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Abstract
The goal of this study is to investigate the uncertainty of an urban sewer system’s response under various rainfall and

infrastructure scenarios by applying a recently developed nonparametric copula-based simulation approach to extreme

rainfall fields. The approach allows for Monte Carlo simulation of multiple variables with differing marginal distributions

and arbitrary dependence structure. The independent and identically distributed daily extreme rainfall events of the

corresponding urban area, extracted from nationwide high resolution radar data stage IV, are the inputs of the spatial

simulator. The simulated extreme rainfall fields were used to calculate excess runoff using the Natural Resources Con-

servation Service’s approach. New York City is selected as a case study and the results highlight the importance of

preserving the spatial dependence of rainfall fields between the grids, even for simplified hydrologic models. This study

estimates the probability of combined sewer overflows under extreme rainfall events and identifies the most effective

locations in New York City to install green infrastructure for detaining excess stormwater runoff. The results of this study

are beneficial for planners working on stormwater management and the approach is broadly applicable because it does not

rely on extensive sewer system information.
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1 Introduction

Urban pluvial flooding is determined by the interaction of

the spatial layout of urban drainage infrastructure and the

spatio-temporal structure of rainfall (e.g., Smith et al.

2002, 2005; Ramos et al. 2005; Morin et al. 2006; Wright

et al. 2013; Yang et al. 2013). Therefore, proper repre-

sentation of the meteorological forcing of urban hydrologic

systems is an essential aspect of predicting the performance

of the underlying drainage infrastructure. Simulations that

reproduce the space–time patterns of rainfall associated

with preferred storm speeds and tracks can be used to

improve the performance assessment, operation, and design

of urban drainage infrastructure (Singh 1997; McRobie

et al. 2013). The goal of this study is to credibly simulate

extreme rainfall fields in order to quantify the uncertainty

of the urban sewer system under different rainfall and

infrastructure scenarios.

A common shortcoming of many efforts to assess plu-

vial flooding is the use of spatially uniform design storms

estimated based on the return period of point rainfall data

(e.g., Berne et al. 2004; Zhou et al. 2012; Notaro et al.

2013; Gires et al. 2015). Neglecting the spatial variation in

the precipitation field, however, is an oversimplification in

many cases and does not capture the variation in flood

response to different spatial precipitation distributions,

even when the design storm return period is fixed (Wheater

et al. 2005; Simões et al. 2015). Until relatively recently,

however, the spatial distributions of storms at sub-urban

scales were not well measured.
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A high spatial–temporal resolution dataset for precipi-

tation is now available for most of the United States and

can be implemented in hydrologic analysis of dense urban

environments (e.g., Smith et al. 2002; Gourley et al. 2014).

While the tools for statistical modeling of point-based

extreme events are well-developed (e.g., Coles et al. 2001),

extending these tools to model spatial extreme data is an

active area of research. Some approaches use rainfall

generators to simulate precipitation fields and investigate

the urban drainage design using parametric (Willems

2001a; McRobie et al. 2013; Nuswantoro et al. 2014;

Simões et al. 2015) or nonparametric approaches (Harrold

et al. 2003; Mehrotra et al. 2015). Parametric simulation

approaches (e.g. Apipattanavis et al. 2007; Chen et al.

2011) typically require assuming that the precipitation data

is multivariate normal and often do not preserve cross

dependencies that exist in the data. Existing nonparametric

approaches, on the other hand, often do not consider the

spatial dependence of the rainfall field between the grids

(e.g., Harrold et al. 2003). The non-parametric simulation

approach employed in this study has the advantage of

avoiding assumptions about the data distribution, while

preserving the empirical spatial dependence based on the

historic extreme precipitation fields.

