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Abstract
A multiple changepoint model for marked Poisson process is formulated as a continuous time hidden Markov model, which

is an extension of Chib’s multiple changepoint models (J Econ 86:221–241, 1998). The inference on the locations of

changepoints and other model parameters is based on a two-block Gibbs sampling scheme. We suggest a continuous time

version of forward-filtering backward-sampling algorithm for simulating the full trajectories of the latent Markov chain

without utilizing the uniformization method. To retrieve the optimal posterior path of the latent Markov chain, i.e. the

maximum a posteriori estimation of changepoint locations, a continuous-time version of Viterbi algorithm (CT-Viterbi) is

proposed. The set of changepoint locations is obtainable either from the CT-Viterbi algorithm or the posterior samples of

the latent Markov chain. The number of changepoints is determined according to a modified BIC criterion tailored

particularly for the multiple changepoint problems of a marked Poisson process. We then perform a simulation study to

demonstrate the methods. The methods are applied to investigate the temporal variabilities of seismicity rates and the

magnitude-frequency distributions of medium size deep earthquakes in New Zealand.

Keywords Multiple changepoint models � Marked temporal point process � Continuous-time forward filtering backward

sampling � Continuous-time Viterbi algorithms � Deep earthquakes � b-Values

1 Introduction

Deep Earthquakes, with the focal depth more than 50 km,

form a significant portion in earthquake catalogue around

the world, including New Zealand. Deep earthquakes are

important in that they give indications of the structure of

the earth, the dynamics of the crust and mantle, see Froh-

lich (2006). Although deep earthquakes are usually less

destructive as shallow earthquakes, they do cause damage

in some occasions. A study on the occurrence patterns of

deep earthquakes may prove valuable for understanding the

subduction process at convergent plate boundaries and the

evaluation of geological hazards near surface such as

shallow earthquakes and volcano activities. A common

feature typically observed in the deep earthquake catalogue

is the nonstationarity of two important statistics, i.e. the

seismicity rate and the magnitude-frequency distribution

(MFG). We consider one type of nonstationarity: abrupt

changes in the deep seismicity rate and the associated

magnitude-frequency distribution. We characterize the

time-varying pattern of the two statistics by use of a

Bayesian multiple changepoint model for the marked

temporal Poisson processes.

Changepoint models are widely applied for modelling

heterogeneities appearing in a set of observations collected

sequentially. These models split the data into disjoint

segments with a (random) number of changepoints, so that

observations in the same segment come from the same

pattern and observations in different segments show

heterogeneity. Changepoint models have been applied

extensively in engineering, signal processing, bioinfor-

matics, earthquake modelling (Yip et al. 2017), hydrology

(Kehagias 2004) and finance, among many others. There

are vast literatures on the methods and applications of

changepoint models. Among them, wild binary segmenta-

tion (Fryzlewicz 2014) and simultaneous multiscale change

point estimator (Frick et al. 2014) are very popular. We
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consider Bayesian off-line inference for the changepoint

models. Often, inference for the number, the locations of

changepoints and other model parameters is based on

Markov chain Monte Carlo methods, see Stephens (1994),

Green (1995), Chib (1998), Lavielle and Lebarbier (2001)

and Fearnhead (2006), among many others. It is noted that

most of these models are applicable only for discrete time

observations. Although some continuous time random

processes may be approximated ideally by their discrete-

time counterparts, it is necessary to develop multiple

changepoint models in continuous time on its own right.

The advantage of this approach is to avoid approximation

errors by their discrete-time counterparts, which is often

difficult to quantify. Marked point process is widely uti-

lized in statistical modelling for hurricane occurrences,

insurance claims (Elliott et al. 2007), earthquake occur-

rences (Ogata 1988; Yip et al. 2018) etc. For Poisson

processes, Galeano (2007) proposed a binary segmentation

algorithm along with a centralized and normalized cumu-

lative sum statistic to detect changepoints for the intensity

rate of Poisson events. The approach is based on asymp-

totic arguments for providing consistent estimates for the

locations of changepoints. Yang and Kuo (2001) suggested

a binary segmentation procedure for locating the change-

points and the associated heights of the intensity function

of a Poisson process by using Bayes factor or its BIC

approximation.

We consider a formulation of Bayesian multiple

changepoint models to simultaneously monitor the struc-

tural breaks in Poisson intensity rate and the associated

mark distribution, which is a continuous time extension of

Chib’s multiple changepoint models (1998). For this con-

tinuous time hidden Markov model, we suggest an

approach to directly simulate the full trajectory of the latent

Markov chain in a block Gibbs sampling scheme, which is

often implemented through the uniformization method

(Fearnhead and Sherlock 2006; Rao and Teh 2013). The

number of changepoints is determined via a modified

Bayes information criterion, which is tailored particularly

for this multiple changepoint models for the marked

Poisson processes.

The outline of the paper is as follows. In Sects. 2 and 3,

we formulate a multiple changepoint model for the marked

Poisson processes via a continuous-time hidden Markov

models. We then introduce a continuous-time forward fil-

tering backward sampling algorithm for sampling the full

trajectory of the latent Markov process without resorting to

the uniformization method. The maximum a posteriori

(MAP) estimate of the trajectory of the latent Markov chain

x(t), i.e. the locations of changepoints, can be obtained

from a continuous time version of Viterbi algorithm as

indicated in Sect. 4. The number of changepoints in a

marked Poisson process is chosen by a modified BIC

criterion. We then carry out simulation studies to demon-

strate the method in Sect. 5. In the last section, we perform

a case study for the New Zealand deep earthquakes. The

temporal variabilities of the deep seismicity rate and the

magnitude-frequency distribution are analysed via this

multiple changepoint model and its implications for seis-

mic hazards are illustrated.

2 Model formulation and the likelihood

2.1 Model formulation

Let Y(t) be a Poisson process attached with marks. Suppose

it is subject to abrupt changes at m unknown time points

0,s0\s1\ � � �\sm\smþ1,T . The process Y(t) is parti-

tioned into mþ 1 segments by m changepoints, with the

i� th segment consisting observations within ½si�1; siÞ. We

consider the multiple changepoint models with change-

point locations associated with the state transition times of

an unobservable continuous time finite Markov chain x(t).

