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Abstract
Landslides are one of the most dangerous types of natural disasters, and damage due to landslides has been increasing in

certain regions of the world because of increased precipitation. Policy decision makers require reliable information that can

be used to establish spatial adaptation plans to protect people from landslide hazards. Researchers presently identify areas

susceptible to landslides using various spatial distribution models. However, such data are associated with a high amount of

uncertainty. This study focuses on quantifying the uncertainty of several spatial distribution models and identifying the

effectiveness of various ensemble methods that can be used to provide reliable information to support policy decisions. The

area of study was Inje-gun, Republic of Korea. Ten models were selected to assess landslide susceptibility. Moreover, five

ensemble methods were selected for the aggregated results of the 10 models. The uncertainty was quantified using the

coefficient of variation and the uncertainty map we developed revealed areas with strongly differing values among single

models. A matrix map was created using an ensemble map and a coefficient of variation map. Using matrix analysis, we

identified the areas that are most susceptible to landslides according to the ensemble model with a low uncertainty. Thus,

the ensemble model can be a useful tool for supporting decision makers. The framework of this study can also be employed

to support the establishment of landslide adaptation plans in other areas of the Republic of Korea and in other countries.
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1 Introduction

Extreme weather events, such as heavy rainfall, typhoons,

heat waves, and cold waves, have increased because of

climate change and have caused extensive damage in the

Republic of Korea (ROK) (Boo et al. 2006; Sung et al.

2012). Landslides caused by heavy rainfall represent one of

the worst types of disasters, and local governmental deci-

sion makers are attempting to establish disaster prevention

zones in order to reduce landslide damage. These zones

restrict construction activities in areas susceptible to

landslides and specify safe separation distances for devel-

opment (Chiou et al. 2015). In addition, government offi-

cials of the ROK are attempting to establish climate

adaptation plans that will prevent future losses of life and

protect properties from landslides.
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Inje-gun in Gangwon-do experienced severe damage

due to landslides in 2006 and 2007 (Kim et al. 2011a; Yoo

et al. 2012), causing many human injuries and losses of

public facilities. Inje-gun consists of 91% mountainous

terrain, and various residential and agricultural land cover

types (i.e., households, farmlands, and roads) are located

adjacent to the forested land (Oh et al. 2009). In this region,

alpine agriculture is an important source of income. The

local government of Inje-gun is required to develop

strategic management plans that will protect lives and

properties from landslides.

As a key tool for developing strategic management

plans, landslide susceptibility maps are required by Inje-

gun’s local government (Akgun et al. 2008; Kappes et al.

2012). These maps can identify the areas of forestland that

are vulnerable to landslides triggered by extreme rainfall,

and they can thus be used to restrict potentially risky

human activities in susceptible areas, such as the con-

struction of roads and residential facilities and the planting

of crops. Additional development without consideration of

the region’s landslide susceptibility will leave Inje-gun

more vulnerable to future damage. Maps of areas suscep-

tible to landslides are also critical for climate adaptation

plans, which decision makers can use to enhance com-

munity resilience (Felicı́simo et al. 2013).

Uncertainties in landslide susceptibility information can

lead to undesirable social costs, such as infringements on

private property rights and unnecessary economic invest-

ments. With the aim of reducing these uncertainties, this

study investigates the amount of uncertainty associated

with different types of landslide susceptibility modeling

data and works to combine this information in new ways.

Figure 1 illustrates the general process that can be used to

establish a landslide adaptation plan (Kim 2012). As noted,

a landslide susceptibility assessment involves the deter-

mination of priority areas in Step 1 in this process, and this

is typically accomplished with the use of spatial distribu-

tion models (SDMs).

Many previous studies have developed SDMs that can

be used to analyze a region’s landslide susceptibility

(Catani et al. 2005; Yesilnacar and Topal 2005; Akgun

et al. 2008; Yilmaz 2009, 2010; Akgun 2012; Torizin

2016). Various models exist for assessing landslide sus-

ceptibility. In particular, artificial intelligence methods,

such as artificial neural networks (ANNs) and neuro-fuzzy

logic, have been applied in recent studies (Bui et al. 2012;

Li et al. 2012; Park et al. 2013; Zare et al. 2013; Pradhan

2013; Nourani et al. 2014; Dehnavi et al. 2015; Lee et al.

2015). ANN is computing systems based on the biological

neural networks of animal brains. ANN is one of the

Fig. 1 Challenges of landslide susceptibility assessments used for supporting the decision-making process
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machine learning model to calculate spatial distribution of

specific event. However, there are two types of uncertainty

in landslide susceptibility studies using SDMs. The first

type of uncertainty is caused by variables such as topo-

graphic factors, soil materials, and vegetation factors

(Felicı́simo et al. 2013; Lian et al. 2014; Wang et al. 2016b;

Tongal and Booij 2017). The second type stems from dif-

ferences between SDMs (Claessens et al. 2007; Ladle and

Hortal 2013; Kwon 2014; Niedzielski and Miziński 2016;

Liu et al. 2016).

