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Abstract
Identifying climate internal variability (CIV) generated by non-linear interactions and feedbacks among many components

of the climate system is essential and challenging because of its irreducible and unpredictable characteristics. A range of

studies have addressed this issue; however, these studies focused on the first order moments of few representative climate

variables at relatively larger spatial and temporal scales. To investigate the magnitude and the spatial pattern of CIV

relevant at finer spatial (point) and temporal (hourly) scales, CIV is assessed over a 30-year period in South Korea by

analyzing 100-member ensemble generated using an hourly weather generator and a bootstrapping approach. Statistics

addressing the first and second order moments, occurrences, and extremes are successfully verified at various temporal

scales. The CIV is then estimated by the ‘detrended’ and ‘differenced’ methods for the four metrics proposed at different

scales that signify rainfall volume, maxima, and occurrence. Consequently, the implications of this study are the following:

(1) the estimation of CIV using bootstrapped ensembles often fails to represent the proper uncertainty range, resulting in

high chances of underestimating extreme statistics, such as the maximum rainfall depth; (2) regardless of which of the two

methods is used, no significant difference in the CIV estimation is observed; and (3) a temporal scale-dependency is

observed for the proposed metrics used to identify the magnitude and the seasonal pattern of the CIV—the utility of an

hourly time series and its associated extreme properties deserves significant attention. Ultimately, the spatial mapping and

grouping of CIV will provide valuable information to identify which regions have high variability compared to clima-

tological norms and thus are more vulnerable to extremes, and will serve as a guide for planning adaptation and mitigation

measures against future extreme events.
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1 Introduction

Climate internal variability (CIV), an often used term and

an essential part of the climate system, refers to the natural

or stochastic variations generated by non-linear interac-

tions and feedbacks among the many components of

climate system (IPCC 2013). Recognizing the consequence

of the CIV and quantifying its uncertainty play a vital role

when interpreting climate projections for the future as well

as present because such an uncertainty does not ultimately

diminish as time scales increase but remains unpredictable,

even if the predictability of the climate models are

enhanced or the uncertainty of the external conditions (e.g.,

emission scenarios) is well identified (Addor and Fischer

2015; Deser et al. 2012b; Hawkins and Sutton 2009).

Although there is no perfect consensus on how to

quantify the climate internal variability, the uncertainty of

the CIV has been extensively estimated by constructing

ensemble members and calculating the degree of spread

among their results. Depending on how the ensemble

member is generated, several competing approaches can be

categorized into four different groups. The widespread

approach named ‘dynamic’ involves the use of
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deterministic global or regional climate models in gener-

ating a large number of climate simulations, which are

designed by slightly varying the initial conditions of

atmospheric component of climate system but with the

other conditions remaining entirely identical (Deser et al.

2012a, b). While extensively used at global and multi-

decadal scales, this approach has limitations in capturing

extremes at finer temporal scales (e.g., subdaily) for local

impact studies because the outputs are inherently based on

coarser spatial resolutions and low temporal resolutions

(Chen et al. 2011; Maraun et al. 2010), and in securing as

many ensemble members as possible because of its high

demand for computational resource—the frequently-used

number of ensemble members was in the range from 10 to

50. The second approach estimates the uncertainty of the

CIV from a simple analytical model (Thompson et al.

2015). The analytical model can present a reasonable range

of estimates for the CIV; however, it requires several key

assumptions: the internal variability follows a roughly

Gaussian distribution, the signature of climate change is

estimated from linear trends, and the two statistics used in

the model are stationary in time (Thompson et al. 2015).

The last approaches are named ‘statistical’ (Addor and

Fischer 2015; Prudhomme and Davies 2009) and

‘stochastic’ (Brisson et al. 2015; Fatichi et al. 2013; Ng

et al. 2017). Both of these approaches produce ensembles

from the statistical or stochastic characteristics extracted

from any type of observed data. The differences depend on

whether a realization that has not been observed in the

historic record is fully explored. Because many features of

the predicted climate variable are inherited from the his-

toric data, the statistical approach intrinsically has draw-

backs in that variability can be underestimated (Hingray

and Said 2014). In contrast, the stochastic approach can

reproduce the stochastic nature of climate variables with

varying random terms in the stochastic components of

climate models to the extent that the model captures the

relevant stochastic processes. In this regard, some CIV

studies build a framework of a weather generator to pro-

duce climate realizations using various statistics of the

observed data (Brisson et al. 2015; Fatichi et al. 2016; Kim

et al. 2016b).

The IPCC (2013) describes the climate variability on the

basis of variations in the statistics of the climate on all

temporal and spatial scales—the relevant statistics could be

the mean state, standard deviation, the occurrence of

extremes, etc. (Khalili et al. 2016; Singh and Goyal 2017).