The intensity rate function of Y(t) is specified by

kxðtÞfxðtÞðyÞ, where kxðtÞ is the stochastic intensity rate of the

ground process and fxðtÞðyÞ is the probability density

function of the mark distribution. A sequence of Poisson

events at ft1; . . .; tng and associated marks fy1; . . .; yng are

observed over a time interval [0, T]. The transition rate

matrix of x(t) is constrained to be consistent with a

changepoint model, such that x(t) either sojourns in the

previous state or jumps to the next level. Correspondingly,

the transition rate matrix of x(t) is parameterized by

Q ¼

�q1 q1 0 � � � 0 0

0 � q2 q2 � � � 0 0

� � � � � � � � � � � �
0 0 0 � � � � qm qm

0 0 0 � � � 0 0

0
BBBBBB@

1
CCCCCCA
:

The chain x(t) starts from the state 1 and ends in the state

mþ 1. When x(t) is in the state i, the stochastic intensity

rate of the ground process and the mark distribution of Y(t)

is given by kifiðyÞ. The attached marks can be any uni-

variate or multivariate variables. We shall specify the mark

distributions in later sections. This type of model is exactly

a Markov modulated Poisson process (MMPP) attached by

state-dependent marks, which is a doubly stochastic point

process with the stochastic intensity of the ground process

and the mark distributions determined by an underlying

irreducible finite Markov chain, see Lu (2012). This type of

multiple changepoint models have the conditional inde-

pendence property, such that conditional on the position of

a changepoint, observations after the changepoint contain

no information about segments and observations prior to
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the changepoint. It is also a type of product partition

models (Barry and Hartigan 1992) and a continuous-time

generalization of Chib’s multiple changepoint model

(1998).

Remark 1 The marks can be any type of variables, which

may be dependent or independent of the ground process.

Particularly, when the attached mark is an indicator of the

class to which the point belongs, it forms a multiple

changepoint model for multivariate Poisson processes

(Ramesh et al. 2013). In this case, changepoints in multiple

Poisson sequences can be simultaneously monitored.

Remark 2 This model formulation allows jointly moni-

toring the changepoints of Poisson rates and associated

marks in two cases: changepoints occurring both in the

ground process and the associated marks simultaneously,

or changepoints occurring either in the ground process or

the attached marks alone. This type of model formulation is

more flexible than modelling changepoints of the ground

process and the attached marks separately or individually,

which is ideal for modelling ’’common’’ structural breaks.

Remark 3 When all qis in Q are equal, it suggests that the

changepoints follow a constant rate Poisson process. As qis

in Q may be different, varying scale of segment lengths can

be represented, which is desirable for modelling highly

variable segment lengths between changepoints and avoids

potential model bias.

This model formulation is a special case of MMPP

attached by state-dependent marks (Lu 2012). However,

current model parameterization is consistent with a multi-

ple changepoint model with mþ 1 segment constraints and

no ’’state reciprocal’’ is assumed by specifying a full

transition rate matrix of the latent Markov chain as indi-

cated in Lu (2012). See also the last paragraph in Sect. 6

for further discussions.

We define some notations used in the later sections.

Denote the inter-event time ti � ti�1 by Dti and the obser-

vation ðti; yiÞ by Yi. xðtkÞ is denoted by xk. Generically, we

define the brackets [j, i] after a matrix A as the (j, i)-th

entry of A. The sample path of a random process Z(t) over a

time interval [a, b] or [a, b) is denoted by Z[a, b] or Z[a, b)

respectively.

2.2 The likelihood

The sequence fðxi;Dti; yiÞgni¼1 forms a Markov sequence

with transition density matrix eðQ�KÞðti�ti�1ÞK!ðyiÞ, where

K ¼ diag ðk1; . . .; kmþ1Þ and !ðyÞ ¼ diag ðf1ðyÞ; . . .;
fmþ1ðyÞÞ: The likelihood is given by

LðQ;KÞ ¼ e 0
1e

ðQ�KÞDt1K!ðy1Þ � � � eðQ�KÞDtnK!ðynÞ1;
ð1Þ

where ei is a unit column vector with all entries being zero

except the ith entry and 1 is a column vector with all entries

being unity, see Lu (2012) for the derivation of the

likelihood.

The evaluation of the likelihood is facilitated by use of

the forward and backward recursions. Denote

eðQ�KÞðtk�tk�1ÞK!ðykÞ by Lk. The forward and backward

probabilities are written by atkðiÞ ¼ e 0
1L1 � � � Lkei and

btkðjÞ ¼ e0jLkþ1Lkþ2 � � � Ln1: Therefore, the forward and

backward probabilities are recursively given by

atkþ1
ðiÞ ¼

P
j

atkðjÞLkþ1½j; i�

btkðiÞ ¼
P
j

Lkþ1½i; j�btkþ1
ðjÞ;

8><
>:

ð2Þ

where Lkþ1½j; i� is the (j, i)-th entry of Lkþ1. The likelihood

in terms of this device is obviously written by LðQ;KÞ ¼P
i atðiÞbtðiÞ for each t or equivalently LðQ;KÞ ¼ aTðmþ

1Þ: The forward and backward densities tend to zero or

infinity exponentially fast as the number of observations

accrue, leading to ’’under flow’’ or ’’over flow’’ problem in

practical computations. This ’’numerical instability’’

problem is often treated by use of floating-point software or

incorporation of scaling procedures as outlined in our R

implementation.

3 Bayesian inference of multiple
changepoint models

Let all the model parameters be denoted by H ¼ ðQ; hÞ.
Suppose a prior pðHÞ is specified for the model parameters

ðQ; hÞ. In the Bayesian context, the posterior distribution

pðHjY½0; T �Þ_pðHÞpðY ½0; T�jHÞ is of interest. We discuss

a block Gibbs sampling scheme to sample approximately

from the posterior distribution of H. The Gibbs sampling

scheme involves two full conditionals: the full trajectories

of the latent Markov chain x(t) given the model parameters

and the model parameters conditioned on the trajectories of

the latent Markov chain.

3.1 A continuous time forward filtering
and backward sampling algorithm

Sampling the full trajectories of the latent Markov chain

given model parameters is typically implemented by con-

tinuous time versions of forward filtering backward sam-

pling algorithms, see Fearnhead and Sherlock (2006) and

Rao and Teh (2013). In Fearnhead and Sherlock (2006) and

Rao and Teh (2013), the continuous time forward filtering
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backward sampling algorithms are based on the uni-

formization method. Alternatively, we suggest a direct

approach to simulate trajectories of the latent Markov chain

x(t) without resorting to uniformization method. We start

from the discrete time version of forward filtering back-

ward sampling algorithm, sampling from xk,xðtkÞ; k ¼
1; . . .; n at Poisson arrival times conditioned on

fYt; 0� t� Tg, see Chib (1998), Scott (2002) and Fearn-

head and Sherlock (2006). The forward filtering recursion

is given by

p xi ¼ k
��Y½0; ti�;H

� �

¼
Pk

l¼k�1 p xi�1 ¼ l
��Y ½0; ti�1�;H

� �
p xi ¼ k; Yðti�1; ti�

��xi�1 ¼ l;H
� �

P
k

Pk
l¼k�1 p xi�1 ¼ l

��Y½0; ti�1�;H
� �

p xi ¼ k; Yðti�1; ti�
��xi�1 ¼ l;H

� �

ð3Þ

The state filtering is calculated recursively from the initial

condition: pðx0 ¼ 1jHÞ ¼ 1.