Ideally, the results of a landslide susceptibility assess-

ment should provide reliable scientific information that can

support the identification of priority areas and can be used

to forecast susceptible areas (Bonachea et al. 2009; Sud-

meier-Rieux et al. 2012). Researchers have proposed a

method to minimize uncertainty, which relies on the use of

multiple variables and models (Buisson et al. 2010; Miao

et al. 2016). However, it is very difficult to establish one

optimum model for landslide susceptibility mapping

because each SDM has different properties, and their

reliability differs due to combinations of variables. In

particular, ensemble methods have been employed in

remote sensing classification (Clinton et al. 2015; Wang

et al. 2016a) and species distribution modeling has been

used to minimize the limitations of a single model (Thuiller

et al. 2009) and forecast future climate conditions (Krish-

namurti et al. 2000; Riebau and Fox 2005; Son et al. 2014;

Kovalchuk et al. 2017).

Ensemble methods have also been applied to assess

landslide susceptibility. Bartlett and Shawe-Taylor (1999)

reduced bias error by applying the theory of large margin

classifiers coupled with ensemble techniques. Bühlmann

and Yu (2003) developed an ensemble consisting of two

different linear regression models. Rokach (2010) reviewed

various ensemble methods to achieve improved prediction

performances. Recently, Ghosh and Acharya (2011)

employed consensus clustering to produce more robust and

stable results. Lee and Oh (2012) developed and applied an

ensemble method to construct a reliable model by using

logistic regression, the frequency ratio, weight of evidence

information, and ANN. Althuwaynee et al. (2014) used the

bivariate evidential belief function (EBF) as a bivariate to

explore the integration validity with an analytic hierarchy

process (AHP) and employed logistic regression as a

multivariate method for spatial mapping.

In this context, the main objective of this study is to

assess the landslide susceptibility in a target region by

using ensemble methods based on multiple SDMs and

optimum variables. This study addresses three research

questions: First, how to select optimal variables for SDMs;

second, how to quantify the uncertainty from various

SDMs; and third, whether an ensemble model can help

decrease the uncertainty of SDMs and effectively support

decision making. These research questions are related to

attempts to produce more reliable data concerning areas

susceptible to landslides, which can support the decision-

making process regarding land development.

2 Methods

2.1 Scope of study

The study site is Inje-gun in Gangwon-do, ROK (Fig. 2).

Inje-gun is located in the northeastern region of ROK. The

study site experienced severe damage due to landslides in

2006 and 2007. Moreover, alpine agricultural resources,

which represent an important industrial output in Inje-gun,

have been damaged by landslides every year. Thus, Inje-

gun was deemed an appropriate study site to develop

landslide susceptibility maps. The spatial resolution of the

data for the study area was set to 30 m 9 30 m. The

temporal scope of the study was set to 2006, considering

the reliability of historical landslide occurrence data.

2.2 Landslide occurrence data

Landslide occurrence data are required to establish SDMs

in support of the local government of Gangwon-do (Fig. 3).

Such data comprise spatial coordinates, the extent of

damage in each area, and addresses, all of which were

collected by MODIS (the moderate resolution imaging

spectroradiometer) satellite imagery, field surveys, and

resident reports from July to September in 2006.

This study focuses on landslide areas over 2000 m2, in

accordance with a previous study on landslide suscepti-

bility models (Kim et al. 2015). In that study, models that

considered landslide occurrence areas over 2000 m2

exhibited the highest area under the receiver operating

characteristic (ROC) curve1 compared with other models

that used different-sized areas. A total of 341 occurrence

points were used as input data for landslide susceptibility

modeling. Of the landslide occurrence data, 80% were used

to train the model, and 20% were utilized to test the model.

1 An ROC curve is a plot graph that shows the diagnostic ability of a

binary classification method considering a threshold value. ROC

curves are created by plotting the true positive rate (TPR) against the

false positive rate (FPR). The TPR is also called the sensitivity and

the FPR is also known as the probability of false alarm, and it can be

calculated as (1 - specificity). Thus, the ROC curve represents the

sensitivity as a function of FPR. ROC analysis is used as a tool to

select optimal models and to discard suboptimal ones. The area under

the curve (AUC) is the same as the probability that a classifier will

grade a randomly chosen positive case higher than a randomly chosen

negative case. The AUC is similar to the Mann–Whitney U, which

tests whether positive cases are graded higher than negative cases.
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For the absence data, 700 pseudo-absence points were

created by considering a minimum distance of 200 m from

occurrence areas. The absence data means that location

data of areas with no landslide occurrence. It is required

data to run SDMs. However, we do not have data on

absence points. Actually, absence points are not important

data for the government or relevant research institute.