However, a range of studies addressing the climate internal

variability emphasizes not only the first order moments of

few representative climate variables (e.g., surface air

temperature, mean precipitation) (Addor and Fischer 2015;

Deser et al. 2012a, 2014; Thompson et al. 2015; Yao et al.

2016), with the exception of a few studies (e.g., Fischer

et al. 2013) but also on relatively larger spatial and tem-

poral scales (e.g., regional or interannual) with relatively

coarser resolutions (e.g., several hundred kilometers in

degrees or daily) (Deser et al. 2012a, 2014; Fischer et al.

2013; Yao et al. 2016), with the exception of a few studies

(e.g., Fatichi et al. 2016). Investigating the role of climate

internal variability and its hydrogeomorphic implications

that are particularly relevant at the regional to local scale

(Mohammed et al. 2016) is challenging because of the

nonlinear and non-unique characteristics of hydrogeomor-

phic processes (Kim et al. 2016a; Kim and Ivanov 2014)

and increasing uncertainty by propagations (Coulthard

et al. 2012; Kim and Ivanov 2015; Kim et al. 2016c); Thus,

understanding the response of precipitation to internal

forcing has become a topic of great emphasis in the climate

and water resources communities (Kim et al. 2016d).

In this study, internal variability over 30 years periods

in South Korea is assessed by analyzing 100-member

ensembles (i.e., 30-year, 100 ensembles for each gauge

location) generated in two different ways: using an hourly

weather generator and a bootstrapping approach. The

domain is selected because the rainfall characteristics of

the Korean Peninsula belonging to the Far East Asian

Monsoon region are very complex in time and space. Its

internal variability is expected to be large, but this vari-

ability has not been completely investigated to date,

especially via models with high temporal resolutions. To

the best of our knowledge, this is the first study in which

the internal variability is identified over the whole country

by using alternative climate realizations with the feature

being simulated at an hourly temporal scale. First, statistics

addressing the first and second order moments, occur-

rences, and extremes are computed and verified at various

temporal scales. Next, the climate internal variability is

estimated by the ‘detrended’ and ‘differenced’ methods for

the various metrics proposed at different scales represent-

ing rainfall volume, maxima, and occurrence. Finally, the

results provide information regarding whether an area

belongs to a region with higher variability and thus can be

vulnerable to the variability.

2 Methodology of stochastic ensemble
generation and CIV estimation

A brief outline of the methodology adopted for the gen-

eration of ensemble members and the estimation of climate

internal variability is provided in the following section

using a stepwise description; an associated flowchart is

illustrated in Fig. 1.

1. The first step relates to the collection of the hourly data

available from and the completion of quality control
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for gauge stations over South Korea. Estimating the

parameters of a stochastic ensemble generator

described in the next step requires observation data

such as precipitation, cloud cover, pressure, direct and

diffusive radiation, temperature, dew point tempera-

ture, wind speed, and relative humidity at an hourly

scale. The appropriate data is found in the automatic

surface observation network operated by the Korea

Metrological Administration (KMA), i.e., the Auto-

mated Surface Observing System (ASOS) network for

synoptic surface observation. The 40 stations used in

this study were chosen based on the criteria of data

availability: at least 30 years hourly observation is

recorded from the KMA website for 14 weather

variables (https://data.kma.go.kr/data/grnd/selectAsos

List.do?pgmNo=34). Before using the original data,

one must verify the quality of the ASOS hourly data to

prevent potential errors. Although very few in number,

the subhourly or duplicate values are removed. In

addition, missing values are inserted through a linear

interpolation process. The percentage of the missing or

duplicate hourly data from the total time series for all

the stations is less than 0.01%, and most of the missing

values correspond to times when it was not raining

(simply filled with zero values). Thus, it should have

minimal impact, and the data is considered reliable.

The location and information of all the selected sta-

tions are shown in Fig. 2 and Table 1.

2. In this study, a stochastic weather generator, the

Advanced WEather GENerator (AWE-GEN) (Fatichi

et al. 2011), followed by a substantial evolution of the

model presented by Ivanov et al. (2007), is employed

to generate the ensemble members. An overall outline

of the stochastic weather generator can also be found

in Fatichi et al. (2013) and Kim et al. (2016b); only a

brief summary is presented here. The AWE-GEN is

ultimately designed to produce ‘hourly’ time series of

several weather variables for a given stationary climate

that can be used to generate a stochastically varying,

theoretically infinite time series. The latter is therefore

appropriate in making many ensemble members and in

representing the CIV, which satisfies the scope of this

study. In particular, the model has an elevated capacity

to reproduce the statistical properties of precipitation at

multiple temporal scales, ranging from subdaily to

inter-annual. The high-frequency component of pre-

cipitation is simulated using one of the Poisson process

models, i.e., the Neyman–Scott Rectangular Pulse

(NSRP) model, with statistics over different aggrega-

tion periods, and the low-frequency inter-annual vari-

ability is addressed using an autoregressive order-one

model, AR(1), with the modification for skewness

(Fatichi et al. 2011).