In this study, we applied the multivariate simulation

method described by Lall et al. (2016) on extreme rainfall

fields for the first time. The procedure allows Monte Carlo

simulation of multiple variables with differing marginal

and joint distributions. We used daily radar-derived rainfall

data (spatial resolution of 4 km by 4 km) to identify

extreme rainfall fields and imported them into the simu-

lator. The simulated extreme rainfall fields and city

infrastructure information were used to compute excess

runoff through the Natural Resources Conservation Service

(NRCS) approach. We introduced an innovative frame-

work based on simulation approach that accounts for the

spatial structure of extreme precipitation. That is, we did

not use a parametric spatial model, but instead preserved

the empirical dependence between grid cells via the

method developed in Lall et al. (2016). We used this

simulation model to estimate both the excess runoff under

the city infrastructure change (addressing source control

stormwater management) and the probability of exceeding

the treatment capacity of the city under different rainfall

scenarios (addressing end-of-pipe stormwater manage-

ment). We applied the framework to New York City

(NYC) as a case study which has been facing the challenge

of frequent extreme weather events, sewer system over-

flow, and flooding (Spierre and Wake 2010; Environmental

Protection Bureau of the NYS 2014). Accounting for spa-

tial structure is especially important for extreme rainfall in

NYC given the distinct spatial patterns that has been shown

to exist there (Hamidi et al. 2017). The results of this study

are beneficial for planners working on stormwater man-

agement and the approach is broadly applicable because it

does not rely on extensive sewer system information (i.e.,

catch basins’ exact locations, size and connections of the

sewer pipes, etc.) as do many other urban stormwater

model (e.g. Pina et al. 2016).

The paper is organized as follows. The study area and

data are introduced in Sect. 2. In Sect. 3, the methodology

to simulate extreme rainfall fields and compute excess

runoff are described. In Sect. 4, the results are presented

and discussed. Finally, we provide the conclusions of the

study in Sect. 5.

2 Case study

Average annual rainfall in NYC has increased nearly 20 mm

in the last century (http://www.nyc.gov/dep) and climate

projections indicate the potential for increasingly frequent

intense storms (Horton et al. 2010). These facts make the

City a compelling case study for urban hydrology (e.g.,

Rosenzweig et al. 2007; Cherrier et al. 2016). Today, much

of the stormwater in NYC flows over impervious surfaces,

which cover approximately 72% of NYC’s * 790 km2 land

area, into roof drains or catch basins located on street and

highway curbs and into the sewers (NYCDEP 2012a). More

than 60% of NYC’s sewer system is combined, meaning it is

used to convey both sanitary and storm flows. During heavy

rainfall (or rapid snowmelt) events, combined sewers receive

higher than normal flows. This can often result in the dis-

charge of a mix of excess stormwater and untreated

wastewater directly into the City’s waterways from outfalls

to prevent upstream flooding because the Waste Water

Treatment Plants (WWTP) are unable to treat the sewer

flows that are more than twice their design capacity. This

untreated release is called a Combined Sewer Overflow

(CSO). CSOs are a concern because of their negative effects

on water quality in local waterways (Cherrier et al. 2016).

For example, during 2004–2005 there were 35 CSO recorded

at two outfall locations of the Bronx River in the Bronx, NYC

(De Sousa et al. 2012).

For the nearly 40% of NYC’s sewer system that is

separated, stormwater runoff is discharged directly into the

City’s waterways while sewages (e.g., industrial, com-

mercial) are routed to the WWTPs. These portions of the

system are running under NYC Municipal Separate Storm

Sewer System plan (NYC MS4 Progress Report 2016). In

addition to the separated and combined systems, small

portions of NYC close to the rivers have direct drainage

systems where untreated amounts of water are conveyed

directly into waterways. Figure 1a indicates the divisions

of NYC sewer system. Figure 1a also shows the location of

the study area and the surrounding lands and rivers.
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Currently the WWTPs in NYC are designed based on

simulated flowrates derived with rainfall from 4 rain gauge

stations: Central Park (CP), LaGuardia Airport (LGA), John

F. Kennedy International Airport (JFK), and Newark

International Airport (EWR), as shown in Fig. 1b. Rainfall

rates are assumed to be uniform across each group of the

WWTP drainage areas independently. Therefore, the cur-

rent NYC Department of Environmental Protection (DEP)

calibration model does not consider the spatial variation and

spatial dependence among and between the drainage areas,

respectively. The hypothesis of this study is that considering

the spatial variation and dependence of extreme rainfall

between grid cells will produce more realistic design cri-

teria, particularly given the spatial clustering of extreme

rainfall shown in Hamidi et al. (2017).