Because they focus on collecting data for landslide

occurrence areas or points. However, absence data is

required to run SDMs. Thus, we had to utilize pseudo-

absence points to run SDMs. The minimum distance

between landslide occurrence points and absence points

was set to 200 m in consideration of a previous study

regarding landslide damage in Inje-gun (Son et al. 2009).

2.3 Modeling and ensemble methods

The process of modeling is shown in Fig. 4. First, we

established landslide occurrence data as the dependent

variable and independent variables relevant to landslides.

Second, we selected models to analyze landslide suscep-

tibility, and ten SDMs were selected as landslide suscep-

tibility models. Third, we undertook pilot modeling with all

13 collected variables in order to find optimal variables.

Fourth, we selected 10 optimal variables, considering the

variable importance and coefficients between variables.

Through this process, we ran models with optimal variables

and generated landslide susceptibility maps, AUC values,

and response curves. Fifth, we aggregated the results of the

models by using five ensemble methods. Finally, we

quantified the uncertainty of the modeling results by cal-

culating the coefficient of variation.2 Analytical programs

were used, including ArcMap 10.1 and Python 2.7 of ESRI

and the Biomod2 package of R studio.

We now provide more detailed information for each

process. The second research question involved quantify-

ing the uncertainty of SDMs. Therefore, we used as many

different SDMs as possible. Researchers have also used

various SDMs to identify areas susceptible to landslides

(Catani et al. 2005; Akgun et al. 2008; Yilmaz 2009, 2010;

Bui et al. 2012; Li et al. 2012; Park et al. 2013; Zare et al.

2013; Pradhan 2013; Nourani et al. 2014; Dehnavi et al.

2015; Lee et al. 2015). Through a review, we identified 10

SDMs and decided to use all of them. These 10 SDMs were

classified into two categories based on the mechanisms of

the models, namely, statistically-based models and

machine learning-based models (Appendix 1). Each SDM

Fig. 2 Study site (Inje-gun, Gangwon-do, ROK)

2 Coefficient of variation is also known as relative standard deviation.

It is a standardized value of dispersion of a probability distribution. It

is calculated by the ratio of the standard deviation to the mean. In this

study, it is used for quantifying uncertainty of modeling results.
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had different characteristics in terms of categories, data

requirements, and response functions.

We ran a pilot model with 13 relevant variables in order

to select optimal variables. The 13 variables were collected

by reviewing previous studies (Table 1). Previous studies

related to these variables are listed in Table 1. The major

factors for landslide models are classified into four cate-

gories (climate factors, topography factors, ground mate-

rial, and vegetation factors).

As a result of running the pilot model to find optimal

variables, we obtained the importance of each variable

(Table 2). The importance of variables was evaluated using

the same principle as the random forest variable impor-

tance algorithm. This principle rearranges a single variable

of the data and carries out a model prediction using the

‘‘rearranged’’ data set. Then, we calculated the Pearson’s

correlation between reference predictions and the

‘‘rearranged’’ one. The returned value is between 0 and 1.

A high value indicates that the variable has a greater

influence on the model.

In addition, we analyzed the correlations between vari-

ables. Variables that had a high coefficient (0.6) and rela-

tively low importance were excluded from the list.

X011_100mm (No. 1) and X012_120mm (No. 2) exhibited

high coefficients. We selected X012_120mm by consider-

ing the importance of the variables. X021_3days and

X022_5days also exhibited high coefficients, and we

selected X022_5days because it had a higher importance

than X21_3days. Diamclass (No. 13) was excluded because

its importance was very low in all SDMs.

Through the above process, we selected 10 optimal

variables: X012_120mm (number of days with over

120 mm of rainfall), X022_5days (5 days of maximum

rainfall), X060_3day (number of days with over 150 mm

Fig. 3 Landslide occurrence areas in Inje-gun (2006)
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for 3 days of maximum rainfall), X070_dailymax (daily

maximum rainfall), altitude, slope, soildepth_km (soil

depth), soildrain_km (soil drainage) and soiltype_km (soil

type), and ageclass (age of forest). The distribution maps of

the variables are presented in Appendix 2.

We ran 10 SDMs with optimal variables. However,

SDMs based on machine learning technology do not

always produce the same results from the same data.

Because machine learning models learn different way with

same input data for each run. In this context, the contri-

butions of variables were changed for every run. Thus, we

ran each SDM 100 times so that we could consider the

differences between the results from the same model. To

evaluate the reliability of the results of the SDMs, we

selected the ROC method, which is explained in the pre-

vious section.

