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Abstract
Non-Fickian solute transport is observed across many scales, which has motivated development of numerous non-Fickian-

based models. Assuming that local fluid flow was estimable from the Modified Local Cubic Law, this study determined

whether the local ADE better simulated non-Fickian transport through rough (3-D) fractures when local dispersion was

described using either the Taylor dispersion coefficient (DTaylor) or the molecular diffusion coefficient (Dm). The assess-

ment was based on how well the local ADE compared to particle-tracking solutions for solute transport across a range of

Péclét numbers (Pe) through two simulated fractures. Even though the local ADE is based on local Fickian transport

processes, it was able to reproduce non-Fickian transport characteristics through these heterogeneous fractures. When

supplying DTaylor to the local ADE, it extended the applicability of the local ADE to a threshold of Pe\ 450; using Dm, the

local ADE was only accurate when Pe\ 70. No differences were observed for small Pe. Therefore, our recommendation is

to always use DTaylor in the local ADE to capture non-Fickian transport so long as the Pe threshold is not exceeded.

Keywords Non-Fickian transport � Local advection–dispersion equation � Fracture flow � Particle tracking �
Taylor dispersion

1 Introduction

Non-Fickian transport has been observed in porous and

fractured media from the pore scale to the kilometer scale

(Berkowitz et al. 2006; Dentz et al. 2011; Maxwell et al.

2016). Although many experiments, numerical simulations,

and theoretical analysis have been designed to interrogate

non-Fickian transport, accurate prediction of non-Fickian

transport in heterogeneous geological media remains

challenging (Neuman and Tartakovsky 2009; Cadini et al.

2013; Shih 2004).

Broadly speaking, two approaches have been used to

quantify non-Fickian transport (Dogan et al. 2014).

(1) The family of non-Fickian transport theories includ-

ing: the multi-rate mass transfer model (Haggerty

and Gorelick 1995), the mobile-immobile model

(Gao et al. 2010; Zhang et al. 2014), continuous-time

random-walk models (Berkowitz et al. 2006), and

time fractional-derivative models (Garrard et al.

2017). Unlike the classical advection–dispersion

equation (ADE), these non-Fickian theories have

parameters that lack solid physical bases. This has

motivated efforts to establish connections between

these parameters and measurable physical properties

(Wang and Cardenas 2014).

(2) The local ADE. The macroscopic ADE fails to

simulate non-Fickian transport because it lacks

the necessary physics to represent the true hetero-

geneity of the system (Berkowitz et al. 2006; Wang

and Cardenas 2014). To overcome this deficiency,

researchers proposed the local ADE method (Fiori

et al. 2013; Hanna and Rajaram 1998) where the ADE

is applied with each model cell individually parame-

terized according to its local flow and dispersion. The

local ADE method has successfully reproduced non-
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Fickian transport observed at the Macrodispersion

Experiment site in Columbus (Mississippi, USA)

(Dogan et al. 2014). Also, simulations using the local

ADE are appealing because they are computationally

efficient (Dogan et al. 2014; Fiori et al. 2013).

Although the local ADE is a viable model for simulating

non-Fickian transport in heterogeneous porous media

(Dogan et al. 2014), it has yet to be fully demonstrated for

transport through rough-walled (3-D) fractures (Deng et al.

2015; Detwiler and Rajaram 2007; Elkhoury et al. 2013;

Hanna and Rajaram 1998), To close this knowledge gap,

this study established the conditions (defined by the Péclét

number) under which the local ADE can accurately simu-

late transport processes within heterogeneous fractures

when non-Fickian transport behavior is prominent.

2 Methodology

To assess the applicability of the local ADE for simulating

transport through heterogeneous fractures, it was compared

to the demonstrably accurate random-walk particle-track-

ing (RWPT) model (Wang and Cardenas 2015). Two nat-

ural heterogeneous fractures were scanned and used to

build demonstration models. By gradually increasing the

pressure gradient, the applicability of the local ADE was

assessed with increasing Péclét number:

Pe ¼ uhbi
Dm

ð1Þ

where u (m/s) is mean fluid velocity, hbi (m) is the arith-

metic mean of the aperture field, and Dm = 2.03 9 10-9

m2/s is the molecular diffusion coefficient.

2.1 Fracture descriptions

Flow and transport models were built for two rough frac-

tures described previously (Wang et al. 2015). These two

fractured Santana tuff samples were scanned at the X-ray

computed tomography (HRXCT) facility at the University

of Texas at Austin (Ketcham et al. 2010; Slottke 2010).

