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Abstract
The flexibility of the Bayesian approach to account for covariates with measurement error is combined with semipara-

metric regression models. We consider a class of continuous, discrete and mixed univariate response distributions with

potentially all parameters depending on a structured additive predictor. Markov chain Monte Carlo enables a modular and

numerically efficient implementation of Bayesian measurement error correction based on the imputation of unobserved

error-free covariate values. We allow for very general measurement errors, including correlated replicates with hetero-

geneous variances. The proposal is first assessed by a simulation trial, then it is applied to the assessment of a soil–plant

relationship crucial for implementing efficient agricultural management practices. Observations on multi-depth soil

information and forage ground-cover for a seven hectares Alfalfa stand in South Italy were obtained using sensors with

very refined spatial resolution. Estimating a functional relation between ground-cover and soil with these data involves

addressing issues linked to the spatial and temporal misalignment and the large data size. We propose a preliminary spatial

aggregation on a lattice covering the field and subsequent analysis by a structured additive distributional regression model,

accounting for measurement error in the soil covariate. Results are interpreted and commented in connection to possible

Alfalfa management strategies.

Keywords Structured additive distributional regression � Agricultural management � Bayesian semiparametric regression �
Measurement error

1 Introduction

Standard regression theory assumes that explanatory vari-

ables are deterministic or error-free. This assumption is

quite unrealistic for many biological processes and repli-

cated observations of covariates are often obtained to

quantify the variability induced by the presence of mea-

surement error (ME). Indeed, covariates measured with

error are considered a serious danger for inferences drawn

from regression models. The most well known effect of

measurement error is the bias towards zero induced by

additive i.i.d. measurement error. Under more general

measurement error specifications (as considered in this

paper), different types of misspecification errors are to be

expected (Carroll et al. 2006; Loken and Gelman 2017).

This is particularly true for semiparametric additive mod-

els, where the functional shape of the relation between
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responses and covariates is specified adaptively and

therefore is also more prone to disturbances induced by

ME. Recent papers advocate the hierarchical Bayesian

modeling approach as a natural route for accommodating

ME uncertainty in regression models. In particular, in the

context of semiparametric additive models, Sarkar et al.

(2014) provide a Bayesian model based on B-spline mix-

tures and Dirichlet process mixtures. These settings relax

some assumptions about the ME model, such as normality

and homoscedasticity of the underlying true covariate

values. Muff et al. (2015) frame ME adjustments into

Bayesian inference for latent Gaussian models with the

integrated nested Laplace approximation (INLA). The

INLA framework allows to incorporate various types of

random effects into generalized linear mixed models, such

as independent or conditional auto-regressive models to

account for continuous or discrete spatial structures. Rel-

atively few articles have explicitly addressed covariate ME

in the context of spatial modeling. Arima et al. (2017)

proposed a model for multivariate Bayesian small area

estimation where small areas are not related through an

explicit spatial relationship. A notable exception is given

by the work of Huque et al. (2016) who assess the rela-

tionship between a covariate with ME and a spatially

correlated outcome in a non-Bayesian semiparametric

regression context. The authors assume that the true

unobserved covariate can be modeled by a smooth function

of the spatial coordinates.

In this paper we introduce a functional ME modeling

approach allowing for replicated covariates with ME

within structured additive distributional regression models

(Klein et al. 2015a). In this modeling framework, each

parameter of a class of potentially complex response dis-

tributions is modeled by an additive composition of dif-

ferent types of covariate effects, e.g. non-linear effects of

continuous covariates, random effects, spatial effects or

interaction effects. Structured additive distributional

regression models are therefore in between the simplistic

framework of exponential family mean regression and

distribution-free approaches as quantile regression. In this

context, we allow for a quite general measurement error

specification including multiple replicates with heteroge-

neous dependence structure. Our proposal extends the

model proposed by Kneib et al. (2010) that assumed

independent replicates with constant variance. From a

computational point of view, our implementation is based

on the seminal work by Berry et al. (2002) for Gaussian

scatterplot smoothing and Kneib et al. (2010) for general

semiparametric exponential family and hazard regression

models. We develop a flexible fully Bayesian ME correc-

tion procedure based on Markov chain Monte Carlo

(MCMC) to generate observations from the joint posterior

distribution of structured additive distributional regression

models.

The main motivation of our investigation comes from a

case study on the use of proximal soil and crop sensing

technologies in agriculture. Agricultural fields are often

characterized by a large spatial variability of soil proper-

ties, such as texture and structure, that are key parameters

controlling water and nutrients availability for crop growth.

Due to this variability, within-field yield variation can be

expected (Basso et al. 2009). Over the last decades,

increasing scientific and financial efforts have been devo-

ted to the development of sensing technologies that allow

low-cost, fast, non-destructive spatio-temporal monitoring

of crop and soil properties. These technologies overcome

the limitations of traditional surveys, such as poor data

coverage and high labor/financial requirements (Guo et al.

2016). Among soil sensing technologies, soil electrical

resistivity mapping plays a prominent role in the charac-

terization of agricultural soils (Corwin et al. 2010). Soil

electrical resistivity has long been used in soil science since

it is correlated to several important soil parameters such as

texture and structure. It is also sensitive to variation in the

soil water content and salinity (Samouëlian et al. 2005).

Resistivity is measured in Ohm per meter and can only

assume positive values, commonly ranging from a few to

several thousand, depending on the nature of the agricul-

tural soil constituents. Among crop sensor data, the Nor-

malized Difference Vegetation Index (NDVI) is a well-

established proxy of crop biomass and ground cover. It is

based on green leaf spectral reflectance and can range

between �1 and þ1. Negative values correspond to water

bodies, values close to zero generally correspond to bare

soils, positive values indicate increasing plant ground

cover. Values close to 1 that indicate NDVI saturation,

occurring with high plant biomass values. From the farm-

er’s perspective, a detailed knowledge of the relationship

between soil parameters and crop performances in a given

field can be used to discern soil-based constrains limiting

the crop yield. Such knowledge helps delineating distinc-

tive areas of the field in which specific management

options (such as an appropriate irrigation schedule, fertil-

ization plan) can be adopted to increase or stabilize the

yield. Proximal sensor data are usually acquired at a very

fine spatial resolution, covering several hectares in a day of

work and yielding several thousands observations per

hectare. Different sensors correspond to different spatial

resolutions, while measurements taken at different dates

with a given sensor frequently imply spatial misalignment

between time points. Establishing a functional relationship

between soil and plant sensor data involves addressing

several issues linked to the spatial and temporal misalign-

ment and to the large data size. In this work we tackle these

issues analyzing the relationship between multi-depth high
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resolution soil information and data of forage ground-

cover. The survey was undertaken in a seven hectares

alfalfa (Medicago sativa L.) field in South Italy. Soil data

were acquired only once, simultaneously investigating

three consecutive depth layers by an on-the-go proximal

sensing technology for the measurement of soil electrical

resistivity. Ground-cover data were obtained at four sam-

pling occasions with point locations changing over time

through NDVI measurements collected by a multispectral

radiometer, continuously towed across the field following a

serpentine pattern. A non-linear relation between NDVI

and soil electrical resistivity is estimated by additive dis-

tributional regression models with structured additive pre-

dictor and measurement error correction. While

distributional regression allows to deal with the hetero-

geneity of the response scale at the four sampling occa-

sions, the ME correction is motivated by observations of

covariates being replicated along a depth gradient.