The state sequence Xn ¼ ðx1; . . .; xnÞ is sampled from

the joint distribution

pðXnjY ½0; T�;HÞ ¼ pðxn�1jxn; Y ½0; T �;HÞ
pðxn�2jxn�1; Y ½0; T �;HÞ � � � pðx1jx2; Y½0; T �;HÞ:

After the filtering probabilities are stored, the backward

sampling is implemented according to

p xi

����xiþ1; Y½0; T �;H
� �

_p xi
��Y½0; ti�;H

� �
p xiþ1; Yðti; tiþ1�

��xi;H
� �

:

ð4Þ

In (3) and (4), it is required to evaluate

p xiþ1; Yðti; tiþ1�
��xi;H

� �
exactly. In this case,

p xiþ1; Yðti; tiþ1�
��xi;H

� �
¼ e0xie

ðQ�KÞðtiþ1�tiÞK!ðyiþ1Þexiþ1
:

ð5Þ

See the previous section for the likelihood of a Markov

modulated Poisson process with state-dependent marks.

It is noted that the state sequence fx1; x2; . . .; xng should

be in consecutive order such that xkþ1 ¼ xk or

xkþ1 ¼ xk þ 1. Otherwise, there exists at least one segment

within ðxk; xkþ1Þ, which is totally devoid of any poisson

observations. It is reasonable to assume no such segment

appears in many practical scenes. To simulate the full

trajectory of the latent Markov chain, it is necessary to

simulate the exact state transition times of x(t). When a

state transition happens between two consecutive xk and

xkþ1, the exact transition time s may be simulated by the

uniformization method, see Fearnhead and Sherlock (2006)

and Rao and Teh (2013). Alternatively, we consider a

direct approach to simulate it. The exact jump timing s is

simulated according to the probability density

p s

����xk ¼ i; xkþ1 ¼ iþ 1; Yð0; T�
� �

¼ qie
�ðqiþkiÞðs�tkÞe�ðqiþ1þkiþ1Þðtkþ1�sÞ

eðQ�KÞðtkþ1�tkÞ½i; iþ 1� ; tk � s� tkþ1;

ð6Þ

where eðQ�KÞðtkþ1�tkÞ½i; iþ 1� is the ði; iþ 1Þ-th entry of the

matrix exponential eðQ�KÞðtkþ1�tkÞ. The numerator of the

above equation is the probability density of x(t) sojourn in

the state i from ti until s, then jumping to the state iþ 1 in

½s; tkþ1�, while no Poisson event happens in the entire

ðtk; tkþ1Þ. The denominator of the above equation is the

probability density of x(t) sojourn in the state i at tk and

stay in the state iþ 1 at tkþ1 without Poisson arrivals in

ðtk; tkþ1Þ. The cumulative distribution function FðuÞ ¼R u
tk
p v
��xk ¼ i; xkþ1 ¼ iþ 1; Yð0;T �

� �
dv is given in closed

form. Hence, s can be sampled directly by the inverse

transformation s ¼ F�1ðUÞ as follows:

s ¼ tk þ log
VeðQ�KÞðtkþ1�tkÞ½i; iþ 1�
qie�ðqiþ1þkiþ1Þðtkþ1�tkÞ

U þ 1

� �
=V; ð7Þ

where Us U½0; 1� and V ¼ ðqiþ1 þ kiþ1 � qi � kiÞ.

3.2 Simulation of Q

The block Gibbs sampling scheme is completed by sam-

pling the model parameters conditioned on the full path of

the underlying Markov chain. Given x(t), the distribution of

Q is independent of Y(t) and h. It is straightforward to

simulate from Q when the priors of the model parameters

are selected from the conjugate ones. Suppose the prior

distribution of qi is Cða; bÞ with probability density
ba

CðaÞ q
a�1
i e�bqi . Then the joint prior of Q is given by

Qm
i¼1

ba

CðaÞ q
a�1
i e�bqi : The hyper-parameters a and b are often

selected empirically. The likelihood of xðtÞ; 0� t� T is

written by

Ym
i¼1

qie
�qiðsi�si�1Þ:

Therefore, the posterior distribution of Q is given by

pðQjx½0; T �Þ /
Ym
i¼1

ba

CðaÞ q
ðaþ1Þ�1
i e�½bþðsi�si�1Þ�qi : ð8Þ

According to (8), qi is simulated from

Cðaþ 1; bþ ðsi � si�1ÞÞ. The final step of each Gibbs

iteration involves sampling from the full conditionals

hjxðtÞ; YðtÞ; t 2 ½0; T�;Q. We shall discuss it in the fol-

lowing sections once the mark distributions are specified

exactly.
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Algorithm 3.1 Block Gibbs sampler for multiple

changepoint models of the marked Poisson processes:

1. Sample the state sequence fx1; . . .; xng of the latent

Markov chain x(t) conditioned on the model parame-

ters and observations by a discrete-time forward

filtering backward sampling algorithm;

2. If there exists one jump between two consecutive xks,

the exact jumping time, i.e. the location of a change-

point s is simulated according to (7);

3. Sample Q and other model parameters h given the

trajectories of the latent Markov chain x(t).

4. Repeat the above steps until the last iteration.

4 The continuous-time viterbi algorithm
and the number of changepoints

In discrete time setting, it is well-known that the optimal

set of changepoints can be given by the dynamic pro-

gramming algorithm- Viterbi algorithm. However, for the

continuous time HMMs, there exists an infinite number of

potential paths for the latent Markov chain. In Bebbington

(2007), a continuous-time Viterbi algorithm is suggested to

retrieve the optimal path of the latent Markov chain of a

Markov modulated Poisson process. The method can be

tailored to fit the current models. Define

MiðtkÞ ¼ max
x½0;tkÞ

log p x½0; tkÞ; xk ¼ i; Y ½0; tk�ð Þ: ð9Þ

Viterbi recursion shows that

MjðtÞ ¼ max
i

MiðtkÞ þ log p xðtÞ ¼ j; Yðtk; t�
��xk ¼ i

� �� �
;

tk � t� tkþ1:

ð10Þ

In this case, log p xðtÞ ¼ j; Yðtk; t�
��xk ¼ i

� �
needs to be

maximized over all possible paths. It is noted that x(t) has

at most one jump over ½tk; tkþ1Þ. When j ¼ i,

log p xðtÞ ¼ j; Yðtk; t�
��xk ¼ i

� �
is a constant. Only

log p xðtÞ ¼ iþ 1; Yðtk; t�
��xk ¼ i

� �
needs to be maximized

over the path space. Assume that the sample path of x(t)

over ðtk; t� is given by xðtk; uÞ ¼ i; x½u; t� ¼ iþ 1: The

probability density is given by

qie
�ðqiþkiÞðu�tkÞe�ðqiþ1þkiþ1Þðt�uÞ; which is maximized by

setting either u� tk or t � u to zero. So the maximum of it

is given by

qi maxfe�ðqiþkiÞðt�tkÞ; e�ðqiþ1þkiþ1Þðt�tkÞg
¼ qie

�minfqiþki; qiþ1þkiþ1gðt�tkÞ:

Hence, the latent Markov chain has state transitions only at

event times of Y(t). From the above argument, we have the

following proposition.

Proposition 1 The optimal posterior path of the latent

Markov chain x(t) of a Markov modulated Poisson process

with marks given YðtÞ; 0� t� T has state transitions only

at the Poisson event times.