The parameters adopted to generate the internal

structure of precipitation in the NSRP model are the

storm time origin, occurring as a Poisson process with

the rate k (h-1); a random number of cells generated

for each storm following a geometrical distribution

with the mean lc (–); the cell displacement from the

storm origin that is exponentially distributed with the

mean b-1 (h); a rectangular pulse associated with each

precipitation cell assumed to be an exponentially

distributed with the mean g-1 (h) and intensity

(mm h-1); and the intensity distributed as a Gamma

distribution with the parameters a and h. The param-

eters used in the AR(1) process are the average annual

precipitation, the standard deviation, the lag-1 auto-

correlation, and the random deviate of the process

(Fatichi et al. 2011). In total, 76 parameters (6 NSRP

parameters for each month plus 4 AR(1) parameters for

annual observations) are estimated during the gener-

ation of precipitation (Fatichi et al. 2011).

The in situ point-scale observations over the 30-year

period (1981–2010) obtained in step (1) are then

applied to the estimation of its parameters. This

estimation follows the procedure of Cowpertwait

et al. (2007); this procedure employs an objective

function comprising the summation of the relative

squares of the following four statistics between the

observed data and the simulated results: the coefficient

of variation, the lag-1 autocorrelation, the skewness,

5. Compute the climate internal variability for the 
4 metrics

4. Reconstruct the hourly time series into those at 
an annual scale for the 4 metrics proposed

3. Generate an hourly time series with 100 
ensembles

2. Estimate the parameters of AWE-GEN for each 
station

1. Collect hourly ASOS data with quality control

Fig. 1 Flow chart of the adopted procedure and methodology
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and the probability that an arbitrary interval is dry

(Fatichi et al. 2011). For each month, the statistics

containing the six parameters of NSRP are computed at

four aggregation time intervals of 1, 6, 24, and 72 h. In

total, 16 values (4 statistics 9 4 intervals) are used in

minimizing the objective function for each month.

3. After estimating the parameters for each station, AWE-

GEN generates a set of hourly weather variables (e.g.,

precipitation, cloud cover, air temperature, shortwave

incoming radiation, vapor pressure, wind speed and

atmospheric pressure); however, we focus only on

precipitation in this study. The time series generated by

the model represents one of any potential stochastic

realizations for a given stationary climate condition

over the period of interest. Considering the implication

of Kim et al. (2016b) that states that the adequate

number of ensemble members required to reflect at

least 90–110% of stochastic variation for several

climate statistics is 100. Therefore, 100 ensemble

members of the 30-year time series are produced in

this study—note that the members are all plausible

outcomes of the same set of parameters.

4. The fourth step of this methodology is to reconstruct

the hourly time series into those at an annual scale for

the 4 metrics computed over both the whole year and

each month. The metrics are the total precipitation

(abbreviated hereafter as ‘totPr’), daily maximum

precipitation (‘maxDa’), hourly maximum precipita-

tion (‘maxHr’), and non-precipitation days (‘nonPr’).

This results in 13 reconstructed time series at an annual

scale for each metric for each ensemble member. The

ensemble for these reconstructed time series is gener-

ated in two ways. First, the ensemble for the weather

generator (WG) is constructed by calculating the 100

hourly time series attained in Step (3). Second, the

ensemble for bootstrapping (BS) is obtained by

randomly resampling 100 times with replacements of

the years of the reconstructed time series computed

from the observed record. The metrics are designed to

address extreme values of rainfall maxima at both

hourly and daily scales, the occurrences of dry periods,

and the total volume of rainfall. Values less than a

threshold of 0.1 mm in the hourly time series are

disregarded and set to zero.