Fracture A (Fig. 1a) had horizontal and vertical resolutions

of 0.26 and 0.25 mm, respectively. Fracture B (Fig. 1b)

had horizontal and vertical resolutions of 0.28 and

0.25 mm, respectively. Table 1 provides the fracture

physical characteristics.

Both aperture fields approximate a lognormal distribu-

tion with hbi equal to 3.35 and 1.50 mm for Fractures A

and B, respectively. Aperture correlation lengths, kb (m),

were calculated using the geostatistical simulator SGeMS

(Remy et al. 2009) by fitting an exponential model to the

experimental semivariograms of b with a nugget effect.

2.2 The local ADE model

Flow and transport processes through 3-D fractures are

described by the Navier–Stokes equations (NSE) and the

advection–diffusion equation, respectively (Wang and

Cardenas 2015). However, directly resolving solute trans-

port in a fracture is computationally costly, especially for

high Reynolds number (Re) that requires a fine mesh size

(Wang and Cardenas 2015; Zimmerman et al. 2004). For

computational expediency, flow and transport processes are

often estimated using efficient depth-averaged models

(Nicholl et al. 1999), i.e., a quasi-3D approach.

2.2.1 The steady-state depth-averaged flow model

Fluid flow through fractures depends on fracture hetero-

geneity (i.e., fracture roughness and tortuosity) and flow

regimes (Brush and Thomson 2003; Zimmerman et al.

2004). Flow through parallel plates is described by the

Cubic Law (Witherspoon et al. 1980); it was extended to

fractures with moderate roughness as the Local Cubic Law

(Nicholl et al. 1999; Wang et al. 2015). Here, an updated

version called the Modified Local Cubic Law (MLCL)

(Wang et al. 2015) was used to resolve steady flows

through the fractures. The MLCL, which can improve the

numerical solution for steady flow by simultaneously

incorporating fracture roughness, tortuosity, and weak

inertial forces, is:

r � Tx

M

op

ox
cosð/xÞi~þ

Ty

M

op

oy
cosð/yÞj~

� �
¼ 0 ð2Þ

where Tx and Ty are transmissivities based on local aperture

field in the x and y directions, p is pressure, /x and /y are

the local flow orientation angles based on the knowledge of

local tortuosity in the x and y directions, and M is a cor-

rection coefficient that accounts for the effects of local

fracture roughness and weak inertial forces (Wang et al.

2015). The MLCL is demonstrably robust at the local scale

because the MLCL: (1) reproduces total discharge calcu-

lated from the NSE and (2) preserves local flux calculated

by vertically integrating the velocity field from the NSE

(Wang et al. 2015).

Constant pressures were specified at the inlet (left) and

outlet (right) as shown in Fig. 2, driving longitudinal (x-

direction) flow; top and bottom boundaries were assigned

zero flux. Pressure gradients were increased yielding Re

ranging from 0.003 to 0.94 for Fracture A and 0.002 to 0.90

for Fracture B:
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Re ¼ qQ
Wl

ð3Þ

where q (1000 kg/m3) is fluid density, Q (m3) is discharge

from the MLCL, and W (m) is fracture width, and l
(10-3 Pa-s) is fluid dynamic viscosity. All simulations

were within the Darcy flow regime, because flow transition

generally occurs where Re[ 1 and this is when inertial

effects are non-negligible.

Flow fields were simulated with a MatLab finite-dif-

ference routine by solving pressure and fluid-flux fields

using the MLCL (James et al. 2018), upon which transport

processes were estimated through solution of the local

ADE and by the RWPT model.

2.2.2 The depth-averaged transport (local ADE) model

The flow field governs solute advection and dispersion

(Fischer et al. 1979). In addition to depth-averaged flux

fields (q = [qx,qy], where qx and qy fluxes in the x and y

directions, respectively) from the MLCL, spatially variable

dispersion coefficients are required by the local ADE:

o bCð Þ
ot

þr � qCð Þ ¼ r � bDrCð Þ ð4Þ

where C (-) is depth-averaged normalized concentration,

t (s) is time, and D (m/s2) is the 2-D, spatially varying

dispersion coefficient. Initial concentrations were zero.

Along the inlet boundary, C = 1, while the outlet was

assigned an open boundary condition with zero diffusive/

dispersive flux such that solutes exited only by advective

flux (Fig. 2). The top and bottom boundaries were no-flux.