The paper is structured as follows: in Sect. 2, we

introduce the Bayesian additive distributional regression

model and the ME model specification. Section 3 reports

details of the MCMC estimation algorithm and different

tools for model choice and comparison. A simulation-based

investigation of the model performance is contained in

Sect. 4. Section 5 is dedicated to review some issues of the

sampling design, describe the spatial aggregation method,

report summary features of the data at hand, assess the

model performance, interpret estimation results and com-

ment on possible Alfalfa management strategies. The final

Sect. 6 summarizes our main findings and includes com-

ments on directions for future research.

2 Measurement error correction
in distributional regression

The main motivation for our methodological proposal

comes from the need to estimate the nonlinear dependence

of ground-cover on soil information by a smooth function.

Data features require to account for the heterogeneity in the

position and scale of the response, the repeated measure-

ments of the soil covariate and the residual variation of

unobserved spatial features. A detailed discussion of the

data collection and pre-processing is given in Sect. 5.

There we address ground-cover differences in both location

and scale by structured additive distributional regression

models, in which two parameters of the response distri-

bution are related to additive regression predictors (Klein

et al. 2015a, and references therein). The estimate of the

functional relationship between ground-cover and soil

variables is obtained taking into account replicated

covariate observations by a measurement error correction.

In this section, the distributional regression model is set up,

structured additive predictors and the ME correction are

introduced with the relevant prior distributions.

2.1 Distributional regression

Our treatment of Bayesian measurement error correction is

embedded into the general framework of structured addi-

tive distributional regression. Assume that independent

observations ðyi; miÞ i ¼ 1; . . .; n are available on the

response yi and covariates mi and that the conditional dis-

tribution of the response belongs to a K-parametric family

of distributions such that yijmi �Dð#ðmiÞÞ. The K-dimen-

sional parameter vector #ðmiÞ ¼ ð#1ðmiÞ; . . .; #KðmiÞÞ0 is

determined based on the covariate vector mi. More specif-

ically, we assume that each parameter is supplemented

with a regression specification

#kðmiÞ ¼ hkðg#kðmiÞÞ

where k ¼ 1; . . .;K and hk is a response function that

ensures restrictions on the parameter space and g#kðmiÞ is a
regression predictor. Unlike generalized additive models,

structured additive regression models allow to put specific

predictors on each of K parameters.

In our analyses, we will consider two cases where

yi � N ðlðmiÞ; r2ðmiÞÞ, i.e. the response is conditionally

normal with covariate-dependent mean and variance and

yi � Beta ðlðmiÞ; r2ðmiÞÞ, i.e. conditionally beta distributed

response with regression effects on location and scale. To

ensure r2ðmiÞ[ 0 for the variance of the normal distribu-

tion, we use the logarithmic link function, i.e. r2ðmiÞ ¼
expðgr2ðmiÞÞ while for both parameters lðmiÞ and r2ðmiÞ of
the beta distribution we employ a logit link, since they are

restricted to the unit interval (Ferrari and Cribari-Neto

2004).

2.2 Structured additive predictor

For each of the predictors, we assume an additive

decomposition as

g#kðmiÞ ¼ b#k

0 þ f #k

1 ðmiÞ þ � � � þ f #k

Jk
ðmiÞ ð1Þ

i.e. each predictor consists of a total of Jk potentially

nonlinear effects f #k

j ðmiÞ, j ¼ 1; . . .; Jk, and an additional

overall intercept b#k

0 . The nonlinear effects f #k

j ðmiÞ are a

generic representation for a variety of different effect types

(including nonlinear effects of continuous covariates,

interaction surfaces, spatial effects, etc., see below for

some more details on examples that are relevant in our

application). Any of these effects can be approximated in

terms of a linear combination of basis functions as
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f ðmiÞ ¼
XL

l¼1

blBlðmiÞ ¼ b0ib

where we dropped both the function index j and the

parameter index #k for simplicity. BlðmiÞ denotes the dif-

ferent basis functions with basis coefficients bl and bi ¼
ðB1ðmiÞ; . . .;BLðmiÞÞ0 and b ¼ ðb1; . . .; bLÞ0 denote the cor-

responding vectors of basis function evaluations and basis

coefficients, respectively. Since in many cases the number

of basis functions will be large, we assign informative

multivariate Gaussian priors

pðbjhÞ / exp � 1

2
b0KðhÞb

� �
ð2Þ

to the basis coefficients to enforce properties such as

smoothness or shrinkage. The specific properties are

determined based on the prior precision matrix KðhÞ which
itself depends on further hyperparameters h.

To make things more concrete, we discuss some special

cases that we will also use later in our application:

• Linear effects: for parametric, linear effects, the basis

functions are only extracting certain covariate elements

from the vector mi such that BlðmiÞ ¼ mil. In case of no

prior information, flat priors are obtained by KðhÞ ¼ 0

which reduces the multivariate normal prior to a

multivariate flat prior.

• Penalised splines for nonlinear effects f(x) of continuous

covariates x: for nonlinear effects of continuous covari-

ates, we follow the idea of Bayesian penalized splines

(Brezger and Lang 2006) where B-spline basis functions

are combined with a randomwalk prior on the regression

coefficients. In this case, the prior precision matrix is of

the form KðhÞ ¼ s2D0D where s2 is a prior variance

parameter and D is a difference matrix. To obtain a data-

driven amount of smoothness, we will assign an inverse

gamma prior s2 � IG ða; bÞ to s2 with a ¼ b ¼ 0:001 as a

default choice. Note that the number of basis functions

chosen to approximate the nonlinear effect is of only

minor importance as long as the number is chosen large

enough. In typical applications, using 10 to 20 basis

functions is sufficient (Eilers and Marx 1996).