From Proposition 1, it is suggested that the optimal set

of changepoint locations are given exactly from the Pois-

son event times. Hence, the search for the set of most

probable changepoint locations can be equivalently given

by a discrete time version of Viterbi algorithm.

Let fkðjÞ be the probability density of the most probable

sample path of x(t) up to tk when reaching to the state j, and

/kðjÞ be the optimal state at time tk�1 for the sample path

reaching to the state j at time tk.

Algorithm 2 (Continuous-time Vierbi Algorithm)

1. Initialize f1ðjÞ ¼ e 0
1e

ðQ�KÞDt1K!ðy1Þ½; j� and set

/1ðjÞ ¼ 0 for all j.

2. For k ¼ 2; . . .; n and all j, recursively compute

fkðjÞ ¼ max
i
ffk�1ðiÞeðQ�KÞDtkK!ðykÞ½i; j�g

and

/kðjÞ ¼ argmaxiffk�1ðiÞeðQ�KÞDtkK!ðykÞ½i; j�g:

3. Let xn ¼ argmaxjfnðjÞ and backtrack the state sequence

as follows:

For k ¼ n� 1; � � � ; 1; xk ¼ /kþ1ðxkþ1Þ.

In the above algorithm, fkðjÞ propagates to zero or

infinity exponentially fast, which again cause underflow or

overflow problem. Proper scaling procedure by taking

logarithm of it or by other approaches are required in

numerical computations, see our R implementation.

There exist some popular model selection methods

specifically tailored for the challenging changepoint prob-

lems, see Green (1995), Zhang and Siegmund (2007) and

Harchaoui and Lévy-Leduc (2010), among many others.

One popular criteria is Bayes information criterion (BIC).

However, due to irregularities of the likelihood in the

multiple changepoint models, there is no justification for

using BIC in this scenario. Recently, a large sample

approximation to the Bayes factor bypassing the Taylor

expansion is derived for Gaussian changepoint models

(Zhang and Siegmund 2007) and Poisson changepoint

models (Shen and Zhang 2012) under the assumption of

uniform prior for the locations of changepoints. Similar to

Zhang and Siegmund (2007), we estimate the Bayes factor

of the changepoint model versus the homogeneous Poisson

model with stationary exponential marks for large T and
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lim
T!1

si=T ¼ ri; i ¼ 1; � � � ;m. Denote the multiple change-

point models with m changepoints by Mm. We have the

following theorem:

Proposition 2 Assuming a uniform prior for the change-

points s and other model parameters, then

log
PðMmjY½0; T �Þ
PðM0jY ½0; T�Þ

¼ log
sup L̂m

sup L̂0

� �
�
Xm
i¼0

log ŝiþ1 � ŝið Þ

þ ð1 � mÞ log T þ Opð1Þ:

In (11), the first term is the generalized log-likelihood

ratio statistics of the model with m changepoints relative to

the null model with no changepoint. The rest of it is

interpreted as a (negative) penalty term posed to the model

complexity. Generally, the penalty term favors evenly

distributed changepoints. See the proof sketch in ‘‘Ap-

pendix’’ section. Thus, the modified BIC is defined as a

penalized likelihood criterion:

log LmðĤÞ �
Xm
i¼0

log ŝiþ1 � ŝið Þ þ ð1 � mÞ log T; ð11Þ

where Ĥ is the maximum likelihood parameter estimation

of the model Mm.

5 Simulation studies

We perform a simulation study to demonstrate the meth-

ods. The simulation will provide some insights for an

application of the methods in deep earthquakes modelling

in the next section. We choose the exponential marks as the

attached marks in this simulation for the reason illuminated

in the application in the next section. We also choose

conjugate priors Cða; bÞ and Cðf; gÞ for the Poisson

intensity rates K and the rate parameters q in the expo-

nential type of marks respectively. Therefore, the full

conditionals of K are written by

Kjx½0; T �; Y ½0; T�;Q_

Ymþ1

i¼1

ba

CðaÞ k
aþNi�1
i e�½bþðsi�si�1Þ�ki ;

ð12Þ

where Ni is the number of Poisson events arrived in the i-th

segment. Similarly, the full conditionals of q are given by

qjx½0; T�; Y ½0; T �;Q;K_
Ymþ1

i¼1

fg

CðgÞ q
gþNi�1
i e�½fþSi�qi ; ð13Þ

where Si is the cumulative summation of the marks in the i-

th segment.

We perform three simulations. In the first case, a mul-

tiple changepoint model with simultaneous changepoints

occurring in both the Poisson rate and associated marks is

considered. A three-changepoint model is assumed the true

model with specified parameters listed in (a) rows of

Table 1. In each segment of the model, we simulate only

50 Poisson events attached by exponential marks. The total

number of simulated observations is 200. So, the exact

locations of changepoints are 51, 101, 151. We fit the

simulated data by multiple changepoint models with 2� 4

changepoints. For each model, Gibbs sampling iterates

100,000 times, starting from two different initial values and

hyperparameters and the last 10,000 samples are treated as

posterior samples. The estimates of parameters, including

K and q, are given by the posterior means of the samples.

Generally, the results are not very sensitive to the initial

values and hyperparameters in the priors. We present only

one of the simulation results.

It is noted that the four segments are moderately sepa-

rated, as indicated by the Poisson rates K and q specified in

the true model, see (a) rows of Table 1. However, with

only 50 Poisson arrivals attached with marks in each seg-

ment, it is still hard for the algorithm to accurately locate

the changepoints and estimate the model parameters. For a

three-changepoint model, the locations of changepoints,

the Poisson rates and q in each segment are properly

estimated in comparison to the true values, see (c) rows of

Table 1. However, according to (b) rows of Table 1, it is

noted that the log-likelihood of a two-changepoint model,

rather than that of a three-changepoint model, is the highest

among all the models. With greater penalties for the 3� 4

changepoint models, the modified BIC of 3� 4 change-

point models is smaller. So, it is unnecessary to list all of

them in Table (1). Obviously, a parsimonious model, i.e. a

two-changepoint model, is preferred for this short sequence

with only 200 events in total in terms of the modified BIC,

which actually deviates from the true data generating

mechanism.

The second simulation is a piecewise marked Poisson

process parameterized nearly the same as the previous

numerical example, with the Poisson rate K ¼ ð2; 5; 2; 5Þ
and the exponential rate q ¼ ð3; 2; 3; 2Þ, see (a) rows in

Table (2). However, in each segment, we simulate 150

observations, instead of only 50 events as in the previous

numerical example. The total number of simulated obser-

vations is 600. The exact locations of changepoints are 151,

301, 451. We fit the simulated data by multiple change-

point models with 2� 4 changepoints. Again, the Gibbs

sampler iterates 100,000 times in each case, with the last

10,000 samples treated as the posterior samples. With more

observations available, it is reasonably well for the algo-

rithm to accurately locate the changepoints and estimate

the model parameters. For the three-changepoint model,
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the lag-5 auto-correlations of Q are all bellow 0.01, sug-

gesting good mixing of the Gibbs sampler. The locations of

the changepoints are accurately located and the estimated

parameters are close to the true values, see (c) rows of

Table 2. For multiple changepoint models with two or four

changepoints, the estimated Q;K; q and the locations of

changepoints are listed in (b) and (d) rows of Table 2. In

this case, MBIC is able to identify the number of

changepoints of the true model.

