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Abstract
Intensity–duration–frequency (IDF) curves of extreme rainfall are used extensively in infrastructure design and water

resources management. In this study, a novel regional framework based on quantile regression (QR) is used to estimate

rainfall IDF curves at ungauged locations. Unlike standard regional approaches, such as index-storm and at-site ordinary

least-squares regression, which are dependent on parametric distributional assumptions, the non-parametric QR approach

directly estimates rainfall quantiles as a function of physiographic characteristics. Linear and nonlinear methods are

evaluated for both the regional delineation and IDF curve estimation steps. Specifically, delineation by canonical corre-

lation analysis (CCA) and nonlinear CCA (NLCCA) is combined, in turn, with linear QR and nonlinear QR estimation in a

regional modelling framework. An exhaustive comparative study is conducted between standard regional methods and the

proposed QR framework at sites across Canada. Overall, the fully nonlinear QR framework, which uses NLCCA for

delineation and nonlinear QR for estimation of IDF curves at ungauged sites, leads to the best results.

Keywords IDF curves � Regional frequency analysis � Quantile regression � Nonlinear � Performance � Evaluation �
Homogeneous regions

1 Introduction

Heavy rainfall events are responsible for damaging floods

across the world. Hence, an appropriate characterization of

rainfall extremes is important in the fields of water man-

agement, civil engineering, building design, and public

safety, among many others. Producing reliable estimates of

the frequency and magnitude of extreme rainfall events has

long been a pressing and widely studied problem in science

and engineering (e.g., El Adlouni et al. 2007; Chu et al.

2009; Matonse and Frei 2013; Langousis et al. 2016).

In this respect, Intensity–Duration–Frequency (IDF)

curves, which summarize the magnitude of extreme rainfall

events for specified return periods (e.g., 2- to 100-year) and

storm durations (e.g., 5-min to 24-h), are widely used in

hydrological infrastructure design, as well as other

engineering applications (e.g., Willems 2000; Langousis

and Veneziano 2007; Cheng and AghaKouchak 2013).

When sufficiently long historical data series exist, curves

can generally be estimated with reasonable accuracy based

on standard extreme value analysis methods. In Canada, for

example, IDF curves are estimated by fitting the Gumbel

distribution to annual maximum rainfall series (Hogg et al.

1989).

In many parts of the world, however, dense networks of

short-duration rainfall observing sites with long records do

not exist. This raises the following question: how then does

one obtain IDF curves at partially gauged or ungauged

sites? In this case, estimates are typically made using some

form of regional frequency analysis (RFA). Initially

developed for hydrological flood frequency analysis pur-

poses (Darlymple 1960), RFA pools information on

extremes from gauged sites in a region and then transfers

that information to ungauged sites (e.g., Stedinger 1983;

Cunnane 1988; Hosking and Wallis 2005; Wallis et al.

2007; Renard and Lall 2014). A fundamental assumption of

RFA is that the region of interest is sufficiently homoge-

nous, i.e., gauged sites should be selected so that the

similarity with the ungauged target site is maximized.
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Hence, the so-called the delineation of homogeneous

regions (DHR) of the study area forms the first step in

RFA.

A large body of RFA literature has dealt with delin-

eation approaches for identifying geographically contigu-

ous regions, geographically non-contiguous regions, or

hydro-climatological neighborhoods regions (e.g., Nathan

and McMahon 1990; Chokmani and Ouarda 2004; Wazneh

et al. 2015; Rodriguez et al. 2016). Among the various

delineation methods, neighborhood approaches, mainly the

region of influence (ROI) and canonical correlation anal-

ysis (CCA) methods, are the most prominent. A review of

each method is provided in Burn (1990) and Cavadias

(1990), respectively. Within the CCA framework, a recent

work by Ouali et al. (2016a) on nonlinear CCA (NLCCA)

has demonstrated the added value of considering nonlinear

relationships when identifying homogeneous regions.

Once a homogenous region has been identified, infor-

mation on rainfall extremes is then transferred to the

ungauged site. Two main quantile estimation methodolo-

gies are in common use, namely the parametric index flood

approach (Darlymple 1960), which is known as the ‘index-

storm’ approach when dealing with rainfall extremes (e.g.,

Schaefer 1990; Brath et al. 2003; Di Baldassarre et al.

2006; Cannon 2015; Pizarro et al. 2015), and the at-site

regression approach (e.g., Pandey and Nguyen 1999). To

avoid any potential confusion, it is worth noting that the at-

site regression terminology used in the rest of this paper

refers to the regional regression model using at-site quan-

tiles estimates as the response variable.