• Tensor product splines for coordinate-based spatial

effects f ðsx; syÞ: for modelling spatial surfaces based on

coordinate information, we utilize tensor product

penalized splines where each of the basis functions is

constructed as Blðsx; syÞ ¼ Bl;xðsxÞBl;yðsyÞ with univari-

ate B-spline bases Bxð�Þ and Byð�Þ. The penalty matrix is

then given by

KðhÞ ¼ 1

s2
xKx � Iy þ ð1� xÞIx � Ky

� �

whereKx is a randomwalk penaltymatrix for a univariate

spline in sx, Ky is a random walk penalty matrix for a

univariate spline in sy and Ix and Iy are identitymatrices of

appropriate dimension. In this case, the prior precision

matrix comprises two hyperparameters: s2 is again a prior
variance parameter (and can therefore still be assumed to

follow an inverse gamma distribution) whilex 2 ð0; 1Þ is
an anisotropy parameter that allows for varying amounts

of smoothness along the x and y coordinates of the spatial

effect. For the latter, we assume a discrete prior following

the approach discussed in Kneib et al. (2017).

For some alternative model components comprise spatial

effects based on regional data, random intercepts and

random slopes or varying coefficient terms, see Fahrmeir

et al. (2013, Ch.8)

2.3 Measurement error

In our application, we observe a continuous covariate with

measurement error and model its potentially nonlinear

effect f(x) by a penalized spline. We observe M replicates

of the continuous covariate x contaminated with measure-

ment error u
ðmÞ
i

~x
ðmÞ
i ¼ xi þ u

ðmÞ
i ; m ¼ 1; . . .;M; ð3Þ

For the measurement error, we consider a multivariate

Gaussian model such that

ui � NMð0;Ru;iÞ

where ui ¼ ðuð1Þi ; . . .; u
ðMÞ
i Þ0 and Ru;i is the measurement

error covariance matrix. Equation (3) is often referred to as

classical measurement error model as opposed to the

Berkson model assuming xi ¼ ~x
ðmÞ
i þ u

ðmÞ
i (see Carroll

et al. 2006). Independent replicates with constant variance,

i.e. Ru;i ¼ r2uIM , were considered in Kneib et al. (2010) for

a mean regression model specification. This assumption is

here relaxed in the context of distributional regression,

considering correlated replicates with potentially hetero-

geneous variances and covariances, leaving Ru;i unstruc-

tured (as proposed and discussed in the seminal book of

Fuller 1987). Of course, it would be conceptually

straightforward to include priors on unknown parameters in

Ru;i, but this would require a large number of replicates (M)

to obtain reliable estimates. Following Buonaccorsi (2010),

we obtain sample estimates of individual measurement

error variances and covariances in Ru;i and plug them into

to the Bayesian model estimation algorithm.

The basic idea in Bayesian measurement error correc-

tion is to include the unknown, true covariate values xi as

additional unknowns to be imputed by MCMC simulations

along with estimating all other parameters in the model.
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This requires that we assign a prior distribution to xi; we

rely on the simplest version

xi � N ðlx; s2xÞ

achieving flexibility by adding a further level in the prior

hierarchy via

lx � N ð0; s2lÞ; s2x � IG ðax; bxÞ:

To obtain diffuse priors on these hyperparameters, we use

s2l ¼ 10002 and ax ¼ bx ¼ 0:001 as default settings. This

corresponds to the choice of being uninformative about the

distribution of the true covariate. Of course, in case there

would be better prior knowledge, it would be straightfor-

ward to extend the model to accommodate for more general

and also non-Gaussian prior options.

3 Bayesian inference

All inferences rely on MCMC simulations implemented

within the free, open source software BayesX (Belitz et al.

2015). As described in Lang et al. (2014), the software

makes use of efficient storing schemes for large data sets

and sparse matrix algorithms for sampling from multi-

variate Gaussian proposal distributions. In the following,

we first describe the required sampling steps for the mea-

surement error part and summarize inference for the

remaining parameters along the scheme presented in Klein

et al. (2015b) for structured additive distributional regres-

sion models without measurement error.

3.1 Measurement error correction

For the general case of distributional regression models, no

closed form full conditional is available for the true

covariate values xi, then we rely on a Metropolis Hastings

update. Proposals are generated based on a random walk

x
p
i ¼ xci þ ei; ei � N ð0; g � tr ðRu;iÞ=M2Þ ð4Þ

where x
p
i denotes the proposal, xci is the current value and

the variance of the random walk is determined by the

measurement error variability. More precisely, the

variability is summarized by the trace of the covariance

matrix Ru;i) divided by the squared number of replicates

M2 and multiplied with a user-defined scaling factor g that

can be used to determine appropriate acceptance rates. The

proposed value is then accepted with probability

where the first factor is the ratio of likelihood contributions

for individual i given the proposed and current values of

the covariate, the second factor is the ratio of the mea-

surement error priors and the third factor is the ratio of the

likelihoods from the measurement error model. The ratio of

the proposal densities cancels as usual due to the symmetry

of the Gaussian random walk proposal.

In contrast, the updates of the hyperparameters are

standard due to the conjugacy between the Gaussian prior

for the true covariate values and the hyperprior specifica-

tions. We therefore obtain

lxj � � N
n�xs2l

ns2l þ s2x
;

s2xs
2
l

ns2l þ s2x

 !

and

s2x j � � IG ax þ
n

2
; bx þ

1

2

Xn

i¼1

ðxi � lxÞ2
 !

As mentioned before, priors could be assigned to incor-

porate uncertainty about elements of the covariance

matrices Ru;i of the measurement error model. However,

reliable estimation of Ru;i would typically require a large

number of repeated measurements of the covariates.

Therefore we will restrict our attention to the case of

sample estimates of individual measurement error covari-

ance matrices (Buonaccorsi 2010) obtained outside the

model estimation framework and plugged in the Bayesian

algorithm, as will be specified in Sect. 5.1.

3.2 Updating the structured addditive predictor

Updating the components of a structured additive predictor

basically follows the same steps as in any distributional

regression model (see Klein et al. 2015b; Kneib et al.