The previous two numerical examples were designed for

the marked Poisson process with simultaneous change-

points appearing in both the Poisson rates and associated

marks. The following third numerical simulation is

designed for a multiple changepoint model with miscella-

neous type of changepoints, in which some of the

changepoints appear either in the Poisson rates or in the

associated marks alone, others appear in both components.

For this marked Poisson process, the Poisson rates are

given by K ¼ ð2; 5; 2; 2Þ and the rate parameters in the

exponential marks are given by q ¼ ð2; 3; 3; 2Þ, see (a)

rows in Table 3. So, both the two types of changepoints

appear in this numerical example. The true parameters of

this simulation is comparable to the previous simulations.

Similar to the second simulation, we generate 150 obser-

vations in each segment, with 600 observations in total.

The exact locations of changepoints are 151, 301, 451.

Table 1 The table lists the

estimated Q;K;q, the locations

of changepoints ss, along with

logL for multiple changepoint

models

Model Q K q s

(a) True model k1 ¼ 2 q1 ¼ 2 s1 ¼ 51

k2 ¼ 5 q2 ¼ 3 s2 ¼ 101

k3 ¼ 2 q3 ¼ 2 s3 ¼ 151

k4 ¼ 5 q4 ¼ 3

(b) Model for 3 segments q12 ¼ 0:057 k1 ¼ 2 q1 ¼ 1:95 s1 ¼ 49

q23 ¼ 0:12 k2 ¼ 5:4 q2 ¼ 2:86 s2 ¼ 94 logL ¼ �164:1

q33 ¼ 0 k3 ¼ 2:7 q3 ¼ 2:88

(c) Model for 4 segments q12 ¼ 0:066 k1 ¼ 2:1 q1 ¼ 2:0 s1 ¼ 45

q23 ¼ 0:11 k2 ¼ 4:9 q2 ¼ 2:7 s2 ¼ 89 logL ¼ �168

q34 ¼ 0:076 k3 ¼ 2:8 q3 ¼ 2:6 s3 ¼ 134

q44 ¼ 0 k4 ¼ 3:5 q4 ¼ 3:0

(d) Model for 5 segments q12 ¼ 0:1 k1 ¼ 2:3 q1 ¼ 2 s1 ¼ 35

q23 ¼ 0:11 k2 ¼ 3:7 q2 ¼ 2:4 s2 ¼ 68 logL ¼ �181:7

q34 ¼ 0:11 k3 ¼ 3:7 q3 ¼ 2:7 s3 ¼ 104

q45 ¼ 0:10 k4 ¼ 2:8 q4 ¼ 2:4 s4 ¼ 140

q55 ¼ 0 k5 ¼ 3:6 q5 ¼ 3

Table 2 The table lists the

estimated Q;K;q, the locations

of changepoints ss, along with

MBIC and logL for multiple

changepoint models

Model Q K q s

(a) True model k1 ¼ 2 q1 ¼ 3 s1 ¼ 151

k2 ¼ 5 q2 ¼ 2 s2 ¼ 301

k3 ¼ 2 q3 ¼ 3 s3 ¼ 451

k4 ¼ 5 q4 ¼ 2

(b) Model for 3 segments q12 ¼ 0:02 k1 ¼ 3 q1 ¼ 2:3 s1 ¼ 309

q23 ¼ 0:03 k2 ¼ 2:2 q2 ¼ 3:1 s2 ¼ 452 logL ¼ �541:3

q33 ¼ 0 k3 ¼ 5:8 q3 ¼ 2:0 MBIC ¼ 29:2

(c) Model for 4 segments q12 ¼ 0:028 k1 ¼ 2:2 q1 ¼ 3:2 s1 ¼ 150

q23 ¼ 0:063 k2 ¼ 5:1 q2 ¼ 1:8 s2 ¼ 300 logL ¼ �533:4

q34 ¼ 0:027 k3 ¼ 2:1 q3 ¼ 3:1 s3 ¼ 452 MBIC ¼ 66:5

q44 ¼ 0 k4 ¼ 5:8 q4 ¼ 1:9

(d) Model for 5 segments q12 ¼ 0:05 k1 ¼ 2:2 q1 ¼ 3:1 s1 ¼ 132

q23 ¼ 0:15 k2 ¼ 3:9 q2 ¼ 2:1 s2 ¼ 218 logL ¼ �542:6

q34 ¼ 0:11 k3 ¼ 4:2 q3 ¼ 2:1 s3 ¼ 328 MBIC ¼ 35:7

q45 ¼ 0:07 k4 ¼ 2:4 q4 ¼ 3:0 s4 ¼ 454

q55 ¼ 0 k5 ¼ 5:8 q5 ¼ 2:0
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With the same number of observations as the previous

simulation, it is more difficult for the algorithm to locate

the changepoints and estimate other model parameters in

this case. We fit the simulated data by multiple changepoint

models with 2� 4 changepoints. In each case, the Gibbs

sampler iterates 100,000 times, with the last 10,000 sam-

ples treated as the posterior samples. For three-changepoint

and two-changepoint models, the lag-5 auto-correlation of

Q are all bellow 0.01. However, the Gibbs sampler con-

verges rather slow for misspecified models. The estimated

Q;K; q and the locations of changepoints are listed in

Table 3. For the three-changepoint model, the locations of

changepoints still can be properly located and the estimated

parameters are close to the true values of the simulated

model, see (c) rows of Table 3. In this case, the modified

BIC properly identify the number of changepoints of the

simulated time series.

6 An application to the deep earthquakes

The data set studied in this analysis is from New Zealand

catalogue, which is freely obtainable from GNS Science of

New Zealand via Geonet (www.geonet.org.nz). We choose

those events from New Zealand catalogue within confine as

defined in Fig. 1 at depth greater than 50km with magni-

tude above 5 in New Zealand version of local magnitude

scale. All the chosen events are either beneath the land or

close to the shore. So, these events are under good cover-

age of monitoring networks. To avoid the analysis is biased

by missing data, it is still necessary to assess the com-

pleteness threshold of the selected events. Generally, it is

believed that the magnitude of completeness of the selected

events is below 5 in this period, see, e.g., the analysis of the

catalogue completeness for New Zealand deep earthquakes

by various techniques in Lu and Vere-Jones (2011) and Lu

(2012). Some descriptive properties of New Zealand deep

earthquakes, such as the epicentral and depth distributions

etc., are given in Lu and Vere-Jones (2011).