2.1 Data

2.1.1 NYC sewer system data

There are 14 WWTPs located along the coast and water-

ways in NYC (Fig. 1c). Each of the WWTPs is sized based

on a Design Dry Weather Flow (DDWF), with total plant

treatment capacity equal to 2 9 DDWF. This results in a

citywide treatment capacity of approximately 8.4 9 106

m3/day (1845 MGD). Figure 1c indicates the division of

sewersheds and the locations of the 14 WWTPs. Locations

of the 451 combined sewer outfalls are shown in Fig. 1d.

This data is available in the 2012 DEP report (NYCDEP

2012a) and in Open Source Atlas NYC (https://open

seweratlas.tumblr.com). The land area normalized

Fig. 1 The New York City sewer system features: a sewer system of the City, b WWTP groups calibrated based on rain gauge stations, c NYC

WWTPs’ location and design capacity (2 9 DDWF), d locations of combined sewer system outfalls
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treatment capacity (i.e., 2 � DDWF=Area) for the full city

is 27.2 mm/day. We made the simplifying assumption that

all of the NYC sewer system is combined.

According to the available open sources data of the City

(shared at http://www.arcgis.com), there are an average of

3110 catch basins per sewershed. The catch basins installed

in NYC have a small storage volume of * 1.6 m3 each

(NYCDEP 2009), with the potential of storing * 79104

m3 (18.5 MG) runoff per event that should be considered in

calculating the runoff. Table 1 lists all 14 WWTPs, their

corresponding sewershed area, the number of catch basins,

and the radar grid cell numbers which are described in the

next section.

2.1.2 Radar rainfall data

The Next Generation Weather Radar system (NEXRAD) is

comprised of 160 Weather Surveillance Radar-1988 Dop-

pler (WSR-88D) sites throughout the United States and at

select overseas locations (Heiss et al. 1990). While single

radar records may suffer from blockage at certain locations

(Vivekanandan et al. 1999; Lang et al. 2009) as well as

range limitations, multi-sensor (gauge, radar, and satellite)

products minimize these errors (Miller et al. 2010). Multi-

sensor precipitation estimator algorithms provide a real-

time suite of gridded products at different spatial scales

(Kitzmiller et al. 2013). In this study, the NCEP (National

Centers for Environmental Prediction) Stage IV radar

product was employed to generate extreme rainfall fields

over the NYC area. Stage IV radar data is mosaicked from

the regional multi-sensor precipitation. This data is cali-

brated and adjusted for biases using automatic rain gauge

measurements and quality control processes (Lin and

Mitchell 2005). The data is reported at a spatial resolution

of 4 km by 4 km and a temporal resolution of 1-h and is

available in Earth Observing Laboratory (http://data.eol.

ucar.edu) from 2002 to present. Figure 2a shows the 76

radar grid cells that cover the entire land area of NYC (also

see Table 1). Daily radar data from 2002 to 2015

(14 years) was used in this study to identify and simulate

extreme rainfall fields in NYC. The Stage IV radar rainfall

has been used in urban pluvial flood analysis research

before (e.g., Gourley et al. 2014).

2.1.3 Rain gauge rainfall data

Rain gauge observation data was used in this study to

provide a comparison for the radar data analysis. We used

daily data from the four rain gauge stations cited in the

introduction: CP, LGA, JFK, and EWR (see Fig. 1b). The

data is archived at and available from the National Climatic

Data Center (NCDC). We used the same time frame as for

the radar data (i.e., 2002–2015).