The index-storm approach fits a common parametric

probability distribution to scaled annual rainfall maxima

for a given storm duration in the region; the scaling factor,

the so-called ‘‘index-storm’’, varies in space and is often

taken to be the at-site sample mean. Given the parameters

of the regional distribution and an estimate of the index-

storm at an ungauged location (e.g., by a regression

equation with physiographic and climate variables as pre-

dictors), one can then estimate IDF curves at the ungauged

location. A common issue with the index-storm approach is

the assumption of a constant coefficient of variation within

a specified homogeneous region, which has been ques-

tioned in a number of studies in different regions of the

world (Schaefer 1990; Asquith 1998; Alila 1999).

This limitation has, in part, motivated the development

of the at-site regression approach to RFA. An ordinary

least-square (OLS) regression model, with physiographic

and climate variables as predictors, is used to estimate at-

site quantiles within the delineated region. This approach

has demonstrated good performance in previous RFA

studies dealing with flood events (e.g., Pandey and Nguyen

1999; Shu and Burn 2004; Ouarda et al. 2006; Haddad and

Rahman 2012; Ouali et al. 2017). One major issue with the

at-site regression approach is that it only provides an

estimate of the conditional mean of the response variable,

rather than the quantiles that make up the IDF curves.

Hence, fitting the OLS regression model naturally requires

that the at-site quantiles be estimated first; these at-site

values are then used as the response variable in the

regression model. Because short-duration precipitation

series at many sites are of insufficient length to accurately

estimate the at-site quantiles, the use of OLS regression

may not adequately represent the true regional predictor-

response relationship of interest. Overall, at-site regression

in RFA makes inefficient use of the available data.

To address this deficiency, Ouali et al. (2016b) proposed

the quantile regression (QR) model for RFA of extreme

hydrological events and estimation of extremes at

ungauged sites. Unlike OLS regression, which involves at-

site estimation of quantiles as a pre-processing step, QR

directly links the physiographic and climate predictors to

the annual maxima at all sites within the delineated region,

i.e., it estimates the conditional quantiles directly, thus

avoiding the at-site frequency analysis step and its inherent

uncertainties. The focus of Ouali et al. (2016b) was on the

efficiency of the QR approach relative to OLS regression.

They did not address the delineation step of RFA. More-

over, while the nonlinear aspect of hydro-metrological

processes has long been recognized, they only considered a

linear version of the QR model. Advantages of nonlinear

QR models for modelling precipitation data have been

demonstrated by Cannon (2011), albeit in a climate

downscaling context.

In the current study, the focus lies on: (1) the use of

regional QR methods, which can make more efficient use

of available information than classical approaches, for

estimating rainfall IDF curves; (2) an exploration of

methods for delineating homogeneous regions for each site

of interest; and (3) the investigation of the potential added

value of nonlinear methods for both delineation and esti-

mation steps. The ultimate goal is the development of a QR

framework for RFA that provides more accurate estimates

of design storms at ungauged sites. Drawing on work by

Cannon (2011) and Ouali et al. (2016a, b), linear and

nonlinear methods are evaluated for both the regional

delineation and IDF curve estimation models. Specifically,

delineation by canonical correlation analysis (CCA) and

nonlinear CCA is combined, in turn, with IDF curve esti-

mates by QR and nonlinear QR in a regional modelling

framework. An exhaustive comparative study is conducted

between standard regional methods and the proposed QR

framework at sites across Canada.

The outline of this paper is as follows. Section 2 briefly

describes the observational data. Section 3 gives
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background on the statistical methods. Section 4 details the

implementation of the proposed approaches. Section 5

summarizes results of this study and includes a discussion

of main findings. Finally, Sect. 6 draws a few concluding

remarks and avenues for future research.

2 Data

Rainfall data used in the current study consist of annual

rainfall maxima series obtained from Environment and

Climate Change Canada for 564 tipping bucket rain gauge

(TBRG) stations across Canada. The available extreme

rainfall observations are recorded over the period between

1905 and 2013 for 5, 10, 15, 30-min and 1, 2, 6, 12, 24-h

durations. This spans time scales from short duration

convective events (e.g., 5-min to 2-h) to longer duration

cyclonic weather systems (e.g., 6- to 24-h). Table 1 sum-

marizes characteristics of the rainfall data for each dura-

tion. Figure 1 shows the geographical locations of the

recording stations, as well as the associated record lengths

for the 24-h duration. There are 14,740 station-years for the

24-h duration, which has the longest average record length.