We focus on deep earthquakes modelling in this anal-

ysis. The occurrence rate of earthquakes is a direct indi-

cator of the level of seismicity, which is often characterized

Table 3 The table lists the

estimated Q;K;q, the locations

of changepoints ss, along with

MBIC and logL for multiple

changepoint models

Model Q K q s

(a) True model k1 ¼ 2 q1 ¼ 2 s1 ¼ 151

k2 ¼ 5 q2 ¼ 3 s2 ¼ 301

k3 ¼ 2 q3 ¼ 3 s3 ¼ 451

k4 ¼ 2 q4 ¼ 2

(b) Model for 3 segments q12 ¼ 0:023 k1 ¼ 2 q1 ¼ 2:3 s1 ¼ 163

q23 ¼ 0:07 k2 ¼ 5:4 q2 ¼ 3:2 s2 ¼ 303 logL ¼ �549:8

q33 ¼ 0 k3 ¼ 1:9 q3 ¼ 2:4 MBIC ¼ 37:1

(c) Model for 4 segments q12 ¼ 0:024 k1 ¼ 2 q1 ¼ 2:3 s1 ¼ 162

q23 ¼ 0:069 k2 ¼ 5:3 q2 ¼ 3:2 s2 ¼ 303 logL ¼ �545:4

q34 ¼ 0:024 k3 ¼ 2 q3 ¼ 3:4 s3 ¼ 457 MBIC ¼ 44:4

q44 ¼ 0 k4 ¼ 1:8 q4 ¼ 1:8

(d) Model for 5 segments q12 ¼ 0:07 k1 ¼ 2:1 q1 ¼ 2:1 s1 ¼ 122

q23 ¼ 0:17 k2 ¼ 3:3 q2 ¼ 2:3 s2 ¼ 187 logL ¼ �564:3

q34 ¼ 0:1 k3 ¼ 5 q3 ¼ 3:1 s3 ¼ 308 MBIC ¼ 23:9

q45 ¼ 0:034 k4 ¼ 2 q4 ¼ 3:3 s4 ¼ 457

q55 ¼ 0 k5 ¼ 1:8 q5 ¼ 1:8
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New Zealand Deep Quake Map

Fig. 1 Epicenter distribution of deep earthquakes with magnitude

above 5 between 1965 and 2013. Events encircled by dash lines and

map boundaries within a polygon with vertexes ð170�E; 43�SÞ,
ð175�E; 36�SÞ, ð177�E; 36�SÞ, ð180�E; 37�SÞ, ð180�E; 38�SÞ,
ð173�E; 45�SÞare considered
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by the intensity function of a finite point process (Daley

and Vere-Jones 2003). The magnitude-frequency distribu-

tion, also called Gutenberg-Richter (G-R) law, indicates

that the cumulative number of earthquakes N(M) above Mc

with magnitude M follows the log-linear relation:

log10 NðMÞ ¼ a� bðM �McÞ; ð14Þ

where a and b are constants and Mc is the magnitude

threshold. The slope b, also called ‘‘b-value’’ in geophys-

ical communities, indicates the relative proportion of the

number of small and large earthquakes, corresponding to b
in the exponential distribution:

FðxÞ ¼ 1 � e�bx; b ¼ b log 10. See the right part of Fig. 2

for the magnitude-frequency distribution of selected deep

earthquakes. It seems that the log-linear relation of the

magnitude-frequency distribution holds well. So, the fig-

ure suggests the completeness of the magnitude for the

selected earthquakes. Otherwise, if the left end of the

magnitude-frequency distribution is below the predicted

log-linear relation of the G-R law, it is often believed that

the catalogue is incomplete for smaller events due to lim-

ited detectability.

Generally, unlike shallow earthquakes, deep earth-

quakes rarely have following sequence of small aftershocks

which decay according to Omori’s law. Instead, the typical

occurrence pattern of deep earthquakes is that it varies

from time to time, active in one period and relatively

quiescent in another, see the left part of Fig. 2 for the

yearly counts of deep events. We also demonstrate the

centralized and normalized cumulative sums of inter-event

times Dti in the left bottom of Fig. 3, which is given byP j

i¼1
DtiPn

i¼1
Dti

� j
n
. For a homogeneous Poisson process, the

statistic should be close to the line segment:

y ¼ 0; 0� x� 1, which behaves as a standard Brownian

bridge on [0, 1], see Galeano (2007). From the left panel of

Fig. 3 and the left part of Fig. 2, it is noted that the deep

earthquakes show some non-stationarity. A constant rate

Poisson process will not be adequate for fitting the occur-

rence rate of the deep earthquakes. Instead, Markov mod-

ulated Poisson process is viable for characterizing the time-

varying behavior appearing in the occurrence rate of deep

earthquakes.

Another statistic of interest is the magnitude-frequency

distributions (MFD). Interpretation of the b-value of

earthquake MFD has led to considerable attention in geo-

physical community. Wide range of observation studies

suggest the b-value varies both spatially and temporally ,

see Wiemer et al. (1998). The b-value variability has been

considered to be due to the ambient stress state, material

heterogeneity, focal depth and geothermal gradient, which

are directly or indirectly associated with the effective stress

state. The relationship has been utilized for seismic hazard

evaluation and risk forecasting, see Nanjo et al. (2012),
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Fig. 2 The left part of the plot is

the yearly counts of deep

earthquakes. The right part of

the plot is the magnitude-

frequency distribution of deep

earthquakes. The logarithm of

the frequency of magnitude is

nearly linear with respect to the

magnitude for a complete

catalogue
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Schorlemmer and Wiemer (2005), Nuannin et al. (2005)

and Lu (2017), among many others. Similarly, we

demonstrate the b-value variability by the centralized and

normalized cumulative sums of (trimmed) magnitudesP j

i¼1
ðmi�McÞPn

i¼1
ðmi�McÞ

� j
n

in the right bottom of Fig. 3. Again, when

there is no changepoint occurring in the b-value, the

statistic should behave like a standard Brownian bridge on

[0, 1]. From the right top and right bottom of Fig. 3, it is

noted that b-value variation appears for the deep earth-

quakes. Also, it is observed that there exists some sort of

’’coupling’’ between the deep seismicity rates and the b-

value, see the bottom two graphs of Fig. 3. Both the seis-

micity rate and the b-value show a change at about 200.

One approach to jointly modelling the temporal vari-

abilities of deep seismicity rate and the b-value is by use of

the Markov modulated Poisson process attached by state-

dependent marks, formulated as in the previous sections.