2.1.4 Land cover and permeability data

High resolution spatially distributed land cover data for

NYC was provided by the Department of Parks and

Recreation in 2010 (https://data.cityofnewyork.us/) at a

spatial resolution of * 0.9 m (3 ft) by 0.9 m. There are

different estimates of surface infiltration, and thus various

ways to compute runoff (e.g., the Horton 1933 equation).

We used the NRCS approach for urban areas runoff esti-

mation (Cronshey 1986), as proposed by the United States

Table 1 The New York City WWTPs’ features

WWTP Sewershed area (ha) No. of catch basins per sewershed Sewersheds’ radar grids index

OB—Oakwood

Beach

10,861 4047 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.

JAM—Jamaica 10,943 7820 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.

TI—Tallman Island 6709 3742 17, 23, 24, 25, 28, 32, 33, 34, 35, 36, 37, 38.

PR—Port Richmond 4092 1390 1, 3, 6, 7, 8, 39, 40.

ROC—Rockaway 2462 1302 18, 20, 26, 27, 41, 42, 43, 44, 45, 46, 47.

CI—Coney Island 5815 2567 29, 42, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55.

OH—Owls Head 5226 2272 40, 48, 49, 50, 54, 55, 56, 57, 58.

BB—Bowery Bay 6507 3559 23, 24, 25, 30, 35, 36, 37, 59, 60, 61, 62, 63.

HP—Hunts Point 7261 4779 32, 35, 36, 38, 63, 64, 65, 66, 67, 68, 69, 70.

26 W—26th Ward 2256 1193 29, 30, 31, 51.

RH—Red Hook 1461 1115 55, 56, 57, 60, 61.

WI—Wards Island 4946 3262 62, 63, 65, 67, 68, 69, 71, 72, 73.

NC—Newtown Creek 6036 4709 23, 30, 51, 55, 57, 59, 60, 61, 62, 74, 75, 76.

NR—North River 2222 1809 60, 62, 71, 72, 73, 74, 75.
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Department of Agriculture (USDA). The NRCS, formerly

the Soil Conservation Service, developed runoff Curve

Number (CN) from empirical analysis of small catchment

runoff. CN represents the hydrologic soil cover complex of

the watershed with respect to the soil type, land use, sur-

face condition, and the Antecedent Moisture Condition

(AMC). Three levels of AMC are considered: AMCI dry

soil (but not to the wilting point), AMCII average case, and

AMCIII saturated soil. The development of these proce-

dures is outlined in NEH-4 (National Engineering Hand-

book, Section 4—Hydrology, Soil Conservation Service

1985), and briefly explained in Sect. 3 of this paper.

Generally, for impervious and water surfaces, CN = 100

and 0\CN\ 100 for natural surfaces. We converted the

land cover data to the CN values for the normal moisture

condition (AMCII), which is also consistent with the runoff

coefficients of NYC DEP (NYCDEP 2012b). The average

CN value for each intersected area of radar grid cells with

the sewershed borders is demonstrated in Fig. 2b.

3 Methodology

3.1 Generating extreme rainfall fields

The extreme rainfall fields for this study were generated as

follows:

1. The 95th percentile (R95) rainfall for each grid cell was

computed (only non-zero rainy days were considered).

The average of R95 among the 76 grid cells for NYC

is * 31 mm/day (1.2 inch/day) with standard devia-

tion of * 1.6 mm/day (0.06 inch/day).

2. Daily extreme events were identified as any day when

any of the 76 grid cells exceeds its R95. This resulted in

a total of 266 unique extreme event days for NYC (i.e.,

an extreme event occurs on average every * 19 days).

The average of maximum rainfall among the 266

events is equal to * 52 mm/day (2.1 inch/day) with

standard deviation of * 24 mm/day (0.96 inch/day).

3. The 5-day antecedent rainfall at each grid cell was

computed for each event. The average of maximum

antecedent rainfall is * 5.5 mm/day (0.2 inch/day)

with standard deviation of * 6 mm/day (0.24

inch/day). This data is used to compute the runoff as

explained later in this section. 14% of extreme events

occurred during boreal winter (Dec–Feb), 18% during

spring (Mar–May), 41% during summer (Jun-Aug),

and 27% during autumn (Sep–Nov).