The local ADE was solved with a Matlab finite-difference

model. Numerical instabilities were minimized with a first-

order upwind scheme for the advection term and a second-
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Fig. 1 Aperture fields for

Fractures (a) A and (b) B.
Probability density distributions

(PDDs) of log-apertures for

Fractures (c) A and (d) B

Table 1 Aperture-field

characteristics for Fractures A

and B with flow and transport

regimes described by Re and Pe

Fracture hbi (mm) rb (mm) kb (mm) rP (Pa/m) Re (-) Pe (-)

Fracture A 3.35 0.60 60 0.001–0.36 0.003–0.94 1.32–461.26

Fracture B 1.50 0.59 30 0.001–4.29 0.002–0.90 0.74–445.56
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Fig. 2 Schematic of the flow (blue) and transport (red) models
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order central difference approximation for the dispersion

term (Slingerland and Kump 2011).

Because the velocity field was assumed accurate (Wang

et al. 2015), the validity of the local ADE solution was

assessed using two different methods to specify D in

Eq. (4) using either Dm or DTaylor, which combines

molecular diffusion with the effects of velocity gradients

on solute spreading (Detwiler and Rajaram 2007; James

and Chrysikopoulos 1999, 2000):

DTaylor ¼
Dm þ q2x

210Dm

0

0 Dm þ
q2y

210Dm

2
664

3
775 ð5Þ

Note that Taylor dispersion theory is only valid upon

exceeding specific length or time thresholds (Fischer et al.

1979; Wang et al. 2012). Prior to such thresholds, pre-

asymptotic dispersion is observed (Bolster et al. 2014;

Meng and Yang 2016; Wang et al. 2012), but not consid-

ered here. Because length/time thresholds grow with

increasing Pe, and the fracture length was fixed, increasing

Pe could lead to violation of the assumptions in Taylor

dispersion theory. This work identified under what Pe

regimes Dm or DTaylor can be successfully used in the local

ADE to capture non-Fickian transport in rough fractures.

2.3 The RWPT model

The quasi-3D RWPT model simulates transport through

heterogeneous fractures (James et al. 2005; James and

Chrysikopoulos 2001) by updating particle locations [x, y,

z] each time step:

xnþ1 ¼ xn þ uDt þ N 0; 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt

p

ynþ1 ¼ yn þ vDt þ N 0; 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt

p

znþ1 ¼ zn þ wDt þ N 0; 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DmDt

p ð6Þ

where n and n ? 1 represent present and future time steps,

Dt is an adaptive time interval that balances computational

efficiency and solution accuracy (Wang and Cardenas

2015), [u, v, w] are velocities in the [x, y, z] directions,
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Fig. 3 Flow fields for fractures

(a) A and (b) B. The gray scale

indicates b with maximum

aperture, bmax, and red arrows

indicate local flow directions
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(a) Pe = 1.32

(d) Pe = 461.26(c) Pe = 131.79

(b) Pe = 13.18

Solute particles

Fig. 4 Transport snapshots for Fracture A at pore volume (PV,

defined as time 9 discharge/fracture volume) = 0.5 with increasing

Pe from (a)–(d). The colored field is the solution to the local ADE

using DTaylor while dots are the solution from the RWPT model
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respectively, and N(0, 1) is an independent selection from

the standard normal distribution.

Note that u and v were calculated as a function of z ac-

cording to the parabolic velocity profile (James et al. 2005).

Mass was conserved by specifying [qx, qy] during vertical

integrations of u and v, respectively, which resulted in

w = 0 everywhere. The absence of advection in the z di-

rection was compensated for by adjusting particle’s z lo-

cation when it flowed across adjacent cells according to

mid-surface plane variations; which mimicked the fracture-

normal flow component (i.e., mid-surface plane tortuosity).

Like direct NSE solutions in 3D fractures, RWPT solutions

were assumed appropriate for assessing the applicability of

the local ADE.

Effluent solute concentrations from the RWPT model

were calculated as:

CRWPT ¼ n tð Þ
N

ð7Þ

where n(t) (-) is the cumulative number of particles exit-

ing fracture over time and N = 104 is the total number of

particles injected into the fractures and apportioned

according to the local flux. The RWPT model was solved

with a parallelized MatLab routine; solutions were insen-

sitive to any further increase in N (not shown).