The third research question of this study involved ana-

lyzing the effectiveness of ensemble methods. We

reviewed various ensemble methods that were based on the

concept of minimizing the differences among results of

various SDMs (Bartlett and Shawe-Taylor 1999; Bühlmann

and Yu 2003; Dimitriadou et al. 2003; Rokach 2010;

Ghosh and Acharya 2011; Lee and Oh 2012; Althuwaynee

et al. 2014).

As a result of the review process, five types of repre-

sentative ensemble methods were selected (Table 3). Each

ensemble method utilized different methods to aggregate

probabilities or binary values from various SDMs.

Specifically, the ensemble methods included (1) PM (mean

of probabilities), (2) PCI (confidence interval of the mean

of probabilities), (3) PME (median of probabilities), (4) CA

(mean of the binary), and (5) PMW (weighted mean based

on model performance). Table 3 presents detailed infor-

mation about these methods with reference to the previous

study (Thuiller et al. 2015).

The probabilities of landslide occurrence were calcu-

lated for each grid in two dimensions (30 m 9 30 m).

These probabilities were converted to binary values (0 or 1)

by using a cutoff value for each model. If the probability of

a certain cell was over the cutoff value, then the cell was

considered a landslide-susceptible area.

The first research question, concerning the uncertainties

of variables, was considered in order to analyze landslide

susceptibility by using the same variables in every SDM.

The optimum variables were selected by considering the

importance of variables, predictive performance of models

(AUC values), and multicollinearity. The selected optimum

variables were used to conduct each SDM. We minimized

the effect of uncertainty from variables through this pro-

cess. To quantify the uncertainty between the results of the

SDMs, which was the second research question addressed

in this work, the CV value of each cell was calculated. The

CV value was calculated using the probabilities from the

landslide susceptibility maps derived using the 10 SDMs.

3 Results and discussion

3.1 Landslide susceptibility modeling
and ensemble methods

As a result of modeling, we obtained the importance of

variables, landslide hazard maps, and AUC values. The

importance of variables helps understand the contribution

of each variable to the model. The hazard maps provide

information about dangerous areas susceptible to land-

slides, and the AUC value represents the standard of a

model’s reliability.

Table 4 presents each variable’s importance for each

SDM. We ran each SDM 100 times and obtained 100

importance values for each variable. Thus, we calculated

the average importance value for each variable to sum-

marize the results. The ‘‘X070_dailymax’’ (daily maximum

rainfall), ‘‘altitude,’’ ‘‘X022_5 days’’ (5 days of maximum

Fig. 4 Flowchart of modeling process
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rainfall), and ‘‘X060_3day’’ (number of days with over

150 mm for 3 days of maximum rainfall) variables

exhibited higher importance than the other variables

according to their average values from the 10 models. The

‘‘ageclass’’ (age class), ‘‘soildrain_km’’ (soil drainage), and

‘‘soiltype_km’’ (soil type) variables exhibited moderate

levels of importance.

Table 1 Input variables for SDMs

Category Variables Code name References Data references

Climate

factor

(1) Number of days with

over 100 mm of rainfall

X011_100mm Kim and Chae (2009), Choi et al. (2011) and Yoo

et al. (2012)

Observation data (Korea

Meteorological

Administration 2011)(2) Number of days with

over 120 mm of rainfall

X012_120mm

(3) 3 days of maximum

rainfall (mm)

X021_3days Guzzetti et al. (2008, Kim and Chae (2009) and

Choi et al. (2011)

(4) 5 days of maximum

rainfall (mm)

X022_5days

(5) Number of days with

over 150 mm for 3 days of

maximum rainfall

X060_3day

(6) Daily maximum rainfall

(mm)

X070_dailymax Kim and Chae (2009 and Yoo et al. (2012)

Topography

factor

(7) Slope (degrees) slope Ayalew and Yamagishi (2005, Ermini et al.

(2005), Kim and Chae (2009), Oh (2010), Choi

et al. (2011) and Yeon (2011)

Digital elevation model

(DEM) (KME 2008)

(8) Altitude (m) altitude Ayalew and Yamagishi (2005, Oh (2010), Choi

et al. (2011) and Kim et al. (2011a, b)

Ground

material

(9) Soil depth soildepth_km Pradhan and Lee (2010), Oh (2010) and Yeon

(2011)

Soil map (WAMIS 2006)

(10) Soil drainage soildrain_km

(11) Soil type soiltype_km

Vegetation

factor

(12) Age of forest ageclass Yeon (2011) and Oh (2010) Map of forest type (KME

2005)(13) Class of diameter at

breast height

diamclass Kim et al. (2011a, b) and Yeon (2011)

Table 2 Importance of variables for selecting optimal variables from pilot modeling