The spatial dependence of grid cell rainfall is investi-

gated in Fig. 3 by demonstrating the percentage of con-

current extreme rainfall events occurring at the grid cells.

The dark blue shows that the corresponding grid cells

experienced precipitation greater than R95 for many of the

same extreme events. The concentrated areas of dark blue

shading along the diagonal of Fig. 3 illustrates that grid

cells corresponding to the same sewersheds are highly

dependent (see Table 1 for grid cell index locations). There

is also spatial dependence between sewersheds, as illus-

trated by the off-diagonal areas shaded with dark blue. For

example, there is about a 75% chance that an extreme event

was present at the Jamaica—JAM grids (G16–G31) given

that an extreme event was present at the Red Hook—RH

grids (G55–G61). The probability of * 75% is determined

Fig. 2 a Stage IV Radar grid network covering NYC, b Curve Numbers aggregated for the sub-grid cells with respect to NRCS normal condition

for NYC land cover
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by averaging the grid cells’ corresponding values fall in the

intersection of parallel lines in Fig. 3.

The rain gauge data for the same period (2002–2015)

was processed in the following:

1. The 95th percentile, R0
95, of precipitation was identified

at each rain gauge station as the extreme rainfall

threshold. The average of the R0
95, threshold among 4

stations is * 36 mm/day (1.5 inch/day).

2. The extreme events were identified for each station by

applying the corresponding R0
95, threshold. This

resulted in 89, 85, 84, and 86 extreme event days at

CP, LGA, JFK, and EWR stations, respectively. The

average of maximum rainfall among the four stations

was * 180 mm/day (7.1 inch/day). The different

number of events at each station is an artifact of the

decision to estimate R0
95 of only rainy days (the total

number of which is not constant across the four

stations).

3. The 5-day antecedent rainfall was calculated. The

average of antecedent rainfall among the four stations

was * 40 mm/day (1.6 inch/day). 13% of events

occurred during boreal winter, 23% during spring,

36% during summer, and 28% during autumn, similar

to the seasonality of the radar-derived extreme rainfall

days.

3.2 Spatial simulator algorithm

Multivariate simulations are often necessary for risk anal-

ysis (Rajagopalan et al. 1997; Vogl et al. 2012; Lall et al.

2016; Xu et al. 2017). In such a case, the dependencies

between all variables (here, the individual rainfall grid

cells), which define the spatial field (here, the extreme

rainfall field) should be preserved by the simulation

framework. This is because the use of a simple univariate

approach could lead to considerable over or underestima-

tion of the risk associated with a given event (Raynal-

Villasenor and Salas 1987; Bruneau et al. 1994). Further-

more, the use of standard multivariate distributions with

Gaussian structure is not reasonable if the marginal dis-

tributions are non-normal (e.g., heavy tailed asymmetric

distributions: Titterington et al. 1985; West 1992; Meylan

et al. 2012). Copulas have been shown to be a useful way to

model the dependence structure independent of the mar-

ginal distributions (Sklar 1959), which more easily allows

one to model dependent, non-Gaussian data, as is the case

here.

Let F(X) be a joint distribution of multiple random

variables x ¼ x1; x2; . . .xmð Þ and F(xi) is the marginal dis-

tribution function for variable xi, where i goes from 1 to m.

A copula is introduced as a function that links the joint

distribution F(X) to its univariate marginals F(xi). Sklar

(1959) proved that for every multivariate distribution F(X)

there exists a copula C : 0; 1½ �m! 0; 1½ � such that:

F x1; x2; . . .; xmð Þ ¼ C F1 x1ð Þ;F2 x2ð Þ; . . .;Fm xmð Þð Þ ð1Þ

where F(xi)* U[0,1]. When the marginal distributions are

continuous, the multivariate probability density f xð Þ can be

expressed in terms of the marginal densities of its com-

prising variables fi xið Þ and a unique copula density c:

f xð Þ ¼ f1 x1ð Þf2 x2ð Þ. . .fm xmð Þc u1; u2; . . .umð Þ ð2Þ

where ui are uniformly distributed random variables. Fur-

ther information about copulas can be found e.g. in Frees

and Valdez (1989), Nelsen (1999), Aas et al. (2009), and

Vogl et al. (2012).