3 Results and discussion

3.1 Flow fields

Figure 3 shows the resulting flow field; neither aperture

field was sufficiently variable (rough) to yield preferential

flow paths because apparent roughness, rb/hbi\ 0.4 where

rb is the standard deviation of b. Gradual trends in the

aperture fields directed regional flow toward larger aperture

zones (more conductive areas) as evident, for example, in

the flow toward the upper corner of Fracture B in Fig. 3.

This trend in the velocity field notably affected overall

transport process leading to non-Fickian transport.

3.2 Non-Fickian transport

Non-Fickian transport process must be present when

breakthrough curves (BTCs) cannot be replicated with the

Fickian-based macroscopic ADE (Berkowitz et al. 2006).

For spatially correlated, heterogeneous fractures, non-

Fickian transport is expected when fracture length, L, is less

than 20kb to 25kb (Detwiler et al. 2002; Wang and Cardenas

2017), which holds true for the fractures considered here

(Table 1). Moreover, aperture trends led to the uneven

plume fronts evident in Figs. 4 and 5 for all Re and Pe

regimes. Uneven plume evolution resulted in non-Fickian

C (−)

0 0.2 0.4 0.6 0.8 1.0 Solute particles

(a) Pe = 0.74

(c) Pe = 74.26

(b) Pe = 7.43

(d) Pe = 445.56

Fig. 5 Transport snapshots

through Fracture B at PV = 0.5

with increasing Pe from (a)–(d).
The colored field is the solution

to the local ADE using DTaylor

while dots are the solution from

the RWPT model
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transport typified by the early arrival and heavy tailing in the

BTCs evident in the solid curves in Fig. 6. The degree of

non-Fickian transport increased with Pe as demonstrated by

increased heavy tailing (solid curves in Fig. 6).

3.3 Assessment of the local ADE in capturing
non-Fickian transport

Applicability of the local ADE was assessed with

increasing Pe. Indeed, the effects of Pe on the validity of

the local ADE were considered here because of an analo-

gous macrodispersion study (Detwiler et al. 2000), which

suggested that the dispersion regimes transition from

molecular diffusion to Taylor dispersion with increasing

Pe.

Figure 6 compares RWPT BTCs to solutions from the

local ADE when either Dm or DTaylor was supplied for

D. Both solutions degraded with increasing Pe. Specifi-

cally, when Pe\ 70, the local ADE using DTaylor and Dm

both could faithfully reproduce RWPT plume characteris-

tics (Figs. 4, 5) and BTCs (Fig. 6). This was expected,

because DTaylor approaches Dm as Pe decreases (Detwiler

et al. 2000; Wang et al. 2012). Upon increasing Pe[ 70,

the local ADE with Dm was not able to satisfactorily

capture non-Fickian transport.

To extend the applicability of the local ADE to higher

Pe, DTaylor calculated using the local aperture of the model

cell was used for D to consider mechanical dispersion. It is

not intuitive that this should work because as Pe increases,

so do both DTaylor and the length threshold for it to be

applicable (but this cannot change for a fixed model cell

size) (Wang et al. 2012). Interestingly, when using DTaylor,

the local ADE was accurate for Pe\ 450 (Fig. 6). This

implies that DTaylor should always be used in the local ADE

because it extends the range of applicability to higher Pe

regimes (Pe\ 450).

4 Implications

Accurately simulating non-Fickian transport in hydrology

remains challenging due to strong heterogeneities (Neuman

and Tartakovsky 2009). While many non-Fickian-based

models have been proposed to simulate non-Fickian
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and the local ADE using Dm
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transport, the physical meanings of related parameters

remain elusive (Berkowitz et al. 2006). The validity of the

process-based local ADE has not been thoroughly inter-

rogated for fractured media exhibiting non-Fickian trans-

port, although it has been validated for porous media

(Dogan et al. 2014; Fiori et al. 2013). This study recom-

mends use of model-cell-based DTaylor for the spatially

variable dispersion coefficient in the local ADE for trans-

port regimes with Pe\ 450.

5 Conclusions

Although the computationally efficient local ADE can

capture non-Fickian transport in porous media, its appli-

cability to transport through rough fractures has been

under-explored. Here, the range of applicability of the local

ADE was extended by using the local Taylor dispersion

coefficient rather than the molecular diffusion coefficient.

The range of applicability of the local ADE was extended

from Pe\ 70 when using Dm to Pe\ 450 when using

DTaylor, suggesting that DTaylor should always be used in the

local ADE. The local ADE with DTaylor under appropriate

Pe regimes is able to capture and predict non-Fickian

transport in fractured media.
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