in Scheipl (2011) and

implemented by default in the spikeSlabGAM package.

The two penalized methods also explicitly account for lag-

1 temporal autocorrelation within each location. Simula-

tion results under three additional dependence structures

(independent, temporal, and spatial) are reported in the

Supplementary Materials.

For 100 data sets in each setting, we compute the false

positive rate (FPR), false negative rate (FNR) and the root

mean squared error (RMSE) of the estimated and true

functions of predictors for each method (for fair compar-

ison, any estimated spatio-temporal trends using tensor

products are excluded from the RMSEs). Specifically, the

mean squared error (MSE) for the gth smooth function is

computed as MSEg ¼
R
ðf �g ðxgÞ � bfgðxgÞÞ

2
dxg � m�1

Pm
i¼1ðf �g ðziÞ � bfgðziÞÞ

2; where bfg is the estimate of the true

function f �g and z1; . . .; zm is a grid of values for xg. Under

our Bayesian method, bfg is estimated pointwise as the

Monte Carlo approximation to EugðfgðzÞÞ using MCMC

samples of the basis function coefficients ug under the

median posterior probability model. The RMSE is subse-

quently obtained as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

g MSEg

q
. The FPR is defined as the

proportion of null predictors selected, and the FNR is the

proportion of non-null predictors that are excluded (Hastie

et al. 2008). Models with lower FPR, FNR, and RMSE are

preferred. For comparison with the mgcv methods in the

low-dimensional setting, selected linear and nonlinear

effects are both considered ‘‘on’’ by BGL-GAM and

spikeSlabGAM. The RMSEs of recovered trends shown

in Figure 2. As seen in this figure, the proposed Bayesian

method is better able to recover the true mean functions in

all scenarios. Average FPR and FNR for each method and

scenario are shown in Table 3. The two Bayesian methods

outperform the two shrinkage methods in both FNR and

FPR. The proposed method has a slightly higher FPR than

spikeSlabGAM in low sample sizes, but is the only

method with FNR ¼ 0 for every data set.

For the high-dimensional setting, we simulate 100 data

sets similar to above but we instead include 100 predictors.

The errors are correlated the same as in the low-dimen-

sional setting. The performance of the two frequentist

methods is not reported since the mgcv code throws errors

when, after applying the basis expansion to each term, the

design matrix has more columns than rows. To further

explore false negatives from both Bayesian methods, we

include several predictors that weakly influence the

response so that estimated FNR is increased. The linear

predictor is given by

gðxiÞ ¼
X100

g¼1

fgðxgiÞ; fgðxgÞ defined in Table 1 for g ¼ 1; . . .; 6;

fgðxgÞ ¼ fg�6ðxgÞ=2 for g ¼ 7; . . .; 12;

fgðxgÞ ¼ fg�12ðxgÞ=4 for g ¼ 13; . . .; 18;

fgðxgÞ ¼ fg�18ðxgÞ=10 for g ¼ 19; . . .; 24;

fgðxgÞ ¼ 0 for g ¼ 25; . . .; 100:

The RMSEs are shown in Figure 3. The proposed method

is again better able to recover the true mean function in this

setting. The FPR and FNR are shown in Table 4. Here we

have split FPR and FNR by linear and nonlinear terms

because the two Bayesian methods are able to perform

selection on them separately. The linear FNR and FPR for

both methods are comparable. The nonlinear FPR is again

slightly higher for the proposed Bayesian method under

Table 2 True function definitions for the simulation study

f1ðxÞ ¼ 2 sinðpxÞ
f2ðxÞ ¼ expðx2Þ
f3ðxÞ ¼ �x

f4ðxÞ ¼ x11f10ð1� xÞg6 þ 10ð10xÞ3ð1� xÞ10

f5ðxÞ ¼ 0:5fx3 þ sinðpx3Þg
f6ðxÞ ¼ cosð2pxÞ þ sinðpxÞ
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Method BGL−GAM Shrinkage Double Penalty spikeSlabGAM

Fig. 2 RMSE of estimated trends for the low dimensional setting

Table 3 FNRs and FPRs for the

low dimensional setting
n ¼ 250 n ¼ 500 n ¼ 1000

Low Med High Low Med High Low Med High

FNR

BGL-GAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Double penalty 0.42 0.36 0.37 0.03 0.01 0.00 0.05 0.00 0.00