In this study, the nonparametric multivariate simulation

approach based on the copula concept was applied on the

spatially dependent extreme rainfall fields while the events

were assumed to be temporally independent. In order to

preserve the spatial dependency of the data, we employed

the sampling strategy outlined in Lall et al. (2016). The

steps are as follows:

1. Nonparametric log-spline density estimation was con-

ducted for each grid cell (i = 1:76) over the extreme

rainfall events (j = 1:266) as well as each grid cell’s

antecedent rainfall over all events to estimate the

marginal distributions.

2. From each fitted fi xið Þ, a random sample (x0ij) were

drawn. The sampling was done with replacement and

repeated 100 times (no. of simulation) and we sorted

each vector in a matrix x00ð Þ.

Fig. 3 Percentage of concurrent extreme events occurring in NYC

grid cells (e.g., the intersection of parallel lines indicates there

is * 75% chance that an extreme event was present at the Jamaica-

JAM grids, G16–G31, given that an extreme event was present at the

Red Hook—RH grids, G55—G61)
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3. An empirical (pseudo) copula was considered. In this

case, a copula function was applied on the empirical

distribution funcions (Deheuvels 1979) of historical

data set xj, j = 1:266. The empirical copula Cemp {zj,

j = 1:266} was constructed where zj is a rank matrix.

4. From rank matrix zj, 266 samples were drawn with

replacement (bootstrap) and recorded as z0j, j = 1:266.

This step was also repeated 100 times (no. of

simulations).

5. Finally, having the sorted matrix x00ð Þ as well as the

matrix of ranks from the empirical copula ðz0ijÞ for each

simulation, a simulated matrix was defined using the

following equation:

wij ¼ x0
0

i z0ij

h i
ð3Þ

where wij is the jth event of the simulated matrix at

grid cell i, and x0
0
i z0ij

h i
selects the z0ij th element of x0

0
i .

Figure 4 shows a sample illustration of Lall et al.’s

(2016) approach for j = 1:12 extreme events using

i = 1:3 grid cells for only one simulation. Variable x

represents the rainfall values (mm/day) for 12 events

(no. of rows) among 3 grid cells (no. of columns), x0

represents the sampled data from logspline distribu-

tion, and x00 is the sorted matrix of x0 (ascendingly)

according to steps 1–2. In steps 3–4, z,which is rank

matrix of x, and z0, which is the resampled matrix of z,

are developed. To develop the simulated matrix, w, we

used Eq. 3 introduced in step 5. For instance, the

second row of w is constructed based on the 2nd, 1st,

and 2nd largest values of x00(all shaded in orange in

Fig. 4). Another example is given for the 9th row of w

shaded in blue.’’

Employing this approach, the simulated fields of

extreme rainfall data were obtained from wij and used to

calculate the runoff and its uncertainty at the WWTPs. The

general code and formulations corresponding to this

approach is available from Lall et al. (2016).

3.3 Sewer system uncertainty analysis

Urban hydrologic models can be classified with respect to

spatial and temporal resolution (Fletcher et al. 2013). In the

spatial dimension, models can be either lumped or dis-

tributed. Lumped models use spatial averages of sub-

catchments to represent the behavior of the full system

(Willems 2001b; Löwe et al. 2014), while distributed

models capture all the sub-catchment components using a

node-link structure (Elliott and Trowsdale 2007). In the

temporal dimension, models can be event based or con-

tinuous. Event based analyses are commonly used in the

design of infrastructure and simulate the hydrologic

response to specifically designed storms (e.g., Delleur

2003), while continuous analyses seek to model system

behavior under continuous forcing that includes periods of

wet and dry weather. In this study, we used a spatially

lumped and temporally event-based analysis to limit the

computational expense and satisfy the temporal indepen-

dence assumption of the simulation method (Lall et al.

