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Abstract
Stochastic weather generators are designed to produce synthetic sequences that are commonly used for risk discovery, as

they would contain rare events that can lead to potentially catastrophic impacts on the environment, or even human lives.

These time series are sometimes used as inputs to rainfall-runoff models to simulate the hydrological impacts of these rare

events. This paper puts forward a method that evaluates the usefulness of weather generators by assessing how the

statistical properties of simulated precipitation, temperatures, and streamflow deviate from those of observations. This is

achieved by plotting a large ensemble of (1) synthetic precipitation and temperature time series in a Climate Statistics

Space, and (2) hydrological indices using simulated streamflow data in a Risk and Performance Indicators Space.

Assessment of weather generator’s performance is based on visual inspection and the Mahalanobis distance between

statistics derived from observations and simulations. A case study was carried out on the South Nations watershed in

Ontario, Canada, using five different weather generators: two versions of a single-site Weather Generator, two versions of a

multi-site Weather Generator (MulGETS) and the K-Nearest Neighbour weather generator (k-nn). Results show that the

MulGETS model often outperformed the other weather generators for that particular study area because: (a) the obser-

vations were well centered within a point cloud of the synthetically-generated time series in both spaces, and (b) the points

generated using MulGETS had a smaller Mahalanobis distance to the observations than those generated with the other

weather generators. The k-nn weather generator performed particularly well in simulating temperature variables, but was

poor at modelling precipitation and streamflow statistics.

Keywords Weather generator assessment � Stochastic hydrological modelling � Risk and performance indicators

1 Introduction

Short or incomplete historical records, either in their length

or spatial coverage, can limit hydrological analyses and

consequently make water engineering designs more diffi-

cult (Loucks et al. 1981). A large number of environmental

and hydrological applications where hydro-ecological

variables are simulated to evaluate alternative designs and

policies (Brocca et al. 2013) cannot be satisfactorily carried

out with sufficient observed hydro-climatic records.

Instead, modellers resort to stochastic weather generators

to generate long and gap-free time series of atmospheric

variables using available historical climate data. The syn-

thetically generated outputs ideally have the same charac-

teristics as observations (e.g., mean or variance) and used

to assess the impacts of climate variability (Ailliot et al.

2015; Guo et al. 2017). The implications of using such

outputs as inputs to a hydrological model are investigated

in this paper.

A large number of weather generators since the 1980s

has been presented with different structure and mathe-

matical algorithms to address climate-related, and hydro-

logical problems (e.g., Richardson 1981; Kavvas and Herd

1985; Govindaraju and Kavvas 1991). More recently, they

have been also used to study climate change impacts (e.g.,

Kim et al. 2007; Hashmi et al. 2011; Forsythe et al. 2014;

Camera et al. 2016). Interestingly, Let-It-Rain (Kim et al.
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2017), for example, is a new stochastic weather generator

that provides end user with high temporal resolution syn-

thetic rainfall time series easily online. Weather generators

are computationally inexpensive tools, typically utilized to

produce precipitation (PCP), minimum temperature (Tmin)

and maximum temperature (Tmax), as well as solar radi-

ation data (Brissette et al. 2007) based on a calibration data

set for a particular location. Weather generators are clas-

sified, according to Baigorria and Jones (2010), to three

main groups: (1) parametric based on random sampling

from parametric distributions (e.g., Wilks 1998; Brissette

et al. 2007), (2) non-parametric based on resampling from

observations (e.g., Rajagopalan et al. 1997; Wilby et al.

2003), and (3) hybrid approaches (e.g., Palutikof et al.

2002; Shao et al. 2016).

Weather generators performance, however, has been

repeatedly criticized. Their drawbacks include their poor

performance when simulating inter-annual variability of

monthly precipitation means (Ailliot et al. 2015), although

some recent rainfall generation models (e.g., Kim et al.

2013) were presumably able to overcome this issue by

incorporating more information about the observed pre-

cipitation. They also suffer notoriously from their strictly

site-specific nature (Fowler et al. 2007), which limits the

usefulness of their results and makes them difficult to

transferable to other locations and climates. Nevertheless,

weather generators are useful means for areas lacking

adequate climate data and hydrological applications par-

ticularly in developing countries (Wilby and Fowler 2011).

In the face of the recent advances in weather generators,

the accuracy of generated weather data has not always been

satisfactorily justified. Precise meteorological data cannot

be expected from weather generators considering the

stochastic uncertainties involved, making any decision for

or against the use of a certain weather generator in a

decision or design framework particularly challenging.

Therefore, the credibility of a given weather generator

should be deliberated by quantifying their suitability for a

specific field or climate zone.

The present paper proposes a new avenue to build a

framework for assessing weather generators realizations by

comparing the mapping between observed and generated

climate states, and describing statistics that are relevant to

the problem at hand.

A time series Xt, representing a climatic or hydrologic

variable, is substituted with a set of statistics VT, that are

related to investigated problem (e.g., annual precipitation,

and monthly flow), computed for a desired period, T

(41 years in the present case) as introduced by Brown et al.