Hence, most of results presented here will mainly deal with

the 24-h storm-duration. Figure 2 shows frequency distri-

butions of record length for each of the storm durations.

As a practical matter, it is worth pointing out that quality

control and basic checks are applied prior to publication of

the TBRG data set. This may reduce inhomogeneity in the

data series. More details regarding the TBRG network,

instrumentation, and quality control procedures can be

found in Shephard et al. (2014). In order to be deemed

reliable, the data underwent further checking of statistical

assumptions, mainly independence and stationarity of the

series. To validate the serial independence assumption, the

annual maxima data are tested for serial correlation using

the Ljung-Box-Q test (Ljung and Box 1978) under the null

hypothesis of zero correlation. For the 24-h duration, the

null hypothesis was rejected at just 9% of sites at a 5%

significance level (5% of sites at a 1% significance level).

Similar rejection rates were found for the remaining storm

durations. To check for the stationarity assumption at each

site, the non-parametric Mann–Kendall test for monotonic

trend was conducted at a 5% significant level for all storm

durations. Except for three cases (Charlottetown A, ID

8300300 for long durations; BEAUSOLEIL, ID 6110617

and CYPRUS LAKE CS, ID 6121940 for short durations),

no significant trend was detected.

Apart from the rainfall data set, a second set of phys-

iographic variables is also required for DHR and for use as

predictors in the regional regression equations. A simple

set of variables is used here, namely longitude (LON),

latitude (LAT), elevation above sea level (ELv), surface

roughness (RGH), slope (SLP), and aspect (ASP). A

summary of basic statistics of this data set is tabulated in

Table 2.

3 Statistical methods

The following section provides a brief description of the

statistical methods that make up the RFA approaches under

consideration, as well as information on the statistical

criteria used to evaluate model performance. Each RFA

approach consists of a method for DHR in combination

with a method for quantile estimation. Details on the

implementation of each RFA approach will be provided in

Sect. 4.

3.1 Delineation of homogeneous regions

Delineation of homogeneous regions (DHR) identifies sites

with similar hydro-meteorological characteristics based on

some measure of distance, usually measured in hydro-

meteorological, geographic/physiographic, or some com-

bined spaces. DHR is often the most critical step of RFA.

Overall accuracy depends strongly on how homogeneous

regions have been identified. For this reason, and given the

large geographical extent of the study area, close attention

is paid to DHR in this study.

Table 1 Summary statistics for

all storm durations
Duration Min (mm/h) Max (mm/h) Mean (mm/h) Station-years Mean record length (years)

5 min 3.60 387.60 76.52 13,321 25.76

10 min 2.40 268.20 55.43 13,336 25.80

15 min 2.00 265.20 45.09 13,369 25.86

30 min 1.20 180.40 29.59 13,380 25.53

1 h 1.00 112.00 18.12 14,717 26.09

2 h 0.60 65.85 11.44 14,708 26.07

6 h 0.33 25.16 5.58 14,432 25.58

12 h 0.16 18.63 3.48 14,387 25.50

24 h 0.08 14.26 2.10 14,740 26.13
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Fig. 1 Location of rainfall

observing stations across

Canada with a minimum of

10 years record lengths for 24-h

duration

Fig. 2 Frequency distributions of rainfall stations for several record lengths for all storm durations
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In the following, a short overview of three DHR meth-

ods used in this work is provided. This includes Canonical

Correlation Analysis (CCA), nonlinear CCA (NLCCA),

and region of influence (ROI) methods.

3.1.1 Canonical correlation analysis

Canonical Correlation Analysis (CCA) is a multivariate

statistical technique that is commonly used to identify co-

varying modes of large-scale climate variability, often for

use in seasonal climate prediction tasks (e.g., Barnston and

Ropelewski 1992; Shabbar and Barnston 1996; Giannini

et al. 2000; Werner et al. 2013). In the hydrological RFA

context, CCA is instead used to define the multivariate

space for identifying hydrological neighborhoods. Indeed,

CCA is considered as one of the most powerful DHR

methods (Ouarda et al. 2001). Despite its high performance

in hydrological applications, to best of the authors’

knowledge, CCA has not been adopted in RFA of precip-

itation extremes.

In order to represent the relationship between two sets of

variables, CCA creates new canonical variables resulting

from linear combinations of the original sets of variables

(e.g., physiographic and hydrological/climatological vari-

ables). Hence, a new canonical space is built under con-

straints of unit variance and maximum correlation between

pairs of canonical variables. Once subsets of canonical

variables have been identified, an examination of similar-

ities between grouped sites is carried out to verify the

significance of the canonical correlation coefficients. The

location of the target site in the hydrological canonical

space is identified and neighbouring gauged sites are found

using the Mahalanobis distance (or other distance metric).