2017, for details). The vectors of regression coefficients

aðxpi jxci Þ

¼ min 1;
pðyijxpi Þ
pðyijxci Þ

exp � 1
2s2x

ðxpi � lxÞ2
� �

exp � 1
2s2x

ðxci � lxÞ2
� �

exp � 1
2
ð~xi � x

p
i 1MÞ

0
R�1
u;i ð~xi � x

p
i 1MÞ

� �

exp � 1
2
ð~xi � xci 1MÞ

0
R�1
u;i ð~xi � xci 1MÞ

� �

8
<

:

9
=

;
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corresponding to one of the functions in the predictor (1)

follow the prior structure (2) and their full conditional

distribution will in most cases not have a closed form. We

therefore follow the idea of iteratively weighted least

squares proposals as developed in Gamerman (1997) and

Brezger and Lang (2006) and adapted to distributional

regression in Klein et al. (2015b) where proposals are

generated from multivariate normal distributions

N ðl;P�1Þ with mean and precision matrix given by

l¼ ðB0WBþKðhÞÞ�1B0Wð~y� ~gÞ; P¼ ðB0WBþKðhÞÞ

where B is the design matrix for the coefficient vector of

interest, W is a matrix of working weights, ~y is a vector of

working observations (both of which are determined from a

locally quadratic approximation of the log-full conditional)

and ~g is the partial predictor without the effect currently

being updated. The working weights and working obser-

vations are specific to the chosen response distribution and

to the parameters of this distribution.

One additional difficulty arises from the fact that the

imputation of true covariate values in each iteration implies that

the associated spline design matrix B would have to be

recomputed in each iteration, which would considerably slow

down theMCMCalgorithm. To avoid this, we utilize a binning

approach (see Lang et al. 2014) where we assign each exact

covariate value to a small interval. Using a large number of

intervals allows us to control for potential rounding errors. On

the positive side, the binning approach allows us to precompute

the design matrix for all potential intervals. As a consequence,

we only re-assign the observations based on an index vector in

each iteration instead of recomputing the exact design matrix.

Lang et al. (2014) found that the binning approach is not very

sensitivewith respect to the actual number of bins as long as this

number is chosen sufficiently large relative to the total number

of distinct covariate values observed in the data and the range of

the covariate values. Usually a default of 50 to 100 bins ensures

reasonable computing times along with sufficient approxima-

tion precision.

The hyperparameters in h usually comprise a variance

component s2 which we assume to follow an inverse

gamma prior with parameters a[ 0 and b[ 0. The full

conditional for s2 is then also inverse gamma, i.e.

s2j � � IG aþ rk ðKðhÞÞs2¼1

2
; bþ 1

2
b0KðhÞs2¼1b

� �

where KðhÞs2¼1 is the prior precision matrix from (2) with

s2 set to one. The anisotropy parameter x of the tensor

product spline follows a discrete prior such that it can also

straightforwardly be updated via sampling from the dis-

crete full conditional.

3.3 Model evaluation

In what follows we refer to several model evaluation tools

that consider the quality of estimation and the predictive

ability in terms of probabilistic forecasts: the deviance

information criterion (DIC, Spiegelhalter et al. 2002), the

Watanabe–Akaike information criterion (WAIC, Watanabe

2010), proper scoring rules (Gneiting and Raftery 2007) as

well as normalized quantile residuals (Dunn and Smyth

1996).

Measures of predictive accuracy are generally referred to

as information criteria and are defined based on the deviance

(the log predictive density of the data given a point estimate

of the fitted model, multiplied by �2). Both DIC and WAIC

adjust the log predictive density of the observed data by

subtracting an approximate bias correction. However, while

DIC conditions the log predictive density of the data on the

posterior mean E ðhjyÞ of all model parameters h given the

data y, WAIC averages it over the posterior distribution

pðhjyÞ. Then, compared to DIC, WAIC has the desirable

property of averaging over the whole posterior distribution

rather than conditioning on a point estimate. This is especially

relevant in a predictive Bayesian context, as WAIC evaluates

the predictions that are actually being used for new data while

DIC estimates the performance of the plug-in predictive

density (Gelman et al. 2014).

As measures of the out-of-sample predictive accuracy we

consider proper scoring rules based on based on R-fold cross

validations. Namely, we use the logarithmic score

Sðfr; yrÞ ¼ logðfrðyrÞÞ, the spherical score Sðfr; yrÞ ¼
frðyrÞ=kfrðyrÞk2 and the quadratic score Sðfr; yrÞ ¼ 2frðyrÞ�
kfrðyrÞk22, with kfrðyrÞk22 ¼

R
frðxÞ2dx. Here yr is an ele-

ment of the hold out sample and fr is the predictive distri-

bution of yr obtained in the current cross-validation fold. The

predictive ability of the models is then compared by the

aggregated average score SR ¼ ð1=RÞ
PR

r¼1 Sðfr; yrÞ. Higher
logarithmic, spherical and quadratic scores deliver better

forecasts when comparing two competing models. With

respect to the others, the logarithmic scoring rule is usually

more susceptible to extreme observations that introduce large

contributions in the log-likelihood (Klein et al. 2015a).

If F and yi are respectively the assumed cumulative

distribution and a realization of a continuous random

variable and #̂ is an estimate of the distribution parame-

ters, quantile residuals are given by r̂i ¼ U�1ðuiÞ, where
U�1 is the inverse cumulative distribution function of a

standard normal distribution and ui ¼ Fðyij#̂iÞ. If the

estimated model is close to the true model, then quantile

residuals approximately follow a standard normal dis-

tribution. Quantile residuals can be assessed graphically

in terms of quantile-quantile-plots and can be an effective
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tool for deciding between different distributional options

(Klein et al. 2013).

4 Simulation experiment

In this section, we present a simulation trial designed to show

some advantages in the performance of the proposed

approach with respect to two alternative specifications of the

measurement error model. As a baseline, we consider

Gaussian regression to describe the conditional distribution

of the response, assuming that yi’s follow a Gaussian law.

Like in our case study, Beta regression is a useful tool to

describe the conditional distribution of responses that take

values in a pre-specified interval such as (0, 1). Thus, alter-

natively, we assume that yi’s follow a Beta law. With both

distributional assumptions, data are simulated from two

scenarios corresponding to uncorrelated and correlated

covariate repeated measurements. For the two distributional

assumptions and the two scenarios, we compare three dif-

ferent measurement error model settings for structured

additive distributional regression: (1) as a benchmark, we

consider a model based on the ‘‘true’’ covariate values (i.e.

those without measurement error), (2) a naive model that

averages upon repeated measurements and ignores ME and

(3) a model implementing the ME adjustment proposed in

Sects. 2.3 and 3.1. Simulation and estimationmodel settings

were defined after a careful and lengthy sensitivity analysis.

For brevity, we don’t report these results, but they are

available from the authors upon request. We expect that

results produced by the proposed ME adjustment are closer

to the benchmark than those obtained by the naive approach.