2016).

Runoff is determined primarily by the amount of rain-

fall, the infiltration characteristics of the land cover, and

antecedent rainfall. As explained earlier, the NRCS

approach was employed in this study to calculate the runoff

as a function of precipitation, the underlying soil’s per-

meability, land use, and antecedent water content of the

soil:

Pe ¼
P� Iað Þ2

P� Iað Þ þ S
ð4Þ

where Pe is the effective rainfall (mm), P is the depth of

rainfall (mm), S is the potential maximum retention after

runoff (mm), and Ia is the initial abstraction (mm). The

initial abstraction includes retained surface water as well as

evaporated and infiltrated water, and is generally correlated

with land cover parameters. As in Eq. 4, runoff cannot

begin until the initial abstraction has been met. Ia can be

approximated by Ia ¼ 0:2 � S for urban watersheds as per

the USDA (Cronshey 1986). S is related to the soil and land

cover conditions of the sewershed through the CN:

S ¼ 25:4 � 1000

CN
� 10

� �
ð5Þ

The curve number methodology is an event-based

approach, thus the effects of antecedent moisture condi-

tions are taken into consideration. The CNs suggested for

the normal Antecedent Moisture Condition (AMCII) by

NRCS were mapped in Fig. 2b. Depending on the sea-

sonality (dormant or growing season) and total 5-day

antecedent rainfall, equivalent curve numbers are sug-

gested by NRCS. In the current case study, we assumed

only dormant season in NYC and calculated the equivalent

curve number according to the antecedent rainfall deter-

mined for gauge stations and radar grids. CN in dry con-

ditions (AMCI, 5-day antecedent rainfall\ 12.7 mm) and

wet conditions (AMCIII, 5-day antecedent rain-

fall[ 27.9 mm) can be computed by:

CNI ¼
4:2 � CNII

10 � 0:058 � CNII

ð6Þ

CNIII ¼
23 � CNII

10 þ 0:13 � CNII

: ð7Þ
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where I, II, and III represent dry, normal, d wet conditions,

respectively. 5-day antecedent rainfall less than 27.9 mm

(1.1 inch) and greater than 12.7 mm (0.5 inch) was con-

sidered normal according to NRCS.

The framework of sewer system uncertainty analysis is

summarized in Fig. 5: After preparing data, the extreme

rainfall field and corresponding antecedent events derived

from the radar data were imported into the simulator. The

NRCS approach was then applied on the simulated extreme

precipitation events. CN and S were estimated from

Eqs. 5–7 and applied to Eq. 4 to determine the effective

rainfall at each sub-grid cell. We subtracted the catch basin

storage volumes per event (QCB) to compute the excess

runoff from each event in each sewershed (Qt
s):

Qt
s ¼

XN
n¼1

Pt
e;nAn � Qt

CB;n

� �
ð8Þ

where Pt
e is the effective rainfall for event t, A is the sub-

grid cell area, Qt
CB is the catch basin storage volume at sub-

grid CB during event t, n is the no. of sub-grid cells in each

sewershed (N changes for each sewershed, see Table 1),

and s is the sewershed index (1:14). The simulated results

were required to be verified.

The excess runoff was also calculated using the rain

gauge data according to the independent events developed

Fig. 4 Sample illustration of the

simulation algorithm based on

12 extreme events covering 3

grid cells (one simulation)

adapted from Lall et al. (2016):