5. One of the two methods of quantifying the climate

internal variability is the most common ‘‘detrended’’

approach, which separates the forced signal and the

internal variability (Frankcombe et al. 2015; Giorgi

and Mearns 2002; Moise and Hudson 2008). When a

long term forced signal representing the climate

response to the external forcing exists and can be

estimated, such a forced signal is subtracted from the

time series, resulting in the fluctuations of the

detrended time series (i.e., residuals) being regarded

as the internal variability. The forced signal could be

approximated with a linear trend (Frankcombe et al.

bFig. 2 Overview of the selected 40 locations in South Korea

Table 1 Detailed information of the 40 stations

No. Station name Elevation Latitude Longitude

1 Boeun 175 36.4875 127.7342

2 Buan 11.96 35.7265 126.7166

3 Busan 69.6 35.1047 129.0319

4 Boryeong 16.9 36.3272 126.5574

5 Buyeo 11.79 36.2694 126.9208

6 Cheonan 81.5 36.7624 127.2927

7 Chuncheon 75.64 37.9165 127.7357

8 Chungju 116.29 36.9676 127.9525

9 Chupungnyeong 243.7 36.2203 127.9944

10 Cheongju 58.7 36.6333 127.4406

11 Daejeon 68.9 36.3691 127.3721

12 Geochang 230.2 35.6833 127.9100

13 Goheung 53.76 34.6318 127.2757

14 Geoje 45.4 34.8881 128.6047

15 Gumi 48.88 36.1306 128.3205

16 Gangneung 26.04 37.7515 128.8910

17 Geumsan 170.34 36.1027 127.4817

18 Hongcheon 140.91 37.6975 127.8804

19 Haenam 13.21 34.5536 126.5690

20 Hapcheon 32 35.5664 128.1661

21 Incheon 71.43 37.4777 126.6249

22 Imsil 247.11 35.6092 127.2856

23 Jecheon 259.8 37.1592 128.1944

24 Jeongeup 44.61 35.5632 126.8661

25 Jangheung 45.02 34.6888 126.9195

26 Jeonju 61.4 35.8408 127.1172

27 Mokpo 37.99 34.8169 126.3812

28 Miryang 11.2 35.4914 128.7442

29 Namwon 132.52 35.4213 127.3965

30 Pohang 2.91 36.0320 129.3800

31 Seoul 85.8 37.5714 126.9658

32 Sokcho 18.1 38.2509 128.5647

33 Seosan 28.91 36.7766 126.4939

34 Suwon 34.1 37.2723 126.9853

35 Uiseong 81.8 36.3561 128.6886

36 Wando 35.447 34.3959 126.7018

37 Wonju 148.6 37.3376 127.9466

38 Youngcheon 93.86 35.9774 128.9514

39 Yeongdeok 40.61 36.5333 129.4094

40 Yeongju 210.61 36.8718 128.5169
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2015; Moise and Hudson 2008; Zhang and Wang

2013) or a more complicated form (e.g., the fourth

order polynomial model) (Addor and Fischer 2015;

Hawkins and Sutton 2009). The climate internal

variability is finally estimated by computing either

the standard deviation (e.g., Frankcombe et al. 2015)

or the range (e.g., Moise and Hudson 2008) of the

residual time series. In this study, we use the standard

deviation of the residuals as an estimation of the CIV.

Another method named the ‘‘differenced’’ approach

is built with a large ensemble of climate simulations

(Frankcombe et al. 2015). Based on the assumption

that the ensemble members are generated indepen-

dently for the internal components, averaging over the

ensemble members signifies that the component of

internal variability is canceled out; as a result, the

average over the ensemble becomes the forcing

component (i.e., forced signal) representing the model

response to the external forcing. Similar to the above

method, the internal variability is then estimated with

the standard deviation or the range of the residuals

attained by subtracting the forcing component from

time series of each ensemble. To investigate the

internal (stochastic) variability over South Korea, the

above steps are repeated over the selected 40 locations.

3 Results and analysis

3.1 Evaluation of AWE-GEN results

Before the ensemble generated is applied to estimate the

CIV, the verification of the results by the AWE-GEN is

performed on the statistics computed at the hourly and

daily scales. The statistics entail extreme properties, such

as maximum rainfall depth and consecutive dry or wet

days, as well as the first and second moment properties,

such as the mean and standard deviation, as demonstrated

in Figs. 3 and 4, respectively. First, the statistics of the

mean, standard deviation, and frequency of non-precipita-

tion are evaluated for each month with respect to those

from the ASOS data. Among the 100 ensemble members,

their median is compared with the observed statistics in

Fig. 3, which reveals a good model performance for all the

locations. Note that the value of R2 ranges from 0.55 to

0.99. In contrast with the excellent performance of mean

and standard deviation, the simulated results for the fre-

quency of non-precipitation show a slight overestimation

that it is less likely to rain at an hourly scale. Because other

statistics corresponding to the means and extremes are

constrained within a comparatively satisfactory range, the

difference can be due to the treatment of smaller

precipitation, i.e., if the amount of rain is very small (less

than a threshold of 0.1 mm in this study), post-processing

does not force rain, and the same could occur for the

measurements. Next, the metrics for extreme precipitation

are computed and compared in Fig. 4. The metrics

involved are the maximum amount of precipitation during

an hour and a day as well as the longest consecutive days

with and without rain. For all 40 locations, the results by

simulation and observation are comparable overall, and the

results of underestimating the number of days that rain

continuously are observed. The latter can also be related to

the above issue of treatment, indicating that studies

addressing a heavy rainfall and an associated flood phe-

nomenon can use these results with high confidence,

whereas those handling a rainfall occurrence should use

these results carefully and further investigate the use of

these results.