(2012). This process is executed for two time series:

observed and stochastically generated sequences. The

stochastic hydrologic variable, represented by relevant

indicators, is obtained through an impact model fed with

synthetically generated climate information (Xt). This was

accomplished by using five weather generation models to

create plausible daily data series of precipitation and

temperatures. Each one of the generated time series (i.e.,

realization of climate data) was then used as an input to a

rainfall-runoff model to explore their realism in risk and

performance indicators for an explicit accounting of

streamflow.

With the multitude of numerous available approaches,

this paper focuses on weather generators that adopt diverse

methodologies, namely: WeaGETS, MulGETS, and k-nn,

where the first two models are products by École de

Technologie Supérieure (ETS). Since the selection of

weather generators is not exhaustive but to showcase a

proposed framework to evaluate weather generators, the

choice is made to work on a selected ensemble of schemes.

The WeaGETS model (Chen et al. 2012) is an updated

form of the WGEN model (Richardson and Wright 1984).

Unlike WGEN, however, WeaGETS provides a spectral

correction approach for a better estimation of low-fre-

quency component and consequently improved simulation

of monthly and interannual variability. Yet, WeaGETS is

rather more suited to smaller in size watersheds where a

representative station could be used (Chen et al. 2012), and

is thus of limited use for modelling multi-site watersheds

within large basins (Mehrotra et al. 2006). The so-called

MulGETS has been put forward as an extension of Wea-

GETS by Chen et al. (2014) with the capability to account

for the spatial attributes of climate data. Beside WeaGETS

and MulGETS, the K-nearest neighbor scheme (k-nn) is

used for precipitation sequences following the model of

Goyal et al. (2013) while the method by Sharif and Burn

(2007) was implemented for the generation of temperature

sequences. k-nn is a broadly used non-parametric proce-

dure to simulate daily weather variables with no assump-

tions of the probability distributions. Its principal concept

is to stochastically reshuffle the values from the observed

records by looking for a similar pattern to the day of

interest (Yates et al. 2003).

The hydrological response to the synthetic climate series

is a key component for impact assessments. This was

evaluated in the Soil and Water Assessment Tool (SWAT-

2012). The semi-distributed, basin-scale SWAT model has

been widely used by hydrologists to tackle complex water-

induced issues and provide information used for appro-

priate decisions on water resource management (Srinivasan

and Arnold 1994; Arnold et al. 1998; White and Chaubey

2005; Neitsch et al. 2011; Tuppad et al. 2011; Arnold et al.

2012a, b; Santhi et al. 2001). Weather information, pre-

cipitation in particular, is the main physically-based input

in SWAT that governs streamflow simulation (Arnold et al.

2012a, b). The spatial variations in a watershed is dealt

with in SWAT by creating sufficient hydrologic response
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units (HRUs), each has its own physical characteristics

(Neitsch et al. 2011).

2 Study area, and hydroclimatic data

2.1 Study area

An example case study was conducted on the South Nation

Watershed (Fig. 1), in Eastern Ontario, Canada, covering

an area about 4000 km2. The South Nation River, which

drains the watershed, runs for 175 km with relatively flat

topography from Brockville, its headwaters, towards

Plantagenet where it meets Ottawa River. Given a low

topographic gradient, the watershed is hardly drained and

flood risk poses a real threat especially to heavy agricul-

tural activities in the region.

2.2 Hydroclimatic data

Observed climate time series were obtained from four

stations that have complete data series for the period of

1971–2011. The locations of these stations, namely; Rus-

sell, Morrisburg, St. Albert and South Mountains, were

chosen to be representative of the entire South Nation

watershed (cf., Fig. 1 and Table 1). On average, the

watershed receives annual precipitation of around 985 mm,

with 11.5 and 1.2 �C annual mean maximum and minimum

temperatures, respectively (Environment Canada 2012).

For the simulations with the weather generators, days with

a minimum precipitation of 1 mm are considered wet as

defined by earlier studies (e.g., Frich et al. 2002; Sun et al.

2006; Klein Tank et al. 2009; Polade et al. 2014) to neglect

small traces of moisture present in the air (i.e., by dew, or

fog) (Benestad et al. 2012). The length of the generated

data set is chosen to match the length of the observed time

series.

3 Methodology

The main components of the methodology are illustrated in

Fig. 2. A number of weather generators are first used to

generate 1000 realizations of precipitation and temperature

time series. Each realization of the generated climate time

series is used afterwards individually as an input to a cal-

ibrated SWAT model to obtain streamflow time series. The

number of realization was set to 1000 in order to insure that

Fig. 1 The South Nation watershed and the meteorological gages
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the confidence intervals of statistics in the Climate Statis-

tics Space (CSS) and Risk and Performance Indicators

Space (RPIS) are calculated with precision. Guo et al.