Proper scoring rules are typically computationally incon-

venient in simulation studies. As well, DIC and WAIC are

conceptually unsuitable to comparemodels with andwithout

measurement error, as the models are based on different data

generating processes. Vidal and Iglesias (2008) perform the

comparison by marginalizing over the unobserved true

covariate, but this is computationally intractable in the dis-

tributional regression context. As a consequence, the mea-

surement error model comparison is performed in terms of

smooth effect estimates and RMSE. Notice that RMSE

refers to theMSE between the estimated and the true smooth

function and therefore it is not a predictive measure.

4.1 Simulation settings

For 100 simulations, n ¼ 500 samples of the ‘‘true’’

covariate xi ði ¼ 1; . . .; nÞ are generated from N(0, 5). Then

3 replicates with measurement error are obtained for each

xi as ~xis N3 xi13;Ru;i

� 	
with

Rui ¼ r2u;i

1 cu cu

cu 1 cu

cu cu 1

0
B@

1
CA ð5Þ

We allow for ME heteroscedasticity setting r2u;i¼1;...;n=2 ¼ 1

and r2u;i¼n=2þ1;...;n ¼ 2 and we consider two alternative ME

scenarios: Scenario 1 with uncorrelated replicates, i.e.

cu ¼ 0, and Scenario 2 where cu ¼ 0:8.

For the Gaussian observation model, we simulate 500

values of the response with yi � N ðli; r2i Þ, where

li ¼ sinðxiÞ sets the nonlinear dependence with the

covariate. To introduce response heteroscedasticity we

divide the sample in two groups, each one with its own

variance by means of a Bernoulli variable

Var ðyiÞ ¼ r2i ¼
0:3 vi ¼ 1

0:5 vi ¼ 0



; with vi� Bernoulli ð0:5Þ:

We proceed in like vein for the Beta observation model and

generate n samples from Beta ðpi; qiÞ with li ¼ pi=ðpi þ
qiÞ and r2i ¼ 1=ðpi þ qi þ 1Þ ¼ Var ðyiÞ=ðlið1� liÞÞ,
where li ¼ expðsinðxiÞÞ=ð1þ expðsinðxiÞÞ and r2i is spec-

ified as in the Gaussian case.

4.2 Model settings

For the estimation model, we consider Gaussian and Beta

regression with the following settings. Assuming yi’s are

Gaussian with N ðli; r2i Þ, model parameters are linked to

regression predictors by the identity and the log link

respectively: li ¼ glðxiÞ and r2i ¼ expðgr2ðxiÞÞ. Alterna-
tively, let yi’s have Beta law Beta ðpi; qiÞ, then both model

parameters li and r2i given in Sect. 4.1 are linked to

respective regression predictors glðxiÞ and gr
2ðxiÞ by the

logit link, such that li ¼ expðglðxiÞÞ=ð1þ expðglðxiÞÞÞ
and r2i ¼ expðgr2ðxiÞÞ=ð1þ expðgr2ðxiÞÞÞ.

Under both distributional assumptions, we consider the

two predictors as simply given by glðxiÞ ¼ bl0 þ f lðxiÞ and
gr

2ðxiÞ ¼ br
2

0 þ br
2

1 vi, with f lð�Þ a penalized spline term

and vi defined in Sect. 4.1.

For the measurement error, we consider the benchmark,

naive and ME models defined at the beginning of Sect. 4.

For the latter we specify Ru;i as in Eq. 5, for the two ME

scenarios. Finally, we set the scaling factor g in Eq. 4 to 1

in both distributional settings.

A different simulation setup was adopted in the two

distributional settings: for Gaussian models we obtained

10,000 simulations with 5000 burnin and thinning by 5,

while Beta models required longer runs of 50,000 iterations

with 35,000 burnin and thinning by 15. In all cases,
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convergence was reached and checked by visual inspection

of the trace plots and standard diagnostic tools.

4.3 Simulation results

In Fig. 1 we show the averages and quantile ranges of

smooth effect estimates obtained with 100 simulated

samples for the three Gaussian model settings and the two

scenarios. While the benchmark model setting obviously

outperforms the other two, the ME correction provides a

sharper fit with respect to the naive. In general, over-

smoothing is only found with the naive model in the case of

correlated measurement errors (Scenario 2). Notice that the

naive model setting provides credible intervals as narrow

as those obtained when the ME is not present (Fig. 1, right

panel), thus underestimating the smooth effect variability

in the presence of ME. Preference for the ME corrected

model setting is also accorded by RMSE’s, as shown in

Fig. 2. The Beta distribution model obtains very similar

results, with even stronger evidence for underestimation of

the smooth effect variability by the naive model in Fig. 3

(right). Estimates of response variances are summarized in

Fig. 4 for Scenario 1 showing that, as expected, the ME

correction provides a sharper fit with respect to the naive,
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Fig. 1 Average estimates of the smooth effect f lðxÞ (left) and width of 95% credibility intervals (right) obtained with 100 simulations of the three

model settings and the two scenarios by the Gaussian distribution model
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Fig. 2 Boxplots of RMSE’s of the Gaussian (left) and Beta (right) distribution models for 100 simulations of the three model settings and the two
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754 Stochastic Environmental Research and Risk Assessment (2019) 33:747–763

123



with some evidence for overestimation of lower values. For

the sake of brevity we don’t report the results obtained with

Scenario 2 for which a very similar behavior is observed.

5 Analysis of sensor data on soil–plant
variability

Alfalfa (Medicago sativa L.) plays a key role in forage

production systems all over the world and increasing its

competitiveness is one of the European Union’s agricul-

tural priorities (Schreuder and de Visser 2014). Site-

specific management strategies optimizing the use of crop

inputs are a cost-effective way to increase crop profitability

and stabilize yield (Singh 2017). To achieve this goal,

precise management activities such as precision irrigation,

variable-rate N targeting, etc. are required. Precision

Agriculture (PA) strategies in deep root perennials like

alfalfa require information on deep soil variability (Merrill

et al. 2017). This is due to the high dependence of these

crops on deep water reserves often influenced by soil

resources such as texture and structure (Dardanelli et al.

1997; Saxton et al. 1986) that are correlated to soil elec-

trical resistivity (ER) (Doolittle and Brevik 2014;
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Fig. 3 Average estimates of the smooth effect f lðxÞ (left) and width of 95% credibility intervals (right) obtained with 100 simulations of the three

model settings and the two scenarios by the Beta distribution model
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Samouëlian et al. 2005; Banton et al. 1997; Tetegan et al.