The homogeneous region is formed by selecting the sites

closest to the target site in the canonical space. For more

detailed descriptions of CCA for DHR, the reader is

referred to Cavadias (1990) and Ouarda et al. (2001).

3.1.2 Nonlinear canonical correlation analysis

Driven by the need to account for nonlinear relationships

between two sets of variables, a nonlinear version of linear

CCA based on artificial neural networks (ANN), NLCCA,

was developed by Hsieh (2000) and extended by Cannon

and Hsieh (2008). Subsequently, NLCCA has been rec-

ommended for use in DHR for flood frequency analysis by

Ouali et al. (2016a) and Ouali et al. (2017).

Similar to CCA, NLCCA produces new canonical

variables as nonlinear (rather than linear) combinations of

the two original sets of variables (e.g., physiographic and

hydrological/climatological variables). Again, the new

canonical space is built under constraints of unit variance

and maximum correlation between pairs of nonlinear

canonical variables. Initially, the first NLCCA mode is

extracted from the set of physiographic variables and the

set of hydro-climatological variables. After retrieving the

first NLCCA mode from the data, the method is applied for

a second time to the residual (i.e., the original data minus

the first NLCCA mode) to extract the second mode. Once

the canonical variables that explain a given percentage of

explained variance are identified, the neighborhood of each

target site is identified following the same scheme as in the

linear case. Figure 3 illustrates the concept of DHR using

the NLCCA.

3.1.3 Region of influence (ROI)

Given its simplicity and popularity in RFA of precipitation

extremes, the region of influence (ROI) approach is also

adopted in the current study. The ROI for a given site is

formed according to the following procedure; initially, a

metric distance (often the Euclidian distance and, less

frequently, the Mahalanobis distance) is used to determine

the proximity of each site to the target site in the physio-

graphic space. In ascending order of distance, sites closest

to the target site are added successively into the ROI for the

target site. This continues until a given homogeneity con-

dition is no longer satisfied. For further details about this

method, interested readers are referred to Burn (1990).

3.2 Regional quantile estimation

In this section, the statistical foundations of the QR and

QRNN methods used for quantile estimation are presented.

Henceforth, in a regression terminology, predictors are

physiographic attributes of each site belonging to the

homogeneous region of the ungauged site, and response

denotes the regional quantile at this site associated with a

fixed return period.

Recall that the commonly used index storm approach is

also involved here for comparison purposes.

Table 2 Summary statistics of physiographical attributes

Attribute Minimum Mean Maximum

Elevation (m) 0 279.48 1391

Roughness (m) 0 56.81 762

Slope (radians) 0 0.02 0.41

Aspect (radians) 0 3.03 6.28
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3.2.1 Quantile regression

As outlined in the introduction, the main issue with the OLS

estimator for RFA is its estimation of the conditional mean of

the response distribution. The model minimizes a sum of

squared residuals cost function whose solution is given by

the conditional mean. In the RFA context, the objective

function is thus taken to be the difference, measured in terms

of the sums of squared residuals, between the OLS regression

predictions and the previously estimated at-site quantiles.

Analogous to the OLS regression, a more robust regression

model is provided through minimizing the sum of absolute

residuals. The solution of this optimization problem is given

by the conditional median, and the regressive model is known

as the median regression or the least-absolute deviations

(LAD) regression (Chen et al. 2008). In the same direction,

and in order to provide estimates of any other quantile order,

Koenker and Bassett (1978) introduced the QR model, a

technique that directly provides the conditional quantile of the

response variable Y, given a set of predictors X.

This model is based on the minimization of the absolute

deviation between observations and regression estimates

asymmetrically weighted by the quantile p, denoted by the

QR loss function:

b̂p ¼ arg min
b

Xn

i¼1

qp yi � xTi b
� �

ð1Þ

where b is the vector of regression coefficients and qpð:Þ is

the check function (also known as the tilted absolute value,

tick, or pinball loss function) defined as:

qp uð Þ ¼ u p� 1ð Þ if u\0

up if u� 0

�
; 0\p\1 ð2Þ

Unlike classical OLS regression models, QR estimates

conditional values of each individual quantile p, thus pro-

viding a complete picture of the stochastic relationships

between random variables.