(2017) looked into the numbers of realizations that can

satisfactorily capture a number of statistical characteristics

of precipitation, and minimum and maximum temperature

generated by CLIGEN, LARSWG and WeaGETS. They

analyzed increasing numbers of realizations (1, 25, 50, and

100) and concluded that a weather generator would well

reproduce essential statistical characteristics with 25 real-

izations. However, the statistics considered in their papers

only belong to the CSS. Given that the calculation of

statistics in the RPIS involves highly nonlinear rainfall-

runoff transformation, it is speculated that a higher number

of realizations would be needed. It was therefore decided to

use a number of realizations which is two orders of mag-

nitude compared to the one recommended by Guo et al.

(2017). A number of statistics (i.e., moments) of the sim-

ulated climate as well as Simulated Flow using Synthetic

data (SFSD) time series are juxtaposed to those of observed

climate as well as Simulated Flow using Observed data

(SFOD) time series to assess how good the weather gen-

erators are. Further, the autocovariance structure of

streamflow is analyzed as well. Autocorrelation function

measures the stochastic component in a time series by

reflecting on the relationship between the observations to

Fig. 2 A schematic diagram illustrating the methodology

Table 1 Meteorological stations details

Meteorological Station CIa Latitude (N) Longitude (W) Elevation (m) Precipitationb Tmaxb Tminb

Mean SD Mean SD Mean SD

Russell 6107247 45�1504600 75�2103400 76.2 2.63 5.97 11.50 12.54 1.20 11.75

South Mountain 6107955 44�5800000 75�2900000 84.7 2.64 6.07 11.64 12.44 1.46 11.66

Morrisburg 6105460 44�5502500 75�1101800 81.7 2.77 6.17 11.73 12.42 1.21 11.79

St. Albert 6107276 45�1701400 75�0304900 80 2.77 6.06 11.29 12.55 0.79 11.87

aClimate Identifier (CI) refers to the station number assigned by the Meteorological Service of Canada (MSC)
bDaily statistics
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each other. Flow autocorrelation is important factor also for

reservoir operation studies.

The different algorithms and submodels applied in the

methodology are delineated in the next sections.

3.1 Stochastic weather generators

The present approach is examined in, but not limited to,

several weather generators that apply different method-

ologies and schemes to generate climatic series. The gen-

eration of temperatures in weather generators is relatively

simple as it takes a continuous range of values and can be

described by a normal distribution (Chen and Brissette

2014) whereas simulation of precipitation may be an

intricate challenge. The stochastic nature of precipitation is

typically reproduced in a two-step process for occurrences

and amounts. It is a common practice to use Markov chain

(Markov 1906) models for precipitation states (i.e., wet or

dry, of a given day based on the previous state) for daily

precipitation occurrence while some weather generators

use the alternative renewal process such as LARS-WG

(Semenov and Barrow 2002). The basic input data to tested

weather generators in this study include observed precipi-

tation as well as minimum and maximum temperatures

data.

In WeaGETS (version 1.6), three orders of Markov

chains (two-state Markov chain with first-, second- and

third-order models) can be used to estimate wet and dry

spells and four distributions for precipitation amounts

(gamma, exponential, mixed exponential and skewed nor-

mal distributions) based on a bi-weekly time scale. In this

study, daily precipitation sequences are simulated using a

third-order Markov model without parameter smoothing

coupled with exponential (herein called ‘WE’) and gamma

(herein called ‘WG’) distributions with a minimum pre-

cipitation threshold of 0.1 mm. A higher-order Markov

model, which requires more parameters, is chosen to ade-

quately predict lengths of consecutive dry/wet days (Bas-

tola et al. 2012). This selection was adopted routinely by

earlier works (e.g., Wilks 1998; Lennartsson et al. 2008;

Chen et al. 2012; Ailliot et al. 2015). WeaGETS is tem-

perature variables are generated conditional to each other

using a normal distribution. For the purpose of generating

maximum and minimum temperatures, the model uses first-

order linear auto-regression coupled with constant lag-1

auto correlation and cross correlation. WeaGETS imple-

ments Finite Fourier series with two harmonics to model

seasonal cycles.

MulGETS (version 1.2) is a multisite, multivariate

weather model initiated by Chen et al. (2014) to model

daily precipitation (based on Brissette et al. 2007) and

temperature. However, unlike WeaGETS, MulGETS con-

structs random values taking into account the spatial

correlation between scattered climate stations. This is

achieved following a non-parametric approach, described

by Iman and Conover 1982, coupled with an optimization

algorithm described by Brissette et al. (2007). For precip-

itation occurrence process, a first-order Markov chain with

Cholesky factorization is applied. Wet-day precipitation

sequences were reproduced from MulGETS using a com-

bination of several gamma distributions (herein called

‘MG’) and a combination of several Exponential distribu-

tion configuration (herein called ‘ME’). In terms of gen-

erating temperature variables, MulGETS is WeaGETS-

like, yet the generation of spatially correlated temperature

variables (Tmin and Tmax) is achieved following a non-

parametric approach and implementing a first-order linear

autoregressive model.

A simple k-nearest neighbor resampling model as pro-

posed by Goyal et al. (2013) is used to generate precipi-

tation sequences. The later seemingly allows producing of

unprecedented values in the calibration data set. The pro-

cedure involves taking into account the spatial correlation

by computing the regional means of the precipitation.