The occurrence time distribution and the magnitude-fre-

quency distribution of deep earthquakes are fitted by the

multiple changepoint models with 1� 6 changepoints. In

each case, the Gibbs sampling scheme iterates 500,000

times, with the last 10,000 samples treated as the posterior

samples. For this short sequence, it seems that the models

with 2� 6 changepoints overfit the data, as indicated by the

MBIC listed in Table 4. From Table 4, it is also observed

obvious similarities appearing among the Poisson intensity

rates and the rate parameters in the mark distributions,

particularly for muptiple changepoint models with 3� 6

changepoints, which again suggests the multiple change-

point models with 2� 6 changepoints overfit the data. The

single changepoint model is sufficient to characterized the

heterogeneity of the data. For this single changepoint

model, after 500,000 Gibbs iterations, the 5-lag autocor-

relations for all the parameters are less than or around 0.01,

which suggests the Markov chain is mixing well. The

posterior summary for the single changepoint model is

displayed in Fig. 4. The figure displays the kernel density

estimations and the 95% highest posterior density (HPD)

intervals from 10,000 samples for some of the model

parameters such as the location of the changepoint, the

transition rate, the Poisson intensity rate and the rate

parameter in the mark distribution. Both the upper and

lower limits of the HPD intervals are indicated in the fig-

ure. The location of the changepoint appears a bit diffusive

as indicated in the left top of the figure, which may result

from a progressive rather than an abrupt change in the

seismicity rate and (or) the b-value. The posterior inference

is relatively robust over the selection of a range of proper

hyperparameters.

The posterior mean of the location of changepoint s is

around 1987. Before this point, the deep seismicity is rel-

atively quiescent, with 9 deep events per year and a rela-

tively high b value above 3:2= logð10Þ � 1:3. Since 1987,

it appears that the deep seismicity rate increased and the b

value dropped to 2:4= logð10Þ � 1. The deep seismicity
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Fig. 3 The two figures in the

left panel are the cumulative

sum, the centralized and

normalized cumulative sum of

the inter-event times for deep

earthquakes respectively. The

two figures in the right panel are

the cumulative sum, the

centralized and normalized

cumulative sum of earthquake

magnitudes respectively
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changed from a relatively quiescent period to an active

period. The accelerated energy release by the deep seis-

micity after 1987 suggests that a relatively high risk for the

occurrences of large deep earthquakes. Although most of

the deep earthquakes including large ones don’t pose direct

threat to people, occasionally, some great deep earthquakes

do cause severe damages. It is also worthwhile to evaluate

the risks of the occurrence of large deep earthquakes. For

instance, the expected number of deep earthquakes with

magnitude greater than 6 per year after 1987 is

E
XNð1Þ

i¼1

IMi 	 6

 !
¼ EðNð1ÞÞPðM	 6Þ ¼ 1:09; ð15Þ

which is nearly three times of that before 1987. In the

above equation, N(1) is the number of earthquakes occur-

red per year and IMi 	 6 is an indicator function for the i-th

earthquake with magnitude greater than 6. The top of

Fig. 5 demonstrates the Magnitude-Time plot for major

deep earthquakes with magnitude above 6. The vertical red

dash line shows the location of changepoint s, indicating a

strong contrast for the risks of large deep earthquakes

before and after that point. In addition, it seems that some

sort of ‘‘weak coupling’’ exists between the deep and

shallow seismicity, see the bottom of Fig. 5. From the

bottom of Fig. 5, it is observed that the seismically active

episode of deep earthquakes roughly coincides with that of

shallow earthquakes. The episode of high seismicity rate

and high mean energy release per quake is also the episode

of frequent occurrences of large shallow earthquakes. The

increase of the moment release rate by deep earthquakes

may be attributed to the increase in convergence rate of the

tectonic plates, and hence increasing risks of geological

hazards near surface such as shallow earthquakes and

volcano activities in the most recent decade.

Nearly the same data set was analyzed in Lu (2012). In

Lu (2012), a MMPP attached with state-dependent marks is

applied to characterize the variabilities of seismicity rates

and b-values, in which a full transition intensity rate matrix

of the latent Markov chain is specified and the estimation

of model parameters is implemented by the EM algorithm.

This type of model formulation assumes there exists ‘‘state

Table 4 The table lists the

estimated Q;K;q, the locations

of changepoints ss, along with

MBIC and logL for multiple

changepoint models

Model Q K q s

1 Segments k ¼ 10:8 q ¼ 2:7 LogL0 ¼ 717:3

2 Segments q12 ¼ 0:08 k1 ¼ 9 q1 ¼ 3:2 s1 ¼ 203

q22 ¼ 0 k2 ¼ 11:9 q2 ¼ 2:4 MBIC ¼ 722:1

Model for 3 segments q12 ¼ 0:13 k1 ¼ 9 q1 ¼ 3 s1 ¼ 151

q23 ¼ 0:18 k2 ¼ 9:3 q2 ¼ 2:6 s2 ¼ 254 MBIC ¼ 713

q33 ¼ 0 k3 ¼ 11:3 q3 ¼ 2:37

Model for 4 segments q12 ¼ 0:18 k1 ¼ 8:9 q1 ¼ 2:9 s1 ¼ 110

q23 ¼ 0:25 k2 ¼ 9:0 q2 ¼ 2:5 s2 ¼ 174 MBIC ¼ 709

q34 ¼ 0:23 k3 ¼ 9:1 q3 ¼ 2:6 s3 ¼ 256

q44 ¼ 0 k4 ¼ 11:4 q4 ¼ 2:4

Model for 5 segments q12 ¼ 0:2 k1 ¼ 8:9 q1 ¼ 2:9 s1 ¼ 100

q23 ¼ 0:26 k2 ¼ 8:9 q2 ¼ 2:5 s2 ¼ 155 MBIC ¼ 707:5

q34 ¼ 0:26 k3 ¼ 9 q3 ¼ 2:46 s3 ¼ 213

q45 ¼ 0:24 k4 ¼ 9:3 q4 ¼ 2:45 s4 ¼ 288

q55 ¼ 0 k5 ¼ 11 q5 ¼ 2:36

Model for 6 segments q12 ¼ 0:22 k1 ¼ 8:9 q1 ¼ 2:8 s1 ¼ 82

q23 ¼ 0:28 k2 ¼ 8:8 q2 ¼ 2:49 s2 ¼ 127 MBIC ¼ 709:6

q34 ¼ 0:26 k3 ¼ 8:93 q3 ¼ 2:52 s3 ¼ 178

q45 ¼ 0:26 k4 ¼ 8:95 q4 ¼ 2:47 s4 ¼ 232

q56 ¼ 0:24 k5 ¼ 9:6 q5 ¼ 2:42 s5 ¼ 313

q66 ¼ 0 k6 ¼ 10:7 q6 ¼ 2:34

Model for 7 segments q12 ¼ 0:24 k1 ¼ 8:8 q1 ¼ 2:77 s1 ¼ 69

q23 ¼ 0:28 k2 ¼ 8:6 q2 ¼ 2:51 s2 ¼ 111 MBIC ¼ 702:4

q34 ¼ 0:27 k3 ¼ 8:9 q3 ¼ 2:52 s3 ¼ 157

q45 ¼ 0:28 k4 ¼ 8:94 q4 ¼ 2:46 s4 ¼ 201

q56 ¼ 0:27 k5 ¼ 9 q5 ¼ 2:41 s5 ¼ 249

q67 ¼ 0:24 k6 ¼ 9:6 q6 ¼ 2:38 s6 ¼ 324

q77 ¼ 0 k7 ¼ 10:6 q7 ¼ 2:33
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reciprocals’’ in deep seismicity, which may cause model

bias when there is actually no such ‘‘state reciprocals’’.