In the RFA framework, the motivation behind using this

technique lies in its ability to directly model the quantiles

of the raw data rather than the at-site estimated quantiles

(Ouali et al. 2016b). This means that the QR, when com-

bined with an appropriate delineation method, avoids the

need to estimate the at-site quantiles prior to regression

modeling, which implies that misspecifications of the at-

site distributions can be avoided. Moreover, using this

model, the whole available data set, even sites with

extremely short record lengths, is involved in the calibra-

tion procedure, thus enabling one to account for much

more information than traditional RFA approaches.

3.2.2 Quantile regression neural network

QR and OLS regression models assume linear predictor-

response relationships. Given the complexity of precipita-

tion processes (e.g., Hewitson and Crane 1996), it might be

worthwhile exploring nonlinear tools to provide a more

accurate estimation of rainfall IDF curves at ungauged

sites. In this respect, a nonlinear variant of QR based on the

ANN model, the QR neural network (QRNN), is exploited

in the current study following Taylor (2000) and Cannon

(2011). An attractive characteristic of the ANN, which

Fig. 3 Basic principle of the NLCCA
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motivates the use of the QRNN for RFA, is its ability to

deal with complex relationships that may be revealed

within large amounts of data.

From a conceptual viewpoint, estimates of the condi-

tional quantiles using the QRNN are given by:

QpðyjxÞ ¼ f
X

j

gj xð Þwð0Þ
j þ bð0Þ

 !
ð3Þ

where w
ð0Þ
j and bð0Þ are the output-layer weights and bias

respectively, f is the output-layer transfer function and gj is

the jth hidden-layer transfer function often taken to be the

hyperbolic tangent function. The number of hidden nodes,

J, controls the nonlinearity of the resulting model. The

QRNN is trained by means of the cost function given in

Eq. (1). The resulting output is the conditional regional

quantile associated for a fixed return period.

Given the flexibility of the ANN architecture, the QRNN

is able to represent complex predictor–response relation-

ships. However, as the skill of an ANN-based model is

sensitive to its chosen configuration, e.g., the number of

hidden-layer nodes J, one must choose the QRNN model

parameters with care. Details about the optimization pro-

cedure as well as other theoretical details can be found in

Taylor (2000) and Cannon (2011).

3.3 Assessment of model performance

The regional models under consideration draw upon sev-

eral statistical methods. Hence, their application to estimate

IDF curves at ungauged sites should be carefully assessed.

A leave-one-out cross-validation procedure is adopted for

assessing the performance of each model. Records from

each gauged site are temporarily removed from the data set

used to fit the models, i.e., the site is assumed to be ‘‘un-

gauged’’. RFA is then conducted based on data from the

remaining sites. Finally, estimated values are compared to

the original at-site estimates at the withheld site. This

procedure is repeated, with each location acting in turn as

an ‘‘ungauged’’ site.

Performance is typically measured by means of statis-

tical evaluation criteria such as the root-mean-square-error

(RMSE). For almost all classical regional approaches that

make use the at-site estimated quantile, the model assess-

ment is performed assuming that the at-site estimation is

the reference value; residual errors are calculated between

the at-site estimated quantiles and the RFA estimates.

However, given the uncertainty associated to the at-site

estimated quantiles, this may be misleading. In reality,

these at-site estimates are subject to errors resulting from

insufficient data series record length, the choice of the

probability distribution, and associated parameter estima-

tion uncertainty.

This issue was raised by Ouali et al. (2016b), who

suggested that RFA models instead be assessed using the

raw observed values rather than the at-site estimated

quantiles. The proposed criterion, the mean of the piece-

wise loss function (MPLF), is a summation of QR loss

function values computed at each site standardized by the

number of stations-years:

MPLF pð Þ ¼ 103

n

XN

i¼1

Xni

j¼1

qp yij � q̂Rip

� �
; p 2 ð0; 1Þ ð4Þ

where n ¼
PN

i¼1 ni denotes the number of stations-years.

While the main concept of the MPLF criterion is based on

the QR objective function, it may be applicable not only to

the evaluation of QR models but to any quantile estimation

approach. In the forecast verification literature, the MPLF

is referred to as the quantile score; it is a proper scoring

rule for probabilistic forecasts (Bentzien and Friederichs

2014).

It is straightforward to define a MPLF ratio (RMPLF) for

each p 2 ð0; 1Þ, expressed as follows:

RMPLF ¼ MPLF0

MPLFM

ð5Þ

where MPLF0 is the MPLF of the typical empirical model,

and MPLFM is the leave-one-out cross-validated MPLF of

the model of interest. Values of this ratio will typically lie

between 0 and 1; for cross-validated regional estimates that

match the in-sample performance of the reference, the ratio

is equal to 1. Indeed, for approaches using the at-site

estimated quantiles as reference, the best model would be

the one that provides results as close to the at-site estimated

values, taken here to be the empirical estimates. Thus,

values close to 1 mean that the estimator has good per-

formance skill, while values close to 0 indicate that the

estimator performance is poorer than the reference empir-

ical model.