No Variables SDMs Optimal variablea

MAX ENT CTA SRE FDA MARS RF GLM GBM GAM ANN

1 x011_100mm 0.058 0.057 0.025 0.073 0.058 0.038 0.068 0.041 0.070 0.081 X

2 x012_120mm 0.251 0.117 0.027 0.270 0.239 0.061 0.245 0.048 0.244 0.377 O

3 x021_3days 0.035 0.071 0.036 0.034 0.055 0.033 0.028 0.018 0.029 0.068 X

4 x022_5days 0.138 0.332 0.168 0.153 0.412 0.092 0.141 0.095 0.164 0.115 O

5 x060_3day 0.212 0.376 0.189 0.184 0.134 0.237 0.135 0.084 0.124 0.568 O

6 x070_dailymax 0.477 0.599 0.285 0.643 0.481 0.413 0.606 0.462 0.628 0.632 O

7 slope 0.026 0.015 0.031 0.000 0.000 0.008 0.000 0.001 0.008 0.002 O

8 altitude 0.343 0.307 0.390 0.253 0.303 0.253 0.311 0.311 0.319 0.096 O

9 soildepth_km 0.065 0.102 0.149 0.023 0.000 0.025 0.140 0.051 0.202 0.201 O

10 soildrain_km 0.011 0.000 0.129 0.000 0.000 0.003 0.052 0.001 0.066 0.026 O

11 soiltype_km 0.000 0.000 0.152 0.000 0.000 0.002 0.000 0.000 0.005 0.005 O

12 ageclass 0.017 0.000 0.039 0.000 0.000 0.004 0.000 0.000 0.004 0.013 O

13 diamclass 0.001 0.001 0.002 0.000 0.000 0.000 0.001 0.001 0.002 0.002 X

‘‘O’’ means that the variable was selected as an input variable. ‘‘X’’ means that the variable was not selected as an input variable
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Through modeling, 10 binary maps were projected by

using the results from the 10 SDMs (Appendix 3). The red

colored areas were deemed to be landslide-susceptible

areas for every run of each SDM. The 10 SDMs exhibited

different spatial patterns for areas susceptible to landslides

(Appendix 3). The differences between SDMs were the

main reason for the uncertainty in estimating landslide-

susceptible areas in the studied area. The SRE method

predicted the largest susceptible areas, while RF predicted

the smallest susceptible areas among the 10 SDMs. The

central area of Inje-gun was identified as a susceptible area

in almost all SDMs. However, the detailed locations of

susceptible areas were different according to each SDM.

Therefore, ensemble methods were required to account for

the uncertainty derived from the differences between

SDMs.

Average AUC values were calculated for the 10 models

(MAXENT, CTA, SRE, MDA, MARS, RF, GLM, GBM,

GAM, and ANN) to evaluate the reliability of each model

(Table 5). The RF model exhibited the highest AUC value

(0.979) among the 10 models. The AUC values of eight

models were over 0.9, while the other two models had

values over 0.8. Therefore, every model exhibited good

performance according to the criteria used in previous

studies (Hansson et al. 2005; Franklin 2009). The ROC

plots for each model are presented in Appendix 4. We

observed different AUC response curves according to each

SDM. Some response curves appeared unstable, but we

identified important sections of each variable by running

models repeatedly. We could not remove unstable curves

because the reason for instability was related to the prop-

erties of machine learning models. However, we decreased

the uncertainty by increasing the number of times the

models were run.

Five ensemble methods were applied to synthesize the

results of the 10 SDMs and account for the uncertainty. The

ensemble models were also evaluated using the ROC

method (Table 6). The PMW method exhibited the highest

AUC value among the five ensemble methods. The PM and

PCI (upper model) methods exhibited the second highest

AUC values. The other methods also had high AUC values;

therefore, every ensemble method achieved high reliability.

Five ensemble maps were derived by projecting the

results of each ensemble method (Appendix 5). The cutoff

Table 3 Ensemble methods to integrate results of SDMs Thuiller et al. (2015)

Abbreviation Description

PM Mean of probabilities. The PM ensemble model calculates the mean of probabilities for the selected models

PCI

(upper and

lower)

Confidence interval. The ensemble model for PCI is the confidence interval for the probability of the mean. This model is a

good complement for the probability of means. Two ensemble models are constructed using this model:

1. The upper model (there is less than a 100 9 PCI/2% chance to obtain probabilities higher than the ones given)

2. The lower model (there is less than a 100 9 PCI/2% chance to obtain probabilities lower than the ones given)

PME Median of probabilities. The PME ensemble model is the same as the probability of the median for the selected models. The

median is better than the mean for assessing the impacts of outliers

CA Models committee averaging. The CA ensemble model first transforms the probabilities of selected models into binary values

by using the cutoff value of each model. After transformation, the model calculates the average of binary values

PMW Weighted mean of probabilities. The PMW calculates the relative importance of the weights by using the proportion of

evaluation scores. Therefore, the results of ‘‘good’’ models are discriminated from those of ‘‘bad’’ models