3.2 Evaluation of a stochastic ensemble
generation

One reason for building an ensemble is that a realization is

only one of many possibilities that could be occurring now

or in the future. Therefore, generating the ensemble

appropriately is one of the best ways to predict uncertainty

associated with the randomness. As described in the

Introduction, two of methods are used to generate ensemble

members experiencing the same climate external condi-

tions. Here, we attempt to evaluate the ensemble results

generated by a stochastic weather generator (WG) with

those by a well-known statistical approach, namely, the

bootstrapping (BS) technique, which resamples the data

points of a time series with repetitions. The latter method is

adopted in a number of studies to investigate climate

internal variability (Addor and Fischer 2015; Prudhomme

and Davies 2009).

The first question is: given an external forcing condition,

how much randomness can be reproduced by the ensemble

generated? Therefore, we compared the hourly and daily

maximum precipitation values corresponding to 95% of the

100 ensemble members with those of the 100- or 500-year

return period. The latter values are borrowed from a ‘Korea

Precipitation Frequency Data Server’ operated by the

Korean government (http://www.k-idf.re.kr/) and estimated

using appropriate data and methods. From the definition of

the bootstrapping method, the values of annual maximum

precipitation for all ensemble members should be theoret-

ically the same as or less than those for the 30-year

observation. As expected, Fig. 5 shows that most of the

bootstrapped (BS) ensemble results predicted from the

observed period are smaller than those of the 100-year

return period. This tendency is more pronounced at an

hourly scale. Alternatively, the ensemble results generated
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by the weather generator (WG) can be reproduced with the

values of similar to and more than 100- or 500-year return

period, even though they are generated from the same

observations corresponding to 30 years.

Other than the maximum rainfall corresponding to the

95th percentile of 100 ensembles, one must investigate the

distribution of the CIVs of the ensemble members. Here,

we simply compute the difference between the maximum

and minimum (i.e., the range) of CIV values for each

month and for the whole year over the 40 locations. Fig-

ure 6 shows a more detailed inspection of the data,

involving a comparison of the range of CIVs estimated

over the 100 ensemble generated by both the WG and BS

methods. The ranges of the computed CIV values vary for

Fig. 3 Comparison of the

median of 100 ensembles

simulated by the weather

generator with the gauge

observation at (left) hourly and

(right) daily scales. The circles

of all the subplots consist of 480

data points, which correspond to

12 months and 40 locations
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the four metrics: some of the ranges in the WG ensemble

are large, whereas others are not. Such a mixed result can

be further explicated when using the ratio of WG to BS

range results of CIV (see the bottom plots of Fig. 6). If the

ratio is greater than 1 (i.e., the right part of the kernel

distribution), then the CIV range of WG is greater than that

of BS—note that this portion fluctuates from 55.4% at the

minimum for the ‘nonPr’ metric to 82.7% at the maximum

for the ‘maxDa’ metric. How well does the range of CIV

values by WG indicate wider variability? The first moment

of the probability distribution of the ratio can answer this

question. Little difference (* 8%) is found between the

CIV ranges estimated by two methods for the ‘nonPr’

metric, whereas in the metrics of ‘maxDa’ and ‘maxHr’, a

difference of up to 60% is observed (see the bottom plots of

Fig. 6). The latter indicates that the range of CIV values by

WG is 60% wider than that of BS.

3.3 Estimation of climate internal variability

The main objective of the study is to estimate the climate

internal variability over all of South Korea and visualize it

on a spatial map with separated zones, thereby enabling

one to effortlessly judge which region is more fluctuating

than the climatological norm or in which region the prob-

ability of occurrence of the extreme event is high. As

described in Sect. 2, the standard deviation of the residual

is employed for estimating the climate internal variability

in both ‘detrended’ and ‘differenced’ approaches.