4 Model design

In the current section, the implementation of each statisti-

cal method used in this work is described. For reference,

Table 3 lists the various combinations of DHR and esti-

mation methods considered in the remainder of the paper.

Steps of the RFA procedure are summarised in Fig. 4.

4.1 Delineation of homogeneous regions

To calculate rainfall intensities for a specific return period

and duration at ungauged site, homogeneous regions must

first be identified. The three DHR techniques considered in

this study (CCA, NLCCA and ROI) are neighborhood

Stochastic Environmental Research and Risk Assessment (2018) 32:2821–2836 2827
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approaches; each ungauged site is assigned to its own set of

neighboring sites within its homogeneous region.

Using the ROI approach, each neighbor site has been

identified based on standardized Euclidian distance

between characteristics of the potential sites and the site of

interest. Site characteristics consist of geographical loca-

tions and physiographic attributes (Table 2).

In the case of CCA and NLCCA, apart from geographic

and physiographic attributes, rainfall information is also

considered when constructing the canonical spaces.

Figure 5 shows scatter plots of all storm durations. Rela-

tionships between long storm durations (C 6 h) and

between short durations (\ 6 h) appear to be different; no

strong association exist between long duration cyclonic

systems and short duration convective systems. Hence, the

DHR using CCA and NLCCA is performed according to

storm type; long and short storm duration records are

separated into different sets when forming the linear and

nonlinear canonical spaces (Fig. 4). This makes sets of 6

physiographical attributes and 3 climatological attributes

for the long storm durations (6, 12, and 24 h) and 6 cli-

matological attributes for the short storm durations (5, 10,

15, 30, 60 and 120 min).

It is worth noting that for any considered DHR method,

the delineated region must be statistically homogeneous. It

has been recognized in the literature (Castellarin et al.

2001; Ouarda et al. 2001) that this condition is strongly

related to region size as homogeneity typically decreases as

Table 3 Adopted combinations

of RFA models
Delineation step (DHR) Estimation step (E) Regional model notation

ROI (sub.sct.3.1.3)

CCA (sub.sct.3.1.1)

NLCCA (sub.sct.3.1.2)

Gumbel ROI-Gumbel

CCA-Gumbel

NLCCA-Gumbel

CCA (sub.sct.3.1.1)

NLCCA (sub.sct.3.1.2)

QR (sub.sct.3.2.1) CCA-QR

NLCCA-QR

CCA (sub.sct.3.1.1)

NLCCA (sub.sct.3.1.2)

QRNN (sub.sct.3.2.2) CCA-QRNN

NLCCA-QRNN

Fig. 4 Flowchart of the different steps involved to produce regional IDF curves
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region size increases. Homogeneous regions have thus

been identified such that they are neither excessively large

(to ensure a minimum degree of homogeneity) nor too

small (to obtain sufficiently accurate T-year quantile esti-

mates). Given this trade-off and to ensure that comparisons

between methods are fair, a fixed region size of 80 sites,

satisfying the 5T guideline of the FEH (1999), is used for

all DHR methods, durations, and return periods.

4.2 Regional quantile estimation

The aim of this step is to provide estimates of the rainfall

intensities at the site of interest for the given return period

and duration. As detailed above, new RFA methods, based

on linear and nonlinear QR, are proposed in this study and

compared to classical index-storm approaches.

4.2.1 Index storm

In this study, the index storm approach is based on the

Gumbel distribution estimated using the method of maxi-

mum likelihood to estimate at-site rainfall intensities for

different durations and return periods. In a RFA context,

the index-storm value is typically the mean of observed

data values (rainfall intensities or flood). Here, the index-

storm value is instead taken to be the median of the rainfall

intensity values at each site, since this measure is more

robust (Grover et al. 2002).

In the remainder of this paper, the index-storm approach

is combined with ROI, CCA and NLCCA DHR approa-

ches, which results in three different RFA models.

4.2.2 QR-based models

As mentioned earlier, the QR approach to RFA (under both

linear and nonlinear forms) allows one to make use of

rainfall information from all sites within the region, irre-

spective of record length. QR models are nonparametric

and directly use raw rainfall data as the response variable.

They do not require prior specification of a probabilistic

form and do not require estimation of at-site quantiles prior

to RFA, e.g., as is the case with the OLS regression

approach. All available rainfall data can be used to fit the

QR model, including sites with extremely short data

records.