Some k-nn models that use gamma kernel approaches can

prevent producing unrealistic values of less than zero but

consequently affect the mean value overall. However,

Goyal et al. (2013) approach implements gamma kernel

perturbation following Salas and Lee (2010) wherein a

random value, for a certain day, is perturbed from the

kernel density after placing one of the k nearest neighbors

to the current value X at the center of a gamma kernel. For

precipitation, the temporal window w and the number of

nearest neighbors k are chosen to be 7 days and 13

neighbors. The method by Sharif and Burn (2007) was

implemented for the generation of temperature sequences,

with no underlying probability distribution assumptions.

This approach is based on a traditional autoregressive

model but a random component is added to the individual

resampled data points in order to reproduce values that are

not in the historical records. For temperature variables, the

temporal window and the number of nearest neighbors k

are arbitrarily chosen to be 14 days and 7 neighbors. Since

Tmax and Tmin were modeled independently from the

precipitation status while they are coextensive with each

other in real-world cases, this could affect their efficiency

(i.e., by not preserving the correlations between precipita-

tion and temperature). Yet, this should not constrain their

individual ability to simulate univariate interannual vari-

ability accurately.

For generation of precipitation amounts, there is an

extensive literature on the goodness of fit of a wide range

of probability distribution function. Wet-day precipitation

sequences were reproduced from WeaGETS and Wea-

GETS using Gamma and Exponential set-up. The proba-

bility density distribution (pdf) of gamma is given by:
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f ðxÞ ¼ x=bð Þa�1
exp �x=b½ �

bC að Þ ð1Þ

where a and b are the shape and scale parameters, and are

directly linked to the mean (l) and the standard deviation

(r) as follows:

l ¼ a=b ð2Þ

r ¼
ffiffiffi

a
p

=b ð3Þ

The probability density function (pdf) of exponential

distribution is relatively simpler and given by:

f ðxÞ ¼ k e�kx ð4Þ

where x is the daily precipitation intensities and its

parameter k equals 1/mean.

3.2 Hydrological modelling

The SWAT-2012 is used to evaluate the hydrological

response of the watershed to the synthetically generated

climate series. In order to preserve the spatial distribution

of hydrological processes, the South Nation watershed was

divided into 31 distinct reach. Calibration based on local

conditions was done with SWAT-CUP (Abbaspour et al.

2007) using the SUFI-2 optimization algorithm to reduce

the prediction uncertainty.

A set of statistical metrics was used to examine the

accuracy of the calibrated model comprise: the Nash–Sut-

cliffe coefficient, the RMSE-observations standard devia-

tion ratio, and the percent bias. The criteria adopted herein

to evaluate the SWAT model goodness of fit are suggested

by Liew et al. (2007) and Moriasi et al. (2007). The Nash–

Sutcliffe coefficient (NS) (Nash and Sutcliffe 1970), is

vastly used as an efficiency indicator of the hydrological

model, which can range from - ! to 1. The closer NS is

to 1, the better the agreement between observations and

simulations. The NS can be computed as:

NS = 1 �
Pn

i¼1ðOi � PiÞ2
Pn

i¼1ðOi � �OÞ2

" #

ð5Þ

where O stands for observed and P for predicted values.

The RMSE-observations standard deviation ratio (RSR)

was used whenever root-mean-square error (RMSE) values

were less than half the standard deviation of the observed

data (Singh et al. 2005). RSR can be calculated as:

RSR =
RMSE

SRDEVobs

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðOi � PiÞ2

q

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1ðOi � �OÞ2

q

� � ð6Þ

The percentage of bias (PBIAS) compares the simulated

discharge to observed values, yielding positive/negative

values for over-/underestimations, respectively, but ideally

a percentage close to zero (Gupta et al. 1999). PBIAS

percentages are computed as:

PBIAS =

Pn
i¼1ðOi � PiÞ � 100
Pn

i¼1ðOiÞ
ð7Þ

3.3 Performance spaces (CSS and RPIS)

In the present approach, the abovementioned stochastic

models have been run one thousand times (i.e., realiza-

tions) for reasonable capturing of basic statistical charac-

teristics of the climate (Hansen and Ines 2005; Guo et al.

2017). Similar to observations in length, 41-year synthetic

observed-like weather series were generated for each sta-

tion. Each realization was represented by its statistics (VT)

in the confidence interval plots. The goal is to find out

whether an observation point is close by or far away from

the mean of cloud of points representing the stochastically

generated sequences in the performance space. Simply, a

point representing observed time series is tested against the

normal pattern of synthetic weather generator data (i.e.,

cluster of experiments), based on an acceptance threshold.

Synthetic climate and streamflow data of a well-behaved

weather generator should preserve the observed climate

and streamflow statistical moments, namely the mean (l),
standard deviation (r), skewness (a3), and kurtosis (a4).
Nonetheless, the proposed approach is not limited to these

statistics and further investigation may be necessary to

address other characteristics that are relevant to the prob-

lem at hand. For example, more analysis based on cross-

correlation or log-odd ratios between all stations is sug-

gested to explore the usefulness of multisite modeling of

weather generators.