Table 4 Average importance of

variables for 100 evaluations
Variables Average of a hundred evaluations

MAX ENT CTA SRE FDA MARS RF GLM GBM GAM ANN

X012_120mm 0.198 0.159 0.021 0.155 0.175 0.065 0.197 0.043 0.184 0.103

X022_5days 0.213 0.173 0.182 0.235 0.208 0.187 0.133 0.131 0.144 0.586

X060_3day 0.167 0.316 0.163 0.049 0.056 0.266 0.064 0.063 0.064 0.360

X070_dailymax 0.500 0.516 0.231 0.645 0.590 0.434 0.644 0.450 0.631 0.366

ageclass 0.038 0.026 0.036 0.001 0.005 0.023 0.008 0.002 0.029 0.027

altitude 0.345 0.450 0.330 0.411 0.401 0.279 0.401 0.403 0.354 0.417

slope 0.088 0.023 0.064 0.001 0.001 0.011 0.002 0.002 0.004 0.036

soildepth_km 0.055 0.002 0.147 0.001 0.002 0.006 0.005 0.002 0.059 0.005

soildrain_km 0.001 0.002 0.103 0.001 0.003 0.002 0.003 0.000 0.039 0.007

soiltype_km 0.034 0.002 0.139 0.000 0.000 0.003 0.003 0.000 0.013 0.010
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value for each ensemble method was used to make a binary

map. All maps showed similar susceptible areas (violet

color) in the central area of Inje-gun. However, the detailed

locations of susceptible areas were different according to

each ensemble method.

In particular, the CA method showed larger susceptible

areas than the other ensemble methods. The CA method’s

larger estimates resulted from the technique of calculating

the average of the binary values for the 10 SDMs and then

using that average value to identify susceptible areas. Other

ensemble methods calculated the probabilities of the 10

SDMs to determine susceptible areas. The CA method

could provide a good ensemble method for decision makers

who want more stable data than the data produced by the

other methods. In this study, the PMW method was

selected as the optimal ensemble method to analyze areas

susceptible to landslides after considering the results of the

evaluation (i.e., the AUC values).

The optimal ensemble model (PMW) produced a higher

AUC value than any other single model. The extent of

landslide-susceptible areas with the PMW model was

30,290 ha. Meanwhile, the extent of susceptible areas

determined using the SRE model (which had the lowest

AUC among the 10 single models) was 48,992 ha, and that

of the RF single model (which had the highest AUC among

the 10 single models) was 24,359 ha. The single model

SRE resulted in large susceptible areas and the single

model RF predicted small susceptible areas compared to

the optimal ensemble model. Thus, the ensemble model

was helpful for decreasing the differences between the

single models according to the AUC values and extents of

susceptible areas.

3.2 Quantifying the uncertainty of models

The CV map was classified by considering the standard

deviation values (Fig. 5). The northern and southern areas

of Inje-gun exhibited high CV values; conversely, the

central areas of Inje-gun exhibited low CV values. This

pattern was predictable, considering that the ensemble

maps showed similar susceptible areas in the central study

areas.

However, there were also areas that had high CV values

in the central areas at more detailed scales. Therefore,

decision makers can utilize the CV map to view susceptible

areas in more detail. In general, the CV map provided a

more robust basis to judge landslide-susceptible areas of

Inje-gun along with the ensemble map. Meanwhile, the

northern areas of the CV map showed no information

because of the off-limit military area adjacent to North

Korea. Meanwhile, the CV map could not consider

uncertainty resulting from variables. Uncertainties from

variables were limited by using the same input variables for

each SDM.

The third research question involved identifying the

effectiveness of the ensemble model for reducing the

uncertainty from SDMs. This study used two types of

matrices to analyze the relationship between the PMW

ensemble map (optimal ensemble model) and the CV map

(uncertainty map). The first type of matrix was constructed

using the probabilities of landslides (PMW ensemble map)

and the uncertainty (Fig. 6). The probability of a landslide

was classified into five grades (1–5), and the uncertainty

was classified into six grades (10–60). The classification

method for both maps used the standard deviation. The

matrix created a cross table to identify the effectiveness of

the ensemble map in terms of reducing the uncertainty

from the various SDMs. The values of 15 in the matrix

table indicated cells that had a probability of landslide with

a low uncertainty. Meanwhile, a value of 61 in the matrix

table indicated that a cell had a high uncertainty with a low

probability of a landslide.

The map in Fig. 6 shows areas of two key types,

namely, areas with high probabilities of a landslide and low

uncertainty (14, 15) and areas with low probabilities of a

landslide and low uncertainty (21, 22). It was difficult to

identify areas with high probabilities for landslides and

high uncertainty (65, 55). However, we identified small

areas with low probabilities and high uncertainty (51, 61).