Depending on how the residual of time series is calculated

and how the ensemble members are involved, the CIV

results obtained using the two methods can vary. One

might be interested in the degree to which the results of the

two approaches and the results of the two ensemble gen-

eration methods are different, given the 4 metrics used in

this study. Figure 7 illustrates a comparison of the CIV

estimates computed by the two methods for both ensemble

members generated by the weather generator (WG) and the

bootstrapping (BS) for the metric of ‘totPr’. Over the 40

Fig. 4 Comparison of the

median of 100 ensembles

simulated by the weather

generator with the gauge

observation for the extreme

precipitation metrics: a hourly

maximum rainfall depth, b daily

maximum rainfall depth, c the

longest consecutive dry days,

and d the longest consecutive

wet days. The circles of all the

subplots consist of 40 data

points, which correspond to 40

locations
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locations, the comparison is almost perfectly matched, with

R2 ranging from 0.97 to 0.99. For other metrics of

‘maxDa’, ‘maxHr’, and ‘nonPr’ (see Supplementary

Material), the same conclusion is made: the R2 values are

close to 1, especially for ‘maxDa’ and ‘maxHr’ whereas

they range from 0.78 to 0.97 for ‘nonPr’. In other words,

the method used to calculate the CIV has no significance to

the results.

Examining the CIV values, the internal variability of

annual total precipitation (‘totPr’) is 313.20 mm on aver-

age and ranges from 239.73 to 560.35 mm over the country

when the observed ASOS data is used, and its internal

variability can be enlarged into 368.03 mm, ranging from

292.29 to 597.50 mm if the time series corresponding to

the 95th percentile of ensemble members is used. Refer to

Table 2 for the exact minimum, maximum, and mean

values of the 40 locations that correspond to the 16 sub-

plots of Fig. 8. From Table 2, the spatial mean of the CIVs

predicted from the observations in ‘nonPr’ are comparable

to that of CIVs corresponding to the 95th percentile value

among 100 ensembles; however, the difference between

them in ‘totPr’, ‘maxDa’, and ‘maxHr’ is approximately

20, 40, and 30%, respectively. Obviously, this difference

varies (is even larger) according to location. Furthermore,

the month in which the internal variability is maximized is

dissimilar, depending on the metrics at different scales. For

example, the monthly ‘OBS’ values of ‘totPr’ and ‘maxDa’

are found to be largest in August, whereas the largest

values of ‘maxHr’ are in September (see Supplementary

Material).

If we analyze the spatial pattern of the calculated CIV

values with the locations and geographical features of S.

Korea (e.g., latitude and elevation), no particular pattern is

identified (not shown). Therefore, an unsupervised, clus-

tering technique is introduced to distribute the domain into

distinctive zones. In particular, the K-means cluster algo-

rithm is applied to the CIV values of 40 locations for each

month and for the whole year that will be classified into the

K mutually exclusive clusters. According to the Elbow

method that can determine the number of clusters, the

Fig. 5 Comparison of a, c the

hourly and b, d the daily

maximum precipitations

corresponding to a, b the

100-year return period (RP) and

c, d the 500-year return period

with those corresponding to the

95th percentile of 100 ensemble

obtained from using the weather

generator (WG) and

bootstrapping (BS). The circles

of the subplots refer to the

results of 40 locations
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optimum ‘‘K’’ (elbow) ranges from 3 to 6 depending on the

208 cases (i.e., 16 subplots of 13 figures—Fig. 8 and

Fig. S4 to S15), but 4 or 5 are the most frequent numbers

for the K. Thus, we choose the number of clusters as 4

(K = 4) in this study. Then, the following results are

obtained. (1) The internal variability is relatively higher for

Fig. 6 Comparison for the range (difference between maximum and

minimum) of CIVs computed using an ensemble of bootstrapping

(BS) and weather generator (WG) for the four metrics. The subplots

a–d include the data points of 520 = 13 (12 months ? year) times 40

(locations). The bottom subplots represent the non-parametric kernel

distributions for the ratio of the CIV range values. The ‘detrended’

approach is used

Fig. 7 Comparison of the CIV computed by the ‘detrended’ and

‘differenced’ approaches. The CIV is estimated for the metric of

‘totPr’. The ensembles are generated from the weather generator

(WG) and the bootstrapping (BS). The circles of the subplots refer to

the results of 40 locations. The ‘OBS’ refers to observations
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the stations located in the southern and eastern coastal

regions of the country in the annual metrics of ‘totPr’,

‘maxDa’, and ‘maxHr’, whereas the variability is higher in

the central inland province of S. Korea for ‘nonPr’ (see

Fig. 8). (2) For the rainy summer season from July to

September, the spatial zone representing higher CIV is

changed into the southern and western coast region for

‘maxHr’. In addition, the zoning shows a mixed pattern for

each month of the rainy season for ‘maxDa’ and ‘totPr’.

For example, in August, when the largest internal vari-

ability is observed, the spatial variation of CIV among the

locations in ‘maxDa’ is relatively homogeneous. (3) Last,

examining the CIV of ‘nonPr’ over the recent severe spring

drought period (e.g., May and June), one can see that the

CIV is relatively high in the northern and western part of

the country (specifically, adjacent to the southwestern

island and ‘Chungnam’, ‘Gyeonggi’, and ‘Gangwon’

province).