2012; Besson et al. 2004). We focus on the relation

between plant growth and soil features as measured by two

sensors within a seven hectares Alfalfa stand in Palomonte,

South Italy, with average elevation of 210 m a.s.l.. The

optical sensor GreenSeekerTM (NTech Industries Inc.,

Ukiah, California, USA) measures the normalized density

vegetation index (NDVI), while Automatic Resistivity

Profiling (ARP�, Geocarta, Paris, F) provides multi-depth

readings of the soil electrical resistivity (ER). NDVI field

measurements were taken at four time points in different

seasons, while ER measurements were taken only once at

three depth layers: 0.5 m, 1 m and 2 m. As shown in

Table 1 and Fig. 5, NDVI point locations change with time

and are not aligned with ER samples. Hence NDVI and ER

samples are misaligned in both space and time. Other data

issues include response space-time dependence with spa-

tially dense data (big n problem, Lasinio et al. 2013) and

repeated covariate measurements.

5.1 Data pre-processing

Big n and spatial misalignment suggest to change the

support of both NDVI and ER samples. The change of

support problem (COSP, see Gelfand et al. 2010, and

references therein) involves a change of the spatial scale

that can be required for any of several reasons, such as

predicting the process of interest at a new resolution or to

fuse data coming from several sources and characterized by

different spatial resolutions. Bayesian inference with COSP

may be a computationally demanding task, as it usually

involves stochastic integration of the continuous spatial

process over the new support. For this reason, in case of

highly complex models or huge data sets, some adjust-

ments and model simplifications have been proposed to

make MCMC sampling feasible (see Gelfand et al. 2010;

Cameletti 2013). Although relatively efficient, these pro-

posals don’t seem to fully adapt to our setting, mostly

because of the need to overcome the linear paradigm. The

most commonly used block average approach (see for

example Banerjee et al. 2014; Cressie 2015) would become

computationally infeasible with a semi-parametric defini-

tion of the relation between NDVI and ER.

Given the aim of this work and the data size, COSP is

here addressed by a non-standard approach: spatial data

were upscaled by aggregating samples to a 2574 cells

square lattice overlaying the study area (validated in Rossi

et al. 2015, 2018). Given the different number of sampled

points corresponding to each sampling occasion (NDVI)

and survey (ER), we used a proportional nearest neighbors

neighborhood structure to compute the upscaled values.

More precisely, 27 neighbors were just enough to obtain

non-empty cells at all grid points with the least numerous

NDVI series (at the 3rd time point). We then modified this

number proportionally to the samples sizes, obtaining 55,

59, and 65 neighbors respectively for NDVI at the 1st, 2nd

and 4th time points and 35 neighbors for ER. At each grid

point we calculated the neighbors’ means for both NDVI

and ER, while neighbors’ variances and covariances

between depth layers were obtained for ER. Summary

Table 1 Sampling time and number of sampled locations for NDVI

and ER

NDVI ER

Month/year 9/2013 11/2013 10/2014 6/2015 6/2013

# Points 186667 202172 91438 222278 120261

Fig. 5 Maps of sampled NDVI,

ER and grid point locations
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measures of the scale and correlation of ER repeated

measures at each of the 2574 grid points provide valuable

information. Such a by-product of the upscaling of the

original spatial data is used to obtain estimates of the

elements of Ru;i to be plugged into the model likelihood.

Exploratory analysis of the gridded data shows some

interesting features that we use to drive the specification of

the distributional regression model: ER does not show a

strong systematic variation along depth (Fig. 6, left); the

functional shape of the nonlinear relation between NDVI

and ER is common to all NDVI sampling occasions and ER

depth layers (Fig. 7); NDVI has much higher position and

smaller variability at the second time point, when it

approached saturation (Fig. 6, right). NDVI saturation

commonly occurs at high aerial biomass levels. After

September’s cut, the onset of autumn rains coupled with

the mild average temperatures of the period favored alfalfa

aerial biomass accumulation. As the canopy closes, NDVI

values commonly increase to the point of reflectance

saturation.
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Fig. 7 Dependence of NDVI
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axis) at different time points

(rows) and depth layers

(columns). XY plots of gridded

data and lowess curves
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5.2 Additive distributional regression models
for location and scale

For available NDVI recordings, we consider Gaussian and

Beta distributional regression models as those defined in

Sect. 4.2. For s ¼ 1; . . .; 2574 grid points and t ¼ 1; . . .; 4
time points, the structured additive predictor of the location

parameter glðmstÞ is determined as an additive combination

of three linear and functional effects, such as a linear time

effect, a spatial effect and a nonlinear effect of the con-

tinuous covariate ER:

glðmstÞ ¼ bl0 þ i0tb
l
1 þ f

l
1 ðxsÞ þ f

l
2 ðlons; latsÞ ð6Þ

where it is a vector of time indicator variables with

cornerpoint parametrization corresponding to the first

sampling time, xs are latent replicate-free ER recordings

specified as in Sects. 2.3 and 3.1, f
l
1 ðxsÞ is a nonlinear

smooth function of xs and f
l
2 ðlons; latsÞ is a bivariate

nonlinear smooth function of geographical coordinates

lons, lats. The spatial dependence is taken into account

through a bivariate nonlinear smooth function of the

coordinates, rather than by a latent Gaussian field with

stationary spatial covariance function. The choice of a fine

spatial modelling of the mean is due to the large number of

data points after spatial aggregation over a square lattice.

Considering a spatially correlated Gaussian field in this

case would imply inversion of a large covariance matrix at

each iteration of the MCMC algorithm, further increasing

the computational complexity. As Fig. 6 (left) clearly

shows, time has an effect on the variability (scale) of

NDVI, while no analogous evidence is available concern-

ing any other systematic variation of the NDVI scale. Then

the linear predictor of the scale parameter gr
2ðmstÞ is

assumed to depend only on the effect of time, allowing

heteroscedasticity of NDVI recordings:

gr
2ðmstÞ ¼ br

2

0 þ i0tb
r2
1

ð7Þ

for t ¼ 1; . . .; 4 time points where br
2

0 and br
2

1 represent the

overall level of the predictor and the vector of seasonal

effects on the transformed scale parameter. Fixed effects b
l
1

and br
2

1 in (6) and (7) respectively account for mean effects

and heteroscedasticity of NDVI seasonal recordings.