This can provide a basis for using the ensemble method to

help evaluate the uncertainty from various SDMs.

The second type of matrix was constructed using land-

slide-susceptible areas (binary map of the PMW ensemble

model) and the CV map (Fig. 7). Figure 7 also clearly

shows the low uncertainty regions of unsusceptible areas

Table 5 Results of the evaluation of the landslide models

Model AUC value (average of 100 run) Rank

MAXENT 0.861 9

CTA 0.925 6

SRE 0.812 10

FDA 0.929 4

MARS 0.930 3

RF 0.979 1

GLM 0.922 7

GBM 0.959 2

GAM 0.926 5

ANN 0.908 8
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(11, 21). It was easier to identify landslide hazard areas

using this matrix than the first matrix map. This map

indicated low uncertainty regions associated with suscep-

tible areas much more clearly than Fig. 6. Thus, this

ensemble map can provide decision makers with reliable

information regarding landslide hazard areas with low

uncertainty.

In general, decision-makers and policy makers need

reliable and detailed information to identify priority areas

and allocate resources to those areas. In this respect, the

map of the relationship between susceptible areas and the

uncertainty could be utilized to determine the most urgent

areas using credible data. Thus, the ensemble model has

strong potential for assessing landslide-susceptible areas.

Table 6 Results of the

evaluation of the ensemble

models

Abbreviation Cutoff Sensitivity Specificity AUC Rank

PM 568.500 93.200 96.149 0.986 2

PCI (lower model) 463.500 93.600 95.764 0.985 3

PCI (upper model) 668.000 93.200 96.021 0.986 2

PME 708.000 92.400 96.277 0.982 4

CA 470.000 95.600 92.426 0.985 3

PMW 546.000 94.400 96.149 0.988 1

Fig. 5 Coefficient of variation (CV) map (uncertainty map). The high CV value mean high uncertainty of modeling results
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In summary, an ensemble map can help minimize uncer-

tainties among SDMs and effectively support decision

makers.

4 Conclusion

As a result of landslide susceptibility modeling, susceptible

areas for each single model were derived as spatial maps.

An interesting finding was that the susceptible areas

Fig. 6 Relationship between the probability of a landslide from the

PMW ensemble model and uncertainty. Areas with high probabilities

of a landslide and low uncertainty (14, 15) and areas with low

probabilities of a landslide and low uncertainty (21, 22) are key

information for decision making of adaptation plan
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exhibited similar spatial patterns, but detailed patterns

differed according to each SDM. This uncertainty from

single SDMs causes problems for decision makers.

In ensemble modeling, PMW was selected as the opti-

mal ensemble model among five ensemble methods.

Meanwhile, the CV was calculated to quantify the uncer-

tainties among the SDMs. The PMW exhibited better

performance than each single model. In particular, the

estimation areas from PMW were moderate compared with

those from RF (which had the highest AUC among the

single models) and SRE (which had the lowest AUC

among the single models). This provides one method of

evaluating the reliability of an ensemble model.

Fig. 7 Relationship between landslide-susceptible areas from the PMW ensemble model and uncertainty. It shows easier information than Fig. 6

by simple classification of landslide susceptibility
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The relationship between the landslide susceptibility

(ensemble map) and uncertainty (CV map) illustrates the

reliability of the ensemble model data. Susceptible areas

with low uncertainty provide useful information for pro-

tection efforts, and unsusceptible areas with low uncer-

tainty can be prioritized for future safe development by

policy makers. In this study, the ensemble model exhibited

better performance than any single model. We hope that

these results will be useful for local adaptation plans.

However, future work is required to improve variables,

considerations of uncertainty, and the reliability of

ensemble models. First, we did not select variables by

conducting a field survey because the study site was too

large to collect field data. Thus, we used variables which

were selected by a national institute by considering the

reliability of data. It is necessary for future studies to

improve our variables by considering the geological and

structural characteristics of soils. In addition, we calculated

extreme rainfall data by using daily rainfall data from July

2006. If we used hourly data, the accuracy of the model

could be improved. Second, landslide time series data are

needed to design better models. This study used only one

year’s worth of data (from 2006). Third, estimations of

future landslide-susceptible areas under different climate

change scenarios are required. This study focused only on

past landslide susceptibilities. However, the extent of sus-

ceptibility for an area can change in the future.

A total of 91% of the area in Inje-gun consists of

forested lands; therefore, the local authorities of Inje-gun

must establish suitable adaptation plans for landslides.

Reliable data regarding landslide susceptibilities are criti-

cal for these planning efforts. Furthermore, there are many

other areas that are vulnerable to landslides in the ROK and

other countries, and the framework used here is applicable

to these areas as well. In this context, this study illustrates

how to estimate more reliable landslide susceptibility data

using various SDMs and an ensemble model. The results

from this approach can help policy decision makers to

better design adaptation plans in order to minimize land-

slide damage.
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Architecture, Global Leadership Program toward Innovative Green

Infrastructure).