Fig. 5 Scatter plots of rainfall annual maxima for all storm durations
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Six variables, LON, LAT, ELv, RGH, SLP and ASP are

used as predictors to estimate rainfall intensities using

linear and nonlinear QR models. Separate models are fit for

each combination of duration (5, 10, 15, 30, 60 min and 2,

6, 12 and 24 h) and return period (2, 5, 10, 20, 50 and

100 years). In contrast to the linear QR model, the non-

linear QRNN requires one to select the appropriate level of

model complexity via the number of hidden nodes

J [Eq. (3)]. For sake of parsimony, we consider only the

simplest possible QRNN model (J = 1). Again, the linear

Fig. 6 Homogeneous regions (yellow asterisks) of the CALGARY INT’L A station (ID 3031093, red asterisk) using CCA and NLCCA, a,

b respectively for long storm durations, and c, d respectively for short storm durations. e Homogeneous region of the same site using ROI method
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and nonlinear QR models are combined with CCA and

NLCCA methods of DHR.

5 Results and discussion

Homogeneous regions were created using the three con-

sidered DHR methods (ROI, CCA and NLCCA). Results

for a selected site (CALGARY INT’L A) are shown in

Fig. 6. Due to differences in storm development processes

associated with long and short storm durations, homoge-

neous regions for the selected site based on the same

method (either CCA or NLCCA) differ for short and long

storm durations. Similarly, the region for ROI differs from

either CCA or NLCCA as the latter methods take into

account rainfall information in the construction of the

canonical spaces, whereas ROI is based exclusively on

standardized Euclidean distance in the space of the phys-

iographic variables.

Each of the RFA models is used to estimate rainfall

intensities for specific durations and return periods across

Canada. The entire data set, excluding the held-out cross-

validation site, is used for calibration purposes. However,

for reliable and robust cross-validation, only sites having

record lengths exceeding 40 years are used to estimate

cross-validated model performance statistics.

For illustration purposes, Fig. 7 shows scatter plots of

the regional and at-site estimated rainfall intensities, over

66 sites with more than 40 years of record, associated with

the 24 h duration and 50 years return period. Due to the use

of long records, at-site estimates are assumed to be accu-

rate and hence regional estimates should be consistent with

the at-site values. As noted in Sect. 3.3, this assumption is

questionable; verification results based on the MPLF,

which do not rely on the at-site quantile estimates, are

Fig. 7 Scatter plots of at-site and regional estimated 50-years return period (quantile 0.98) for the 24 h storm duration using all considered RFA

models
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presented below. The index storm models, especially ROI-

Gumbel, show large biases, generally underestimating

relative to the at-site rainfall estimates. On the other hand,

both CCA-QRNN and NLCCA-QRNN provide better

estimates for small rainfall intensities than the remaining

QR approaches, which generally tend towards overesti-

mation. The largest at-site value (8.36 mm/h) was under-

estimated by all models except NLCCA-QRNN.

Further analysis of model performance can be achieved

via standard statistics such as correlation coefficient,

RMSE, and standard deviation. Accordingly, we make use

of the Taylor diagram, which offers a concise graphical

representation of these three statistics, to summarize how

well each model performs with respect to the at-site

Gumbel model. Hence, a perfect RFA model would lie at 1

on the abscissa. Two Taylor diagrams are shown in Fig. 8

for 10 min and 24 h storm duration and for return periods

of: (a) 5 years and (b) 50 years. In these figures, each dot

represents results of a particular RFA model. For both

return periods, the two QRNN models (CCA-QRNN and

NLCCA-QRNN) have strong correlations with the refer-

ence at-site model whereas the other models have much

lower correlations, especially ROI-Gumbel (\ 0.2). In

terms of RMSE, the pattern of model performance is

similar; the two QRNN-based models are the closest to the

reference model.