Shrinkage 0.35 0.38 0.37 0.02 0.00 0.00 0.03 0.00 0.00

spikeSlabGAM 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

FPR

BGL-GAM 0.08 0.05 0.01 0.02 0.01 0.00 0.00 0.00 0.00

Double penalty 0.15 0.14 0.15 0.06 0.06 0.05 0.04 0.05 0.05

Shrinkage 0.11 0.11 0.12 0.07 0.07 0.06 0.05 0.05 0.05

spikeSlabGAM 0.02 0.02 0.00 0.03 0.01 0.00 0.02 0.00 0.00

n=250 n=500 n=1000

Low Med High Low Med High Low Med High
0.0

0.5

1.0

1.5

SNR

R
M

S
E

Method BGL−GAM spikeSlabGAM

Fig. 3 RMSE of estimated trends for the high dimensional setting
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low sample sizes. However, the proposed method consis-

tently has a lower nonlinear FNR than spikeSlabGAM.

4 Results

The candidate models are all models with null, linear, or

nonlinear functional relationships, and the base model

contains only an intercept. Errors were assumed to follow

the distance-based spatio-temporal correlation structure

studied in Sect. 3.5. Since all timepoints at every spatial

location were observed, we used computationally efficient

Kronecker product formulas for inversion of the precision

matrix (Harville 1997; Rakitsch et al. 2013). A large-scale

temporal trend was included in the model to represent a

trend common to all households to potentially capture

average growth or decline in demand throughout the study

period. Finally, the response variable was taken to be the

natural log transform of the observed water use to remove

skewness in the errors.

The estimate for the lag-1 temporal autocorrelation

parameter was 0.89 with 95% credible interval (0.88, 0.90)

indicating strong, significant temporal autocorrelation of

the errors. This agrees well with the analysis in Duerr et al.

(2018) that showed that strong temporal autocorrelation

was a strong driver of water demand dynamics. The dis-

tance at which spatial correlations within the same month

drop below 0.05, or the ‘‘effective distance,’’ was estimated

to be 130 meters (100, 160). Of the 973 households in the

study, 88 pairs were within 130 meters of each other,

indicating a significant ‘‘neighborhood effect’’ that dissi-

pates over longer distances.

Table 5 shows posterior probabilities for the associa-

tions of water demand with each predictor. Our proposed

method selected six features as significant predictors, and

five of those selected had significantly nonlinear relation-

ships with the response. The median thresholding model

and highest posterior probability model were identical. An

important result of our method is the ability to differentiate

between small-scale temporal patterns estimated through

the precision matrix, and large-scale temporal changes

represented by basis functions. Specifically, the method

identified a significant nonlinear decrease in average water

demand over the study period in the presence of strong

month-to-month autocorrelation. This information could

prove particularly useful for accurate inference and fore-

casting of urban water demand.

Figure 4 shows the estimated associations of the terms

selected by the model. Demand generally decreased in a

nonlinear way over the study period, possibly due to the

adoption of efficient appliances. However, water demand

increased on average for users with newer structures on

parcels, possibly indicating that customers with newer

structures may use water at a rate faster than efficient

appliances conserve water. Evapotranspiration shows a

nonlinear but generally increasing association with water

demand, indicating that customers may be replacing water

lost through evapotranspiration by irrigation. Similarly,

demand increased on average with larger heated areas.

Water demand decreased with increasing precipitation

potentially because customers irrigated more when less

rain had occured. The association between land value and

water demand was significant and nonlinear, but is not

readily interpretable.

Table 6 shows the five models with the highest esti-

mated posterior probabilities. These five models account

for 99% of the model posterior probability space. The

majority of the uncertainty seems to be whether or not

available water holding capacity is a significant predictor

and whether or not the relationship between water demand

and heat area is linear. For comparison, both methods from

Marra and Wood (2011) select all predictors, and spi-

keSlabGAM selects all predictors except for available

water holding capacity and precipitation.