Furthermore, we investigate whether proximity with

observations in the CSS translates into proximity in the

RPIS. The calibrated SWAT model was forced with each

one of the thousand synthetically-generated climate real-

izations for each weather generator, each realization com-

prises precipitation, maximum and minimum temperatures

data. Other meteorological inputs, such as relative humid-

ity, solar radiation and wind speed data, were kept constant

using observational data. We then compared a set of one

thousand simulated streamflow ensemble to simulated

streamflow using observed climate data, in order to

examine the model performance and their realism in RPIS.

The streamflow moments were used to evaluate the degree

to which a weather generator could reproduce the measured

streamflow distributions.

Given the stochastic nature of streamflow, it is often in

the interest of hydrologists to examine flow extremes using

statistical models (probability distribution based) in order
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to assess risk associated with the extreme hydrological

events. Two sets of hydrologic risk indicators were used to

compare the performance of each weather generator in the

RPIS including the traditional case of annual maxima (AM

series) and the low flows frequency. The AM series was

fitted to the three-parameter Generalized Extreme Value

(GEV) distribution (Cunnane 1989), while the three-pa-

rameter Gumbel Type III distribution, or Weibull (WBL),

(Pilon 1990), was applied to the annual 7-day minima flow

(7Q), implementing the maximum likelihood estimates

(MLE) for parameter distributions. The 7-day minima flow,

computed on an annual basis over the smallest flow of

7-consecutive days. The 7Q10, for example, is the single

most commonly employed drought index with a 10-year

recurrence interval, and has a non-exceedance probability

of 10%.

3.4 Assessing similarity in the CSS and RPIS

As stated by Kovalchuk et al. (2017), the quality of

ensemble-based simulations can be estimated using the

relative distance of a group of simulation outputs to its

corresponding observations. Kovalchuk et al. (2017) listed

several potential distance-based metrics such as the

Euclidian distance or the Mahalanobis distance. Given the

multitude of competitive techniques, the Mahalanobis

distance (MD), also known as the generalized squared

distance, is the selected probabilistic metric in order to

compare observed-to-ensemble of realizations in the CSS

and RPIS because of its less sensitive to the differences of

magnitudes of the statistics. MD is a metric often applied

for detecting of anomalous. It is used for a discriminant

analysis to find the probability of a certain sample

belonging to a certain group (Huber and Ronchetti 2009;

Fritsch et al. 2012; Wang and Zwilling 2015). In statistics,

Mahalanobis 1936 is a scale-invariant quadratic distance of

a pre-selected point xi 2 RP(an event representing obser-

vations) from the origin l (the centre of a cloud repre-

senting ensemble realizations), governed by a covariance

matrix R (a shape parameter), given by:

MDðxi!; l!Þ ¼ xi
!� l!
� �T

R�1ðxi!� l!Þ ð8Þ

Moreover, the problem of possible inter-correlation

between the original variables is solved through compo-

nents analysis, which reduces the number of variables to

the most relevant.

For a bivariate space, the group of points that shared

invariant Mahalanobis distances will form an ellipse about

the mean vector, l. The orthogonal axes of the formed

ellipse is determined by the eigenvectors (U) of the

covariance vector (R), with the lengths are governed the

eigenvalues (K). A smaller MD is desired as it indicates a

closer position to the focus of the ellipse while outliers can

be identified as having large MD values. The definition of a

particular threshold distance to identify outliers should

therefore be performed with caution, as it depends on the

particular application and type of sample. In theory, the

Mahalanobis squared distance delineates how far a point in

units of standard deviation from the group mean; thus, as

dictated by the three-sigma rule, a point with an MD value

of \ 3 is located within 99% boundary of all data.

Therefore, a weather generator is labeled as good-fit can-

didate if the reference point of observations (summarized

by two of its probability moments) falls within a reason-

ably adopted threshold distance.

The joint density function of two random variables x (lx
and rx) and y (ly and ry) that hypothetically have a

bivariate normal distribution as:

f x; y; qð Þ ¼ 1

2prxry
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p

� exp
�1

2ð1� q2Þ
x� lx
rx

� �2

�2q
x� lx
rx

� �

y� ly
ry

� �

"(

þ
y� ly
ry

� �2
#)

ð9Þ

where q is correlation coefficient of x and y (=
rxy
rxry

). An

ellipse is formed, centred on the means (lx and ly), rep-
resenting a plane of density surface, parallel to the x and y

coordinates at a certain height K. If the data is dependent

(q 6¼ 0), the resulting error ellipse will not be axis aligned.

The integral over an ellipse with centre at (lx, ly) is:
ZZ

A

rxry
� ��1

f
x� lx
rx

;
y� ly
ry

; q

� �

dxdy ¼ 1� e�a2=2

ð10Þ

where the equation that describes its area (A) can be

parameterized with rx, ry and q as follows (Abramowitz

and Stegun 1972):

x� lx
rx

� �2

�2q
x� lx
rx

� �

y� ly
ry

� �

þ
y� ly
ry

� �2

¼ 1� q2
� �

a2 ð11Þ

where

a2 ¼ ln 4p2K2r2
yr

2
x 1� q2
� �

h i�1

ð12Þ

is constant.