Although the Beta model would be the correct model for

NDVI (values range between 0 and 1, as the area does not

comprise water bodies), it is much more computationally

convenient to use the Gaussian model. Conjugacy allows to

use Gibbs sampling to simulate from the full conditionals

of the Gaussian model for the location parameter. The less

computationally convenient Metropolis-Hastings algorithm

is required to sample the posterior of the Gaussian model

for the scale parameter and that of the Beta model for both

parameters. As for the simulation experiment, 10,000

simulations with 5000 burnin and thinning by 5 were

obtained for Gaussian models, while Beta models required

longer runs of 50,000 iterations with 35,000 burnin and

thinning by 15. In all cases, convergence was reached and

checked by visual inspection of the trace plots and standard

diagnostic tools. Fine tuning of hyperparameters lead us to

10 and 8 equidistant knots for each of the two components

of the tensor product spatial smooth in the Gaussian and

Beta case, respectively. All priors and hyperparameters

were set as specified in Sects. 2 and 3. A sensitivity anal-

ysis was performed comparing 11 different prior settings

for variance parameters of penalized spline and tensor

product spline terms. The results (not shown for brevity,

but available from the authors upon request) were generally

quite stable and estimates never exceeded 95% credibility

intervals obtained with the default prior setting.

The additive distributional regression model was com-

pared to standard additive mean regression with the same

mean predictor, applying the proposed measurement error

correction to both models, under the Gaussian and Beta

assumptions. By this comparison we show that adding a

structured predictor for the scale parameter improves both

the in-sample and out-of-sample predictive accuracy. In the

following, M1 is an additive regression model with mean

predictor as in (6), while M2 is an additive distributional

regression model with the same mean predictor and scale

predictor given by (7).

5.3 Results

Model comparison shows some interesting features of the

proposed alternative model specifications. Concerning the

distributional assumption, DIC, WAIC and the three proper

scoring rules, calculated within R ¼ 10 cross validation

folds, clearly favor the Beta models (Table 2), showing a

better compliance with in-sample and out-of-sample pre-

dictive accuracy. As far as additive distributional regres-

sion is concerned, information criteria and scoring rules

agree in assessing the proposed model (M2) as performing

better than a simple additive mean regression (M1).

Table 2 Model fit statistics for Gaussian (G) and Beta (B) distribution

additive mean (M1) and distributional (M2) regression models:

deviance information criterion, Watanabe–Akaike information crite-

rion, logarithmic score, spherical score and quadratic score

Model DIC WAIC LS SS QS

GM1 - 21333.3 - 21331.2 1.0340 1.8427 3.3947

GM2 - 27088.4 - 27076.2 1.1234 1.8986 3.6935

BM1 - 22841.0 - 22835.9 1.1085 1.9298 3.7893

BM2 - 27131.4 - 27126.4 1.2140 2.0182 4.2902
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Quantile residuals of model M2 under the two distri-

butional assumptions show a generally good behavior. A

substantial reduction in scale is observed for the Beta case

and only a slightly better compliance of the latter distri-

butional shape with respect to the Gaussian (Fig. 8). When

comparing the two distributional assumptions, it should be

recalled that Gaussian models are by far much more con-

venient from the computational point of view.

Values of the fixed time effects estimates of the mean

(6) and variance (7) predictors and their 95% credibility

intervals for the two models (Table 3) are expressed in the

scale of the linear predictor and cannot be compared, due to

different link functions being implied (back transformation

to the response scale can be done for whole predictor, not

for single additive effects). However, in both the Gaussian

and Beta case the relative variation of fixed time effects

estimates clearly reproduces the NDVI behavior in Fig. 6,

left.

The effectiveness of the proposed approach for the data

at hand was also checked by comparison of model esti-

mates in Table 3 to those obtained with the same model

without the measurement error correction, i.e. with the

measurement error part specified as for the naive model in

Sect. 4. As was previously shown in Sect. 4.3 with the

results of the simulation experiment, neglecting the mea-

surement error produces biased effects estimates with

unduly low variability. Inspection of Table 4 shows that

fixed effects estimates are constantly slightly smaller than

those in Table 3 and that, as expected, credibility intervals
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Fig. 8 Quantile residuals for models M1 (left) and M2 (right) under the Gaussian (top panel) and Beta (bottom panel) assumptions: boxplots at

different time points (left panel) and Normal q–q plots (right panel)

Table 3 Fixed time effects estimates of mean and variance predictors with 95% credibility intervals. To facilitate interpretation, estimates were

transformed avoiding the cornerpoint parametrization

Model Parameter 9/13 11/13 10/14 6/15

GM2 l 0.6037 0.8224 0.5215 0.5410

0.5964, 0.6113 0.8157, 0.8295 0.5127 0.5294 0.5318 0.5503

logðr2Þ - 5.0995 - 8.3773 - 4.5524 - 3.8718

- 5.1588, - 5.0401 - 8.4321, - 8.3190 - 4.6071, - 4.4992 - 3.9287 - 3.8171

BM2 logit ðlÞ 0.3943 1.5231 0.0528 0.1365

0.3528, 0.4329 1.4825, 1.5636 0.0104 , 0.0940 0.0919, 0.1799

logit ðr2Þ - 3.7627 - 6.2897 - 3.2067 - 2.4696

- 3.8204, - 3.7062 - 6.3542, - 6.2249 - 3.2591, - 3.1520 - 2.5245, - 2.4175
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are narrower than those obtained with the measurement

error correction.

Estimates of smooth effects of ER in Fig. 9 have com-

mon shapes for the two distributional assumptions. In both

cases ER effects have quite small values if compared to

those of the fixed time effects in Table 3. As a matter of

fact, time is a predictable source of variation: canopy

spectral properties reflect the crop phenology, growth and

physiological status, and NDVI reflects the seasonal and

year to year variation of the crop growth and development.

Notice that the focus of the agronomic problem is ana-

lyzing the dependence of NDVI on ER, then the estimated

time effect is rather to be considered as a confounder. Lack

of the measurement error correction causes some overes-

timation of the higher values of the ER effect. Again, 95%

credibility intervals (not reported, but available from the

authors upon request) are much narrower than those

obtained with the measurement error correction.

The inclusion of the nonlinear trend surface (Fig. 10,

right), besides accounting for the spatial pattern and lack of

independence between nearby observations, allows to

separate the effect of ER from any other source of NDVI

spatial variability, including erratic and deterministic

components (such as slope and/or elevation). The estimated

nonlinear effect of ER on NDVI (Fig. 10, left) shows a

monotonically increasing relation up to approximately

10 Ohm m with a subsequent steep decline up to approx-

imately 20 Ohm m. After dropping to lower values, the

smooth function declines more slowly. Based on the

resulting estimated smooth functions (Fig. 10, left), two

ER cut-offs (at 10 and 20 Ohm m) are proposed that can be

used to split the field into three areas characterized by a

different monotonic soil–plant relationship (Rossi et al.