To quantify how well the competing models are able to

make forecasts of water demand, we replicate the two

scenarios from Duerr et al. (2018) by using the last 12

months of data as a validation set. The 1-month scenario

makes forecasts one month in advance using all previous

data, and metrics are averaged across each of the 12 left-

Table 4 FNRs and FPRs for the

high dimensional setting
n ¼ 250 n ¼ 500 n ¼ 1000

Low Med High Low Med High Low Med High

Linear FNR BGL-GAM 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80

spikeSlabGAM 0.82 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81

FPR BGL-GAM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

spikeSlabGAM 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00

Nonlinear FNR BGL-GAM 0.75 0.73 0.72 0.75 0.74 0.70 0.75 0.72 0.70

spikeSlabGAM 0.85 0.81 0.76 0.83 0.77 0.75 0.80 0.75 0.75

FPR BGL-GAM 0.06 0.05 0.02 0.06 0.02 0.00 0.00 0.00 0.00

spikeSlabGAM 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
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out months. The 12-month scenario makes the forecasts for

the full year. We compute the squared correlation between

observations and forecasts (R2) and the root mean squared

prediction error (RMSPE) as validation metrics to measure

forecast performance. Table 7 shows the validation results.

The proposed method is able to make the best forecasts

under both scenarios according to both metrics.

5 Discussion

We have proposed a Bayesian methodology for simulta-

neous fitting and function selection in Gaussian partially

linear additive regression models with general (e.g. spatio-

temporal) dependence in the errors. The method was suc-

cessfully used to select important environmental and

demographic drivers of urban water demand in Tampa, FL,

Table 5 Candidate covariates

and linear and nonlinear

posterior inclusion probabilities

for the water demand model

Predictor Selection pðbg 6¼ 0jyÞ pðug 6¼ 0jyÞ

Date Nonlinear 1.00 1.00

Available water holding capacity Null 0.14 0.05

Precipitation Nonlinear 1.00 1.00

Evapotranspiration Nonlinear 1.00 1.00

Heat area Linear 1.00 0.48

Building value Null 0.00 0.00

Land value Nonlinear 0.00 1.00

Greenspace Null 0.00 0.00

Year of most recent structure Nonlinear 1.00 1.00

Precipitation (in/day) Year of most recent structure

Heat Area (log−ft^2) Land Value (log−USD)

Date Evapotranspiration (in/day)

0.0 0.2 0.4 0.6 1900 1925 1950 1975 2000

6.5 7.0 7.5 8.0 10 11 12 13

2001 2004 2007 2010 0.05 0.10 0.15 0.20

−0.05

0.00

0.05

0.10

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2

0.0

0.2

0.4

−0.2

−0.1

0.0

0.1

−0.2

0.0

0.2

−0.10

−0.05

0.00

0.05

Fig. 4 Estimated smooth effects

and 95% credible intervals for

nonlinear terms
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as well as simultaneously estimate linear and nonlinear

associations of selected predictors, and detect a significant

average decrease in water demand during the study period

in the presence of strong month-to-month correlations. The

model is sufficiently flexible to perform selection on any

group of variables, such as an indicator matrix represen-

tation of a factor variable or a basis expansion matrix

representing nonparametric components of the mean

function. We have also developed an MCMC algorithm to

fit the model and demonstrated our method with a simu-

lation study.

A major advantage of our Bayesian approach is the

ability to handle cases when n 	 p, where p is the number

of coefficients appearing in linear terms and basis expan-

sions. The computational methods of Wood (2006) and

Marra and Wood (2011) that are used in mgcv are limited

to design matrices in which n[ kG, where k is the average

basis expansion size. The proposed Bayesian method cir-

cumvents this limitation by sampling groups of coefficients

separately in blocks. Therefore the limitation for the

Bayesian method is n[ maxgðmgÞ, where mg is the

number of columns of the basis expansion of group g. The

spikeSlabGAM method is also applicable under high

dimensionality, but dependence in the errors is currently

not implemented, which when ignored was shown in the

simulation study to negatively affect trend estimates.

Another advantage of the proposed method is the ability to

provide reliable uncertainty quantification using the

embedded Bayesian machinery. The asymptotic distribu-

tions of the parameters from lasso-type methods are com-

plicated, and standard errors are typically obtained using

bootstrapping. However, the MCMC samples from the

Bayesian method come from the joint posterior distribution

of the parameters and can be readily used for inference and

prediction. Another important contribution of this work is

filling a gap in the literature by addressing Bayesian vari-

able selection of GAMs under general (e.g. spatial, tem-

poral, spatio-temporal) dependence with a reliable and

numerically stable algorithm for estimation and prediction.