Furthermore, for some short sequence with only a few

‘‘state transitions’’, the estimation for the transition inten-

sity rate matrix is unreliable, causing obvious instabilities

in the state filtering and smoothing by methods in Lu

(2012). Tiny perturbations may cause wholly different

estimates for the latent state trajectories, leading to dif-

ferent decisions and scientific insights in practice. With a

left-to-right restriction in the transition rate matrix, our

model is suitable for modelling both a long sequence and a

short sequence when the ’’state transitions’’ are rare. The

current model formulation also avoids potential bias from

the use of MMPPs with a full transition rate matrix when

there is no underlying ’’state reciprocal’’ appearing in the

MFD or (and) the deep seismicity rate. In addition,

potential gains by Bayesian approach may include quanti-

fying uncertainties of the number and positions of

changepoints, which is difficult to deal with by other

approaches.

7 Concluding remarks and discussion

In this study, we propose a Bayesian multiple changepoint

model to jointly detect changepoints appearing in both the

deep seismicity rate and the magnitude-frequency
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Fig. 4 Kernel density estimates

for part of the model

parameters. Line segments in

bold beneath each kernel

density estimate indicating the

95% highest posterior density

for the model parameters. Both

the lower and upper limits of the

95% HPD are indicated. The left

top, right top, left bottom and

right bottom of the figure show

the posterior summary of the

changepoint location s, the

transition rate q1, the Poisson

rate k1 and the rate parameter q1

in the exponential mark

respectively. The number of

posterior samples and the

Bandwidth used in the kernel

density estimation are given
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distribution, which is an extension of Chib’s multiple

changepoint model in continuous time. We suggest an

approach to directly simulate the full trajectory of the latent

Markov chain in a block Gibbs sampling scheme. The

locations and numbers of changepoints can be given by a

continuous time Viterbi algorithm and a modified BIC,

tailored particularly for changepoint problems of marked

Poisson processes. The model is applied to analyse the

time-varying pattern of deep seismicity in New Zealand. It

has been seen an increase in both the deep seismicity rate

and the mean energy release per quake since 1987, in

which most major deep earthquakes and shallow earth-

quakes occurred. The deep seismicity change may be

attributed to an increase in the convergence rate of the

tectonic plates, suggesting relatively high risk for the

hazards near surface such as large shallow earthquakes in

recent decades. The high seismicity and high mean energy

release per quake show no signs of turning down until 2014

and continues. The method is potentially applicable for

modelling insurance claims (Elliott et al. 2007).

The current model considers only one type of nonsta-

tionarity, in which the model parameters are piecewise

constant, subject to abrupt changes at a fixed number of

locations. In practice, it might be sensible to consider other

forms of nonstationarity, such as progressive change or

trend appearing in the model parameters, which is beyond

the current model to characterize. In addition, in contrast to

other approaches, current model formulation assumes only

a fixed number of changepoints. It might be desirable to

allow the number of changepoints to accrue unboundedly

upon the arrival of new data. Finally, it seems that there

exists some ’’weak coupling’’ between the deep seismicity

and shallow seismicity. However, whether the large shal-

low earthquakes are preceded by an increase in deep

seismicity or vice versa has not been thoroughly investi-

gated so far. A study of it is potentially valuable for seismic

hazards evaluation and earthquake risk forecasting (Kagan

2017) in subduction zones.
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Appendix

Poisson process attached by exponential marks belongs to a

two-parameter exponential family with canonical form:

d2Fj

dudv
¼ ehju�WðhjÞþgjv�UðgÞ:

After fixing changepoints s, the log-likelihood can be

written in a second order Taylor series around the

maximum likelihood estimate ĤðsÞ ¼ argmax
H

lðH; sÞ,
such that:

lðH; sÞ � lðĤðsÞ; sÞ þ ðH� ĤðsÞÞ0HðĤðsÞ; sÞðH� ĤðsÞÞ=2;

ð16Þ

where H(.) is the Hessian matrix of the log-likelihood and

H ¼ ðh; gÞ 2 R2: Therefore, after exponentiating lðH; sÞ
and treating it as a Gaussian kernel, under the Uniform

priors for the changepoint locations, the marginal likeli-

hood of the model Mm is given by

PðMmjY½0; T �Þ ¼
Z
Dm

Z
R2m

elðH;sÞ m!

Tm
dHds

¼ C

Z
Dm

elðĤðsÞ;sÞjHðĤðsÞ; sÞj�
1
2
m!

Tm
ds;

ð17Þ

where Dm ¼ fðt0; t1; . . .; tmþ1Þ : 0 ¼ t0\t1\ � � �\tmþ1 ¼
Tg and C is a normalizing constant. The data points in the

sample are independent,

lðH; sÞ ¼
Xmþ1

i¼1

hiðSusi � Susi�1
Þ � ðsi � si�1ÞWðhiÞ

n

þgiðSvsi � Svsi�1
Þ � ðsi � si�1ÞUðgiÞ

o
;

where Susi denotes the sum of u from time 0 to si.
Obviously, the Hessian matrix is a diagonal matrix

HðĤðsÞ; sÞ ¼ diagðs1
€Wðĥ1ðsÞÞ; ðs2 � s1Þ €Wðĥ2ðsÞÞ; � � � ;

ðT � smÞ €WðĥmðsÞÞ; s1
€Uðĝ1ðsÞÞ; ðs2 � s1Þ €Uðĝ2ðsÞÞ; � � � ;

ðT � smÞ €UðĝmðsÞÞÞ

and

jHðĤðsÞ; sÞj ¼
Ymþ1

i¼1

ðsi � si�1Þ2
Ymþ1

i¼1

€WðĥiðsÞÞ €UðĝiðsÞÞ:

ð18Þ

In the denominator of Bayes factor, the marginal likelihood

of the model M0 is simply given by

PðM0jY ½0; T �Þ ¼
Z

el0ðHÞ dH ¼ 1

2p
el0 Ĥ0ð Þj€l0 Ĥ0

	 

j�

1
2;

ð19Þ

where Ĥ0 ¼ argmax
H

l0ðHÞ and j€l0ðĤ0Þj ¼ T2 €Wðĥ0Þ €Uðĝ0Þ.
Ignoring constant factors, the Bayes factor has

approximation:
Z
Dm

eðlðĤðsÞ;sÞ�l0ðĤ0ÞÞ 1

Tm�1

Ym
i¼1

ðsi � si�1Þ�1
ds: ð20Þ

In above equation, the log of the integrant at the maximum

likelihood value ŝ is the Modified BIC. To prove the

Stochastic Environmental Research and Risk Assessment (2019) 33:59–72 71

123



Modified BIC given in (11), it is necessary to show that the

remainder term

Z
Dm

el ĤðsÞ;sð Þ�l ĤðŝÞ;ŝð ÞYm
i¼1

ŝi � ŝi�1ð Þ=
Ym
i¼1

si � si�1ð Þ ds:

ð21Þ

is uniformly bounded in T, see the proof in Zhang and

Siegmund (2007).
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