The resulting ellipses of constant density (i.e., constant

Mahalanobis distance) will not be axis aligned and the

rotated new coordinate system is following the principal

axes of the ellipse, which are the eigenvectors of the data’s

covariance matrix. The first principal component lies in the
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direction of the highest variance in the data. The data

projected onto the principal axes (�x and �y) of the ellipse-

shaped cloud are now independent (when q is zero), and a

point of observations �X and �Y is within a constant proba-

bility ellipse if,

�X

rx

� �2

þ
�Y

ry

� �2

� a2 ð13Þ

The random variable U =
�X
rx

	 
2

þ �Y
ry

	 
2

follows a Chi

square (v2) distribution with the number of degrees of

freedom (df ) equivalent to the number of independent

variables (Hardin and Rocke 2005). Therefore, its proba-

bility to lie within a certain ellipse is:

P U� c2
� �

¼ r
c2

0

e�u=2

2
du ¼ 1� e�c2=2 ð14Þ

a value. For example, 50% and 99% of samples in a

bivariate normal distribution (df = 2) lie within ellipses

that have critical values of the v2 distribution of 1.386 and

9.210, respectively. In the current approach, a weather

generator is considered a good candidate if the observed

data falls within its 99% Confidence ellipse. Caution is

advised as certain intervals tend to be larger than others if

their variability are large (Helsel and Hirsch 1992).

Graphical representations in combination with a visual

examination may therefore be useful to obtain a better

grasp of the data.

3.5 Flow autocovariance

Storage-related statistics are particularly important for

water resources reservoir simulation, and these are largely

functions of the variance and autocovariance structure of

the generated time series (Sveinsson et al. 2007). Flow

autocorrelation is important for reservoir operation studies.

Reservoirs are less sensitive to instantaneous extremes such

as low and high flow, but their simulation is sensitive to

persistence of low or high values, hence to correlations in

flow time series.

For a time series y1, y2…, yT and a sample mean �y, the

lag-h correlation between yt and ytþ1 is given by

q̂h ¼
PT

t¼hþ1 yt � �yð Þ ytþ1 � �yð Þ
PT

t¼1 yt � �yð Þ2
ð15Þ

where h = 1,2,…,N - 1,

The standard error SEq and the approximate 95% con-

fidence intervals CI95 are estimated as

SEq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
X

h�1

i¼1

q̂2i

 !

=N

v

u

u

t ð16Þ

CI95 ¼ q̂h � 1:96SEq ð17Þ

In this paper, a visual comparison of the autocorrelation

functions were drawn at of observed and simulated

monthly flows will be used to assess the performance of the

weather generators under investigation. A good weather

generator is expected to have most of its autocorrelations

estimates within the 95% confidence interval bounds.

3.6 Dimensions of the CSS and RPIS

Ideally the CSS and RPIS will have a dimension for each

statistic that is of interest to the analysis. Obviously, the

number of potential dimensions is potentially unlimited

and it is not obvious to draw a line between meaningful

statistics and the others for a particular problem. Further-

more, visual comparison and interpretation of results in a

space with more than three dimensions is tricky. For the

sake of simplicity and ease of interpretation, only two-

dimensional CSS and RPIS are discussed in this paper. We

also restricted ourselves to the mean, standard deviation,

skewness and kurtosis in the two spaces. The mean controls

the magnitude of the variable and is particularly important

in hydrological analyses where water volumes are used for

reservoir design. The standard deviation is a quantification

of the spread about the mean and describes the pre-

dictability of a particular variable. The skewness and kur-

tosis play a crucial role in the distribution of extreme

values and impacts the design of flood and drought control

structures. Additional dimensions can be added to the CSS

and RPIS is the problem at hand warrants it, but the

interpretation of the results becomes more difficult with

spaces of higher dimensions.

4 Results and discussion

The comparisons between observed and weather generator-

driven data, in the CSS and RPIS, allow for quantifying the

performances of these weather generators. The relative
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positions of the mean, standard deviation, skewness, and

kurtosis of simulated annual precipitation, maximum and

minimum temperature were compared to the ones esti-

mated using observations in the CSS. A similar comparison

was carried out for streamflow data in the RPIS space. All

statistics were found to be stable in the CSS earlier than

those in the RPIS. As an example, the plot of the mean

annual precipitation and mean monthly streamflow is

shown in Fig. 3 as function of the number of realization. It

shows that 25 realizations, as recommended by Guo et al.

(2017), seem shorter than desired, particularly in the RPIS,

to construct robust confidence intervals. These results

comforted us in the choice of 1000 for the number of

realisations for each weather generators, despite the high

computational demand.