Our hierarchical model is a major extension of that

proposed and studied by Xu and Ghosh (2015), with three

important differences. First, we incorporate the univariate

functional smoothness penalty of Wood (2006) by using a

linear mixed model formulation for GAMs and applying a

linear transformation to the basis expansion matrices

(equivalently, basis function coefficient reparameteriza-

tion). This procedure is common in the literature as it sets

the prior precision matrix of the coefficients to a diagonal

matrix with the number of unique elements equal to the

number of functional terms in the model, and allows for the

use of an efficient Gibbs sampler (Ruppert et al. 2003;

Crainiceanu et al. 2005; Gryparis et al. 2007; Wood 2016).

Second, we adapt the BGL-SS prior to only shrink the

coefficients corresponding to the ‘‘wiggly’’ part of the

smooth function, and to perform selection of null, linear,

and nonlinear terms. Third, we model dependence in the

errors through the parametric precision matrix.

Our Bayesian framework relies on the assumption of

multivariate normality for the responses, which is typical

for ‘‘large’’ geostatistical applications (Sun et al. 2012) but

may be viewed as overly restrictive for some applications if

used directly. Possible skewness of the responses may

often be mitigated with a Box-Cox family of transforma-

tions parameterized by a parameter kBC (or with another

parametric transformation of the response). Our proposed

Gibbs sampler can accommodate Box-Cox transformation

of the response in two steps: (1) since, conditionally on the

transformation parameter kBC, the transformed response is

multivariate normal, sampling of all other parameters can

be achieved with our current sampler without change; (2)

conditional on other parameters, one can sample kBC by a

Metropolis-Hastings step.

Our sampler may be embedded in more complex sam-

pling schemes by data augmentation. For example, pro-

ceeding as in Taylor-Rodriguez et al. (2017) for Bayesian

site-occupancy models, one can use the Albert and Chib

(1993) data augmentation strategy to use our sampler with

minor modifications to handle probit regression (i.e., binary

responses).

Table 6 The five models with the highest posterior probability. T, P,

ET, LV, YR, HA, and AW indicate the predictors time, precipitation,

evapotranspiration, land value, year of most recent structure, heat

area, and available water, respectively. s(x) indicates predictor x has a

nonlinear relationship with water demand

Model pðMjyÞ

s(T) ? s(P) ? s(ET) ? s(LV) ? s(YR) ? HA 0.47

s(T) ? s(P) ? s(ET) ? s(LV) ? s(YR) ? s(HA) 0.38

s(T) ? s(P) ? s(ET) ? s(LV) ? s(YR) ? s(HA) ? AW 0.06

s(T) ? s(P) ? s(ET) ? s(LV) ? s(YR) ? HA ? AW 0.04

s(T) ? s(P) ? s(ET) ? s(LV) ? s(YR) ? s(HA) ? s(AW) 0.04

Table 7 Validation results for the case study

forecast length R2 (unitless) RMSPE (gallons)

1-month 12-month 1-month 12-month

BGL-GAM 0.77 0.35 1232 2232

Double penalty 0.04 0.03 2562 2515

Shrinkage 0.04 0.03 2557 2504

spikeSlabGAM 0.02 0.02 2482 2520
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Although we use a separable form of the covariance

function in simulations and case study, application of our

methodology is not limited to this choice. Such structural

assumptions are made to speed up the evaluation of the

posterior densities (involving manipulations with the

covariance matrix) and for efficient storage. For example,

without the separability assumption, an unstructured

covariance matrix for our case study would require over

40GB of memory (RAM) just for storage (n ¼ 105, leading

to roughly 0:5 � ð105Þ2 entries thanks to the symmetry, each

entry taking 8 bytes in double precision), and its direct

factorization would be computationally infeasible on any

workstation (and most high-performance computing clus-

ters). Other computational strategies include inducing

sparsity in the covariance matrix (covariance tapering) or

precision matrix (Gaussian Markov Random Field

approaches) to enable a sparse Cholesky factorization of R
or its inverse Q, respectively; or multiscale methods that

rely on fixed-rank updates of a diagonal (or banded) matrix

that make use of the Sherman-Woodbury-Morrison for-

mula (Golub and Van Loan 2012) and low-rank updates to

sparse Cholesky factorization. These broad classes of

methods, discussed at length in Sun et al. (2012) and

Heaton et al. (2018), may be employed for an alternative

specification of the matrix R or Q without significant

changes to other parts of our Gibbs sampler.

The code used for the simulation studies in this paper

and the supplementary materials is available on GitHub at

github.com/hrmerrill/SERR-2018-supp-code. At this time

we do not have permission to release the water demand

data.
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