Recall that one of the main objectives of the present

study is to assess the performance of the proposed RFA

methods with respect to their ability to provide accurate

regional estimates of rainfall intensities for several storm

Fig. 8 Examples of Taylor diagrams used in the evaluation of all considered RFA models for the 24 h (a, b) and 10 min (c, d) storm duration, for

the 5 years (a, c) and 50 years (b, d) return periods
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Fig. 9 Values of mean piecewise loss function ratio (RMPLF) based on a cross-validation procedure for long (a–c) and short (d–i) durations. The

reference model is the empirical model
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durations and return periods. To this end, cross-validated

estimates of RMPLF[Eq. (5)] are shown in Fig. 9 for all

storm durations and return periods. It is worthwhile to

emphasize that higher credibility is imparted to the MPLF

criterion (or the RMPLF) as it is a raw data based statistic

that does not rely on prior estimation of the at-site quan-

tiles. Overall, the index storm approaches (ROI-Gumbel,

CCA-Gumbel and NLCCA-Gumbel) perform worst, espe-

cially for long return periods. For long storm durations and

small return periods (\ 10 year), the good estimation

ability of the regional probabilistic distribution combined

with a good DHR method (especially NLCCA) provide

reasonable performance levels, comparable to that of the

linear and nonlinear QR models. Although differences

between the QR-based RFA approaches are modest, the

overall performance of NLCCA-QRNN is generally the

best, followed by CCA-QRNN for small durations, and

QR-based approaches (CCA-QR and NLCCA-QR) for long

durations.

For illustration, Fig. 10 provides regional IDF curves

based on NLCCA-QR for the CALGARY INT’L A site (ID

3031093). Since the main goal of creating regional IDF

curves is to characterise the behaviour of extreme rainfall

at ungauged locations, an estimate of the associated

uncertainty is crucial. However, given the spatial dimen-

sion of the RFA procedure, an assessment of the regional

uncertainty is significantly more complex than for at-site

estimation. Indeed, the most straightforward way to

proceed is by resampling sites from the homogeneous

region and then estimating regional quantiles based on the

resampled datasets. Nevertheless, doing so in a naı̈ve

fashion will destroy the spatial correlation structure of the

original data set and lead to inaccurate estimates of pre-

dictive uncertainty. In the current study, estimation of

uncertainty in the regional quantiles is performed following

the vector bootstrap approach used in Burn (2003) and

GREHYS (1996). In the vector bootstrap, years are

resampled such that all sites with a data value in a given

year are added to the resampled data set. This permits the

estimation of uncertainty bounds for regional IDF curves

while preserving the spatial correlation structure of the

original data set. To illustrate, 95% confidence intervals are

estimated and plotted in Fig. 10. As expected, uncertainty

increases with return period and decreases with storm

duration.

6 Conclusions

This study investigated the performance of several rainfall

RFA approaches based on QR. Goals were to: (1) assess

ability of QR-based methods to adequately estimate rainfall

intensities at ungauged sites, (2) consider the added value

of nonlinear methods for modelling RFA relationships, and

finally (3) to estimate IDF curves at ungauged sites.

Regional models were constructed for rainfall annual

Fig. 10 IDF curves using the

NLCCA-QR model and

associated uncertainties, for the

site INTLCalgary A
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maxima data at different durations across Canada using

linear and nonlinear statistical techniques for identifying

homogeneous regions (CCA and NLCCA) and then esti-

mating the desired return value for each storm duration

(QR and QRNN).

Model performance was assessed using a comprehensive

cross-validation procedure. Consistent with the findings of

Ouali et al. (2016b) for streamflow, results suggest that QR

models can be used to accurately estimate extreme rainfall

quantiles at ungauged sites. All of the QR-based models

under consideration, both linear and nonlinear, outper-

formed the standard ROI-Gumbel approach and, more

generally, the index-storm approaches (CCA-Gumbel and

NLCCA-Gumbel). Results also showed that NLCCA out-

performed CCA for DHR, QRNN outperformed QR for

quantile estimation, and, overall, that the combination of

NLCCA-QRNN outperformed all remaining RFA approa-

ches. Nonlinearity needs to be considered in both the

regionalisation and quantile estimation steps of RFA.

Despite the promise of the QR-based methods, there are

some obvious avenues for improvement. With respect to

QRNN model design, additional flexibility and nonlinearity

could be incorporated in the model structure in conjunction

with methods for controlling overfitting (e.g., ensemble

ANN methods). Indeed, the efficiency of ensemble ANN

models, irrespective of the QR model, has been recognized

in a number of regional flood frequency studies (e.g., Shu

and Burn 2004, Shu and Ouarda 2007). In the same regard,

additional nonlinear variants of the QR model can be

likewise investigated to achieve more general findings,

specifically the QR additive model (Koenker 2011).

From a practical perspective, all RFA models consid-

ered in this work are stationary. There is an increasing

recognition that characteristics of sub-daily rainfall

extremes may change with global warming. As pointed out

by Zhang et al. (2017), there is a need to combine infor-

mation from the latest generation of regional climate

models with statistical methods that leverage spatial

information, which could include the QR-based RFA

models investigated here, to reliably project future changes

in IDF curves.
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