2018):

Table 4 Fixed time effects estimates of mean and variance predictors with 95% credibility intervals for the naive model without measurement

error correction

Model Parameter 9/13 11/13 10/14 6/15

GM2 l 0.6004 0.8191 0.5181 0.5375

0.5972, 0.6040 0.8175, 0.8208 0.5138 0.5224 0.5313 0.5434

logðr2Þ � 5.1028 � 8.3956 � 4.5518 � 3.8721

� 5.1559, � 5.0501 � 8.4503, � 8.3390 � 4.6071, � 4.4937 � 3.9266 � 3.8158

BM2 logit ðlÞ 0.3811 1.5098 0.0389 0.1234

0.3607, 0.4014 1.4930, 1.5265 0.0175 , 0.0605 0.0941, 0.1506

logit ðr2Þ � 3.7782 � 6.3212 � 3.2087 � 2.4722

� 3.8363, � 3.7212 � 6.3770, � 6.2566 � 3.2644, � 3.1519 � 2.5246, � 2.4197
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Fig. 9 Estimates of the smooth effect of ER f
l
1 ðxsÞ for models GM2

(left), and BM2 (right) with and without the measurement error

correction (thin dotted lines are 95% credibility intervals for the

models with the ME correction). GM2 effects are on the scale of the

response (NDVI), while BM2 effects are estimated on the logit scale
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• Zone i: ER\10 Ohm m, where NDVI grows with ER

and very low ER readings correspond to intermediate to

high NDVI values;

• Zone ii: 10 Ohm m\ER\20 Ohm m, where ER is

negatively related to NDVI and soil factors affecting

ER act almost linearly and consistently on plant

performance;

• Zone iii: ER [ 20 Ohm m, where despite the large

variation in ER there is a limited NDVI-soil respon-

siveness and NDVI is constantly low.

Each zone conveys information on the shape and strength

of the association between soil and crop variability, thus

the proposed field zonation helps discerning areas charac-

terized by different soil constraints. These information can

be profitably used to improve the efficiency of destructive

sampling strategies that are necessary to identify specific

soil limiting factors in each zone. Management efforts are

optimized by prioritizing interventions in areas character-

ized by a relatively high and time-persistent soil–plant

responsiveness (e,g. areas where soil variability actually

corresponds to yield variability) for which the ER map can

itself be used as a prescription map.

6 Concluding remarks and directions
of future work

The work described in this paper was motivated by the

analysis of a database characterized by some complex

features: response space-time dependence with spatially

dense data, data misalignment in both space and time and

repeated covariate measurements. These data features were

addressed by first changing the spatial support of the data.

Subsequent analysis are based on our proposal of extending

structured additive distributional regression models intro-

ducing replicated covariate measured with error. Within a

fully Bayesian implementation, measurement error is dealt

with in the context of the functional modeling approach,

accounting for possibly heteroscedastic and correlated

covariate replicates. In the paper we only allow for Gaus-

sian and Beta distributed responses, but the proposed cor-

rection is implemented to accommodate for potentially any

K-parametric family of response distributions. With a

simulation experiment we show some advantages in the

performance of the proposed ME correction with respect to

two alternative less ambitious ME specifications. The

proposed extension of the ME correction in Kneib et al.

(2010) to structured additive regression models proves to

be essential for the case study on soil–plant sensor data,

 −0.02  −0.01  −0.01  −0.01 

 −0.005 

 −0.005 

 0 

 0 

 0.005 

 0.005 

 0.01  0.01 

 0.015 

ER

10 20 30 40 50 525300 525500

10 20 30 40 50 525300 525500

−0
.0

2
0.

00
0.

01
0.

02

44
95

75
0

44
95

90
0

44
96

05
0

−0
.1

5
−0

.0
5

0.
05

0.
15

44
95

75
0

44
95

90
0

44
96

05
0

 −0.2  −0.1  −0.05 

 −0.05 

 −0.05 

 0 

 0
 

 0 

 0.
05

 

 0.05 

 0.05 

 0.05 
 0.1 

 0.1 

 −0.02  −0.01  −0.01  −0.01 

 −0.005 

 −0.005 

 0 

 0 

 0.005 

 0.005 

 0.01  0.01 

 0.015 

 −0.2  −0.1  −0.05 

 −0.05 

 −0.05 

 0 

 0
 

 0 

 0.
05

 

 0.05 

 0.05 

 0.05 
 0.1 

 0.1 

Fig. 10 Estimates of the smooth

effects ER f
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spatial coordinates f
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(right) for models GM2 (top),
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while GM2 effects are on the
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BM2 effects are estimated on

the logit scale. Vertical lines
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corresponding to different
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where both mean and variability effects have to be mod-

eled. Indeed in this case the proposed approach outper-

forms the simpler use of the ME correction with a mean

regression model with the same (mean) predictor.

In the Bayesian framework, a straightforward extension

would be the consideration of other types of (potentially

non-normal) measurement error structures, as in Sarkar

et al. (2014) under a structural ME approach. Given that a

fully specified measurement error is given, this will only

lead to a minor adaptation of the acceptance probability in

our MCMC algorithm. A more demanding extension would

be to include inference on the unknown parameters in the

measurement error model, such as the covariance structure

in our approach based on multivariate normal measurement

error. Such parameters will typically be hard to identify

empirically unless the number of replicates is very large. In

the case of big spatial data, the computational burden

induced by spatial correlation could be reduced integrating

the ME correction with a low rank approach (see for

instance Banerjee et al. 2014; Datta et al. 2016, and ref-

erences therein). While in this paper we have considered

measurement error in a covariate that enters the predictor

of interest via a univariate penalized spline, other situations

are also easily conceivable. One option would be to

develop a Bayesian alternative to the simulation and

extrapolation algorithm developed in Küchenhoff et al.

(2006) to correct for misclassification in discrete covari-

ates. Another route could be the consideration of mea-

surement error in one or both covariates entering an

interaction surface modeled as a bivariate tensor product

spline.

In the Bayesian hierarchical framework it would be

conceptually easy to address the dependence of ME-af-

fected covariates on other auxiliary variables. In line with

‘‘exposure models’’ (Gustafson 2003), auxiliary variables

could take the form of a spatial field, making the estimation

algorithm computationally intensive (in our case study this

would imply simulating 2574 points Gaussian fields for

three replicates at each point at each MCMC iteration). A

possible alternative solution would consider ME-affected

covariates depending on a semiparametric function of the

spatial coordinates, avoiding matrix inversions implied by

GRF simulations.
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