4.1 Climate Statistics Space (CSS)

The analysis of the stochastically generated climatic daily

sequences, compared to the reference data, is demonstrated

here using lumped approach by averaging the climate data

over all locations. The statistics of observed precipitation

are shown along with elliptically-shaped confidence inter-

vals from each weather generator dataset, representing 99%

and 50% of the data (Fig. 4). Despite the recommendation

of Chen et al. (2012) to reproduce precipitation amounts

using the Gamma distribution rather than Exponential, yet

Figs. 4 and 5a suggest that the two distributions are com-

parable in the CSS. The generated precipitation amounts,

using the exponential distribution in MulGETS, are slightly

better than those produced with the gamma distribution, in

terms of retaining observed attributes in the CSS with MD

of observed point of 0.45 and located within 9% confident

interval of r and a3 and located acceptably in 59% of a4.
These findings are partially consistent with the work by

Wilks (1998) where the exponential distribution was a

better fit than the gamma distribution. The MulGETS no

matter the distribution used for precipitation outperformed

the WeaGETS where MD of standard deviations of ME,

MG, WE and WG, were found to be 0.45, 1.03, 8.4 and 7.2,

respectively (Fig. 6). That possibly indicates the impor-

tance of preserving the cross-correlation structure between

Fig. 3 The number of realizations needed to calculate statistics in the CSS and RPIS
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all stations. Nevertheless, the skewness and kurtosis of both

models were within 99% confidence interval.

Compared to other weather generators considered in this

study, the k-nn approach was noticeably the least efficient

model in reproducing precipitation attributes, where all

precipitation statistics were way above the MD threshold of

three. In terms of temperature variables, k-nn appears

superior to the other four models in generating synthetic

temperatures time series while precisely preserving the

statistical moments of observed data (Figs. 5b, c, 6). These

differences in the obtained results can be explained, in part,

by differences in the underlying numerical data assimila-

tion algorithms for the land–ocean–atmosphere relations

(Warner 2010). An additional factor may be an inherent

limitation of certain weather generators for certain climatic

or topographic conditions. Fowler et al. (2007) also criti-

cized weather generators for being strictly location-based,

which implies that they may not be suitable to any region

or climate. Also, further investigation of weather genera-

tors’ ability of estimating extreme values of climate vari-

ables, as done for rainfall extremes by Ramesh et al.

(2018), is warranted.

4.2 Risk and performance indicator space

As reflected in the high NS value (0.79), coupled with the

low values obtained for PBIAS (3%) and RSR (0.45), the

SWAT model fed with observed meteorological informa-

tion was very capable in simulating monthly streamflow

according to the Liew et al. (2007) and Moriasi et al.

(2007) criteria. The initial range for the most sensitive

parameters, together with the best fit values from within the

prediction uncertainty band, that were then adopted during

the subsequent analyses, are provided in Table 2.

A central goal of the current work, from a practical point

of view, was to determine how the simulated flow using

observed climate data (SFOD) comes to lie within the

modelled data cluster obtained by feeding SWAT with

synthetic data (SFSD). There is an infinite number of

potential indicators (such as annual, seasonal, and daily

indicators) that can be studied, but obviously only a few

can be presented herein and annual data is considered in the

analysis. The MulGETS-Gamma set-up appears to be the

best weather generator for our study area, in that it pre-

serves the basic SFOD statistics (Figs. 5d, 6), followed by

Fig. 4 Statistics comparison of observed precipitation data (OBS) with 1000 realizations from each weather model, represented as ellipsoidally-

shaped clouds around their centers with isolines of the 50% and 99% confidence intervals
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Fig. 5 Visual inspection of the five weather generators for a precipitation, b maximum temperature, c minimum temperature and d streamflow
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the MulGETS-Exponential configuration. Streamflow dri-

ven by the MulGETS-Gamma configuration appears to be

satisfactorily consistence with the SFOD with MD values

of 0.85, 0.3 and 0.32 respectively for r, a3 and a4,

respectively. The MulGETS-Exponential configuration

performed less efficiently, yet within the adopted threshold

of 3 MD. However, the WeaGETS, implementing both

distributions for precipitation generation, as well as the k-

Fig. 5 continued
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nn models were poorly preserving SFOD statistics, espe-

cially the higher moments (a3 and a4) (Fig. 6).
The performances of the weather models in terms of

reproducing extreme flow are presented in Fig. 7. Besides

the 7-day dry spells (2-, 5-, 10- and 20-year for 7Q2, 7Q5,

7Q10 and 7Q20, respectively), high return period floods (2-

, 5-, 10- and 50-year) from the annual maximum series

(AM2, AM5, AM10 and AM50, respectively) were

achieved. No apparent differences were found in the low-

flow frequency results, as all tested weather generators

performed quite well except for 7Q2 of k-nn (Fig. 7). The

high-flow frequency results, on the other hand, were

indicative of a convincing performance by the MulGETS

models, where all tested recurrence intervals were satis-

factorily reproduced with less than two units of standard

deviation, as defined by MD. That indicates that they are

interesting weather generation models where proximity

with observations in the CSS translates very well into

proximity in the RPIS. Such results were mainly driven by

the accurate generation of streamflow statistics, especially

the skewness and kurtosis as indicated previously. The

outperformance of the MulGETS models is not surprising

as they are the only ones with account for spatial depen-

dence between climate variables at different stations. It is

well known that the reproduction of hydrologic extremes is

dependent of such spatial dependence (e.g., a flood is

Fig. 6 Level of adequacy of weather generators using Mahalanobis distance from the observed statistics to the cloud’s center of the generated