Appendix 1: Key features of the 10 SDMs
(Franklin 2009)

Model Full name of

model

Category Occurrence

data

required

Response function Features of the model

GLM Generalized

linear model

Statistically

based

model

Occurrence/

No

occurrence

Parametric linear, polynomial,

piecewise, interaction terms

GLMs are a representative model among SDMs.

GLMs are a generalization of the multiple

regression model that uses the link function to

accommodate response variables that are

distributed normally, namely, the response

distributions

GAM Generalized

additive

model

Statistically

based

model

Occurrence/

No

occurrence

Smoothing function, estimated

using local regression, splines

or other methods

GAMs in SDMs are suggested as a powerful

methodology to detect and describe non-linear

response functions. The results of GAMs can be

used to build a parametric model

MARS Multivariate

adaptive

regression

splines

Statistically

based

model

Occurrence/

No

occurrence

Adaptive piecewise linear

regression combines splines and

binary recursive partitioning

MARS can give a type of a generalization of a

stepwise linear regression. MARS are suited to

analyses with large numbers of variables or a

modification of the regression tree method

GBM Generalized

boosted

regression

model

Machine

learning

based

model

Occurrence/

No

occurrence

Weighted and unweighted model

averaging applied to decision

trees

GBMs are similar to weighting variables that

consider higher probabilities of selection,

instead of weighting equal probabilities for

subsequent variables

CTA Classification

tree analysis

Machine

learning

based

model

Occurrence/

No

occurrence

Divisive, monothetic decision

rules (thresholds) from binary

recursive partitioning

The goal of CTA is to divide data into

homogeneous subgroups. The subgroups consist

of variables that have similar values or are in the

same class in regard to the ranges of values for

the variables
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Model Full name of

model

Category Occurrence

data

required

Response function Features of the model

ANN Artificial neural

network

Machine

learning

based

model

Occurrence/

No

occurrence

Non-linear decision

boundaries in covariate

space

ANN can be described as a two-stage classification or

regression model. A hidden layer of ANN comprises

features that are linear combinations of input

variables. The output variable is a weighted

combination of features in the hidden layer

SRE Rectilinear

envelope

similar to

BIOCLIM

Machine

learning

based

model

Occurrence

only

Fuzzy classification

approach

SRE is a boxcar or parallelepiped classifier that uses

BIOCLIM. SRE assesses the potential distribution of

the dependent variable by using the multi-

dimensional environmental space bounded by the

values for all dependent variables

MDA Mixture

discriminant

analysis

Machine

learning

based

model

Occurrence/

No

occurrence

Linear MDA is a type of linear discriminant analysis that

models the multivariate density of variables by using

a mixture of multivariate normal distributions

RF Random forest Machine

learning

based

model

Occurrence/

No

occurrence

Weighted and unweighted

model averaging applied

to decision trees

Random forests is a type of bootstrap aggregating

method that builds de-correlated trees and averages

the trees. Many trees are constructed with subsets of

input data. Furthermore, each division of the tree

model is also constructed with a random subset of

input variables

MAXENT Maximum

entropy

algorithm

Machine

learning

based

model

Occurrence

only

Non-linear response

functions can be

described

Maximum entropy is based on statistical mechanics

and information theory. MAXENT can analyze the

best approximation of an unknown distribution by

using the maximum entropy method, which

considers the most spread out and closest to uniform

values
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Appendix 2: Maps of variables for landslide
susceptibility model

(Number of days with over 120 mm of rainfall) (5 days of maximum rainfall (mm))

(Number of days with over 150 mm for 3 days of (Daily maximum rainfall (mm)

Age of forest Altitude

) 

X012_120mm X022_5days

X060_3days X070_dailymax

Stochastic Environmental Research and Risk Assessment (2018) 32:2987–3019 3001

123



Slope Soil depth

Soil drainage Soil type
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Appendix 3: Landslide projections of the 10
models for present conditions

1. MAXENT

2. CTA

3. SRE

4. FDA
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5. MARS

6. RF

7. GLM

8. GBM
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9. GAM 10. ANN

Appendix 4: ROC plots for each model

Axis Value Scope

X Value of each

variable

The scope of value varies on variables.

Please see the Table 1

Y Probability of

landslide

occurrence

0–1
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1. MAXENT
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2. CTA
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3. SRE
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4. FDA
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5. MARS
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6. RF
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7. GLM
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8. GBM
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9. GAM
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10. ANN
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Appendix 5: Results of ensemble models
for the present conditions

1. PM

2. PCI lower

3. PCI upper

4. PME
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5. CA

6. PMW
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