4 Discussions and conclusions

This work attempted to assess the climate internal vari-

ability (CIV) over South Korea using an hourly weather

generator, i.e., the Advanced WEather GENerator (AWE-

GEN)—100 ensembles of 30 years time series are gener-

ated for 40 gauge stations. Before the ensemble members

are applied to estimate the CIV, the results of the AWE-

GEN are evaluated with those of the Automated Surface

Observing System (ASOS) to check whether the model

reproduces the equivalent precipitation statistics for the

first and second moment properties, the occurrences, and

the extreme values over the stations. The statistics of the

mean, standard deviation and maximum rainfall computed

at hourly and daily scales are in good agreement, whereas

those related to the occurrence of rainfall are not as satis-

factory as the former statistics. Because of the concurrence

in the comparisons of the former statistics, the reason for

this observation could be how one treats the occurrence of

smaller precipitation, i.e., if the rain is very small (less than

a threshold of 0.1 mm in this study), post-processing does

not force rain, and the same issue could occur during

measurement. Another reason for this observation could be

the inability of the optimization method used to match all

the 16 values required to calculate the NSRP parameters at

the same time. Because perfect agreement is nearly

impossible, a certain error in a statistical property is

unavoidable.

The climatic characteristics involved with stochastic

randomness necessitates the use of ensembles to quantify

the degrees of the random fluctuation. We generate 100

ensembles through two popular approaches: a stochastic

weather generator (WG) and a statistical bootstrapping

(BS) technique. Both approaches are suited for generating

as many samples as possible; however, the latter approach,

which resamples an original data with repetitions, theo-

retically has a limitation that any value estimated from the

ensemble is always the same as or less than that from the

observed data (Costa et al. 2015). In this regard, Figs. 5

and 6 are used to examine how much randomness is

reproduced by the ensemble generated by the two

approaches. The ensemble of the maximum precipitation

depths of the 30-year time series for the two durations of an

hour and a day are compared with precipitation estimates

of frequency corresponding to 100- and 500-year return

periods (Fig. 5). Most of the bootstrapped (BS) results

corresponding to the 95% of the 100 ensemble members

are smaller than those of the 100-year return period—this

tendency is more pronounced at an hourly scale. In con-

trast, the ensemble results generated by the weather gen-

erator (WG) are mostly comparable to or can be

occasionally larger than the precipitation frequency esti-

mates of the 500-year return period, even though they are

generated from the same observations corresponding to

30 years. Likewise, a consistent conclusion can be drawn

by examining the differences between the maximum and

minimum values of the CIVs over the ensemble members

and by computing the ratio of the CIV ranges of the WG to

BS methods. The value of the ratio greater than 1 indicates

that the CIV range of the WG is larger than that of the BS:

Table 2 The minimum,

maximum (in the first line of

each cell), and mean (in the

second line) CIV values over

the 40 locations

OBS Ensemble 5% Ensemble 50% Ensemble 95%

totPr (mm) 239.73–560.35 182.37–378.37 236.67–490.85 292.29–597.50

313.20 236.71 299.50 368.03

maxDa (mm) 38.35–148.05 31.21–71.02 39.86–99.94 52.04–165.54

65.73 48.07 63.11 91.92

maxHr (mm) 9.92–23.11 6.99–17.34 9.40–24.53 12.59–34.64

15.14 11.15 14.37 19.69

nonPr (day) 9.11–12.58 6.07–7.82 7.47–10.01 9.12–12.58

11.11 7.03 8.84 10.83

Each cell corresponds to the values of 16 subplots in Fig. 8
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for most (e.g., from 55.4% at the minimum for the ‘nonPr’

metric to 82.7% in the ‘maxDa’ metric) of the months and

the locations, the ensemble by WG has higher chances of

representing more diverse stochastic realizations and thus

broader CIV ranges than the BS results. The question of

how much the range of CIV values by WG signifies wider

variability is answered from the first moment of the prob-

ability distribution of the ratio: there is little difference

(* 8%) between the CIV ranges for the ‘nonPr’ metric,

whereas in the metrics of ‘maxDa’ and ‘maxHr’, a signif-

icant difference of up to 60% occurs (see the bottom plots

of Fig. 6). Here, an important implication is that the use of

the bootstrapped technique in estimating CIV can be ben-

eficial in partial situations as an alternative estimator,

unless other alternatives exist. However, note that the BS

estimation of CIV fails to sufficiently represent the proper

uncertain range, i.e., the CIV can be underestimated for

extreme statistics, such as the maximum rainfall depth.