PCP, Tmax, Tmin and SFSD (compared to SFOD) statistics

Table 2 Description of SWAT2012 most sensitive parameters calibrated for the South Nation watershed

Parameter name Description Initial range Final selection (the calibrated

model values)
Min Max

r__CN2.mgt Curve number for moisture condition II - 0.2 0.2 - 0.06

v__ALPHA_BF.gw Baseflow alpha factor 0.1 0.9 0.70

v__GW_DELAY.gw Groundwater delay time 1 499 206.65

v__RCHRG_DP.gw Deep aquifer percolation fraction 0.01 1 0.64

r__SOL_AWC.sol Soil available water storage capacity - 0.4 0.4 - 0.06

r__SOL_BD.sol Moist bulk density (Mg/ m3 or g/ cm3) - 0.3 0.3 0.12

v__EPCO.hru Plant uptake compensation factor 0.01 1 0.34

v__SNOCOVMX.bsn Minimum snow water content that corresponds to 100% snow cover,

SNO100, (mm H2O)

1 499 381.74

v__SFTMP.bsn Snowmelt temperature - 19 19 3.18

v__SMFMN.bsn Melt factor for snow on 21 December 1 20 13.75
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generally the result of simultaneous high precipitation at

various locations; low flow events are more likely to be

triggered by low precipitation at several locations).

The auto-covariance structures of SFOD and SFSD

streamflow are shown in Fig. 8. All weather generators had

their autocorrelation within the 95% confidence interval.

The reproduction is reasonable but not perfect as the

observed autocorrelation is in the interquartile range of the

simulated time series only for lags 0–3. Visual inspection

did not show clear differences in performance in repro-

ducing the autocorrelation function between weather

generators.

The above results show that the choice of a particular

weather generator for water resources assessment can have

an impact on key statistics of the simulated time series,

hence on the estimated level of risk and the selection of

management strategies. It is also shown that a given

weather generator will perform differently on different

variables. In the five weather generators, k-nn would be the

recommended weather generator for risks related to tem-

perature (e.g. heat and cold waves, changes growing sea-

son, etc.) while MulGETS would be the best for

precipitation and streamflow, presumably because of its

multisite features. This study is not exhaustive as there are

a large number of other weather generators available to the

modellers, as well as an infinite number of potential risk

indicators. Our recommendation is that for each particular

risk assessment problem, once the indicators are selected,

the modellers should assess the performance of the weather

generators available to them, or at least assess the perfor-

mance of the one they intends to use.

5 Conclusions

In this study, the comparisons between observed and

weather generator-driven data, in the CSS and RPIS,

allowed for quantifying the performances of these weather

generators. The delineated approach was developed to

provide a statistical baseline to examine how the observa-

tional data come to lie within the modelled data cluster. An

explicit accounting of risk and performance indicators was

considered to assess uncertainties associated with

stochastically generated weather data. Weather generator-

derived sequences were compared with the observed cli-

mate by training both data series through a calibrated

SWAT model. The high NS coefficient, coupled with low

values obtained for PBIAS and RSR, implied that the

SWAT forced with observed meteorological information

was able to predict observed streamflow very satisfactorily.

Apart from the k-nn approach, we utilized MulGETS and

WeaGETS to reproduce temperature variables, and pre-

cipitation amounts and occurrences implementing two

distributions, Exponential and Gamma, for the South

Nation watershed. In total, the present study has analyzed

five weather generators, coupled with an impact model for

the hydrological response, while involving more models

would lead emphatically to a better comprehensive

decision.

A large number of sequence samples (1000 stochastic

sequences) was vetted in the CSS and RPIS spaces.

Fig. 7 The performance of the low and high streamflow indicators of

the SFSD compared to the SFOD based on Mahalanobis distance
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Generally, the CSS results demonstrated that MulGETS-

models were generally the better-performing weather

generators for the South Nation area but was outperformed

by the k-nn approach in case of temperature. The statistics

of SFSD were found to lie mostly outside 99% confidence

intervals ellepes for the WeaGETS and k-nn models. The

MulGETS model is thus considered the preferred choice

candidates for risk analysis and discovery, mainly due this

models’ ability to incorporate covariance for several

stations. Low and high flow frequency analyses were

conducted on each dataset to examine risk indices. The

observed differences between examined weather generators

in terms of low flow index results were not statistically

significant, and further studies with a particular focus on

how low flow indices reproduced by weather generators

data are recommended.

While there cannot be a binary black-and-white classi-

fication of weather generators, it is possible to quantify

Fig. 8 Flow autocorrelation of the five weather generators
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their suitability for a specific field or geographical area,

based on their individual strengths and weaknesses. The

current work should appeal to end users of climate prod-

ucts, to facilitate the appropriate pick of the right weather

generators, conditioned on the relevant CSS and RPIS

information. It would also be worth investigating to verify

these findings by versatile applications, such as economi-

cal, ecological, electricity demand, or crop-yield models.
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