In addition to the issue that the degree of variability in

BS is not fully investigated, the performance of boot-

strapped samples can be far from satisfactory for time

series data with serial correlations. Thus, it is worth

checking whether the time series used in this study are

serially correlated by computing the lag-1 autocorrelation.

Approximately 46.6% of the 2080 data points

(40 9 13 9 4) belong to the range within ± 0.1 of the lag-

1 autocorrelation, whereas approximately 4.8% are greater

than ± 0.3; and the independence tendency is more pro-

nounced in the metrics of ‘maxDa’ and ‘maxHr’, whereas

the tendency of correlation is more pronounced in the

‘nonPr’ metric (Fig. 9). Although most data show values of

the lag-1 autocorrelation that are not large, this does not

guarantee that the effect of serial correlation is inconse-

quential. Although bootstrapping is a very popular tech-

nique, one should keep in mind that this correlation effect

exists when sampling the time series repeatedly. In con-

trast, WG is a technique for generating a time series by

combining random numbers for the five probability distri-

butions. Therefore, it can be assumed that the generated

ensembles are independent from each other and a more

stable predictive metric value can be provided.

The spatial mean of CIVs predicted from the 30-year

observations in ‘nonPr’ is almost comparable to that of

CIVs corresponding to the 95th percentile value among

100 ensembles; however, the differences between them in

‘totPr’, ‘maxDa’, and ‘maxHr’ extend up to approximately

20, 40, and 30%, respectively, whereas they approach zero

when compared to the 50th percentile value (Table 2).

Obviously, this difference varies (is even larger) according

to the location. Additionally, seasonal variations of the

spatial pattern are found to depend on the metrics and

temporal scales: the month in which the internal variability

is maximized is dissimilar. For example, the monthly

‘OBS’ values of ‘totPr’ and ‘maxDa’ are greatest in

August, whereas those of ‘maxHr’ are highest in Septem-

ber (see Supplementary Material). Consequently, such a

scale-dependent phenomenon requires careful attention

when identifying the magnitude and the seasonal pattern of

the internal variability before the use of an hourly time

series and the associated extreme properties.

After applying an unsupervised K-means cluster algo-

rithm, the locations over South Korea are sorted into four

distinct zones according to the magnitude of their CIVs.

Spatial patterns are identified regarding which regions

belong to a greater variability zone and how they shift

monthly: (1) the internal variability is relatively prominent

for the stations located in the southern and eastern coastal

regions of the country in the annual metrics of ‘totPr’,

‘maxDa’, and ‘maxHr’, and the variability is high is in the

central inland province of S. Korea for ‘nonPr’ (see Fig. 8).

(2) For the rainy season from July to September, the spatial

zones representing higher CIV become changed into

southern and western coast regions for ‘maxHr’. Con-

versely, the zoning shows a mixed pattern for each month

of the rainy season in ‘maxDa’ and ‘totPr’. For example, in

August, when the largest internal variability is observed,

the spatial variation of CIV among the locations in

‘maxDa’ is relatively homogeneous. (3) Last, examining

the CIV of ‘nonPr’ over the recent severe spring drought

period (e.g., May and June), the CIV is found to be rela-

tively high in the northern and western part of the country.

Regarding the projection of signals for the future asso-

ciated with external forcings, there is room for further

improvement and development. It has however been

reported that among many uncertainty sources in climate

change studies, the uncertainty bound of climate internal

variability is only irreducible, making future climate pro-

jections more difficult and thus making their predictability

poorer (Addor and Fischer 2015; Deser et al. 2012b;

Hawkins and Sutton 2009). Therefore, one of the pragmatic

solutions is to estimate the noise related to internal vari-

ability efficiently using a stochastic ensemble, following

our proposed approach, and the signal is assuredly pro-

jected from the results using either global or regional cli-

mate models. Because of a recent implication that the

uncertainty bounds of CIV for the present and for the future

can be comparable (Fatichi et al. 2016; Kim et al. 2016b),

bFig. 8 Spatial distribution of the CIV values over South Korea for the

4 metrics computed over the whole year. Four clusters [from blue (as

the smallest cluster), light blue, light red to red (as the largest)] are

identified after applying the K-means algorithm. The number within

each circle represents the station number summarized in Table 1, and

the number near white circles is the legend to show the relative

magnitude of the metrics. The ensemble is generated from the

weather generator, and the ‘detrended’ method is used
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the investigation of CIV for the present is commendable

because it can be employed as a proxy estimator of the

future. In summary, our findings regarding the CIV will be

valuable for identifying which regions have high variability

compared to climatological norms and thus are more vul-

nerable to extreme conditions influenced by internal

structures as well as external factors. Such information will

be ultimately helpful for planning future adaptation and

mitigation measures against extreme events.
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