Variable x represents the rainfall

values (mm/day) across space

and time, x0 is the sampled data

from logspline distribution, x00 is

the sorted matrix of x0, z is the

rank matrix of x and z0 is the

resampled matrix of z, and w is

the simulated matrix derived

from Eq. 3. (e.g., the second

row of w is constructed based on

the 2nd, 1st, and 2nd largest

values of x00 shaded in orange,

and the 9th row of w is

constructed based on the 11th,

10th, and 9th largest values of

x00 shaded in blue)
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in Sect. 3.1. The goal is to investigate the significance of

considering the spatial dependence of the extreme rainfall

fields between the grids by comparing Qt
s derived from the

simulate extreme rainfall field with Qt
s derived from the

spatially independent events (from rain gauges). In calcu-

lating runoff corresponding to rain gauge extreme rainfall

we picked the same criteria used by NYC DEP (see

Fig. 1b). Thus Pt
e;n in Eq. 8 is equivalent for n = 1:N

according to the calibrated rain gauge station. Finally, we

estimated the probability of CSO occurrence during

extreme rainfall events, and the runoff change with respect

to the land cover distribution and density. This analysis

targets the stormwater management plans of the City.

4 Results and discussion

4.1 Rainfall simulation verification

The distributions of simulated radar rainfall data were

compared with the observed radar events in order to verify

the simulation model. First, the median, standard deviation

and 90th percentile of the 266 extreme rainfall events’

rainfall data at each of 76 grids were compared with the

corresponding simulated values. Figure 6 shows the sim-

ulated versus observation based median, standard deviation

and 90th percentile at three sample grids corresponding to

the CP, LGA, and JFK station locations (see Fig. 1 for the

location). Aside from a small negative bias in the standard

deviation of the simulated marginal distributions which is

less than 9% (Fig. 6b), the simulated and observed mar-

ginal distributions are quite similar.

We also compared the cross-station dependence of

extreme rainfall field grids between the simulations and

observations by comparing their rank correlation (RC),

mutual information (MI), and tail dependence coefficient

(TDC) across the grids (Fig. 7). Spearman’s rank-order

correlation measures the strength and direction of a

monotonic relationship between each pair of grid cells’

extreme rainfall data and can take a range of values from

?1 to - 1. A value of 0 indicates that there is no associ-

ation between the two variables and values greater than 0

indicate a positive association. Figure 7a shows high cor-

relation between the grids at the same WTTP, shaded along

the diagonal. Figure 7b also shows that the correlation

values of the simulated and observed data are quite similar

(between 0.4 and 1) and that the bias is generally between

- 1 and 1%.

Mutual Information (MI), introduced by Shannon

(1948), is a measure of how similar the cross-station

dependence is to the products of factored marginal distri-

butions, i.e. it captures nonlinear dependence (Cover and

Thomas 1991). The results are scaled according to the

transformation proposed by Joe (1989), which ranges from

0, for complete independence, to 1, for full dependence

Fig. 5 Proposed framework for

sewer system uncertainty

analysis
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Fig. 6 Comparison of observed

(red dots) and simulate

(boxplots) extreme rainfall

events at the three grid cells at

the locations of CP, LGA, JFK:

a median, b standard deviation,

c 90th quantile

Fig. 7 Cross-station

dependence of the observational

data and the bias in cross-station

dependence of the simulation

relative to the observation

[ðSim� ObsÞ=Obs� 100]: a,

b rank correlation, c, d mutual

information, e, f tail dependence

coefficient
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(large reduction in uncertainty). There is high MI between

the grids at the same WTTP (Fig. 7c) and the bias in MI is

generally modest (between - 5 and 5%), with the excep-

tion of a few high bias grids (up to 30%) (blue stripes in

Fig. 7d). Lastly, the Tail Dependence Coefficient (TDC)

measures the probability of occurrence of greater than the

90th percentile at one grid given that another grid is also

greater than the 90th percentile (Ferreira 2013). Figure 7e

shows high TDC between the grids within the areas ser-

viced by the same WTTP. Figure 7f implies that the TDC

values of the simulated and observed data are quite similar

and that the bias is generally between - 5 and 5%.

Overall, the rank correlation is well simulated by the

model (errors are less than 4% for all pairs of grids). This

indicates that the model captures the monotonic relation-

ships between sites. The bias in the mutual information

between sites is greater (upwards over 5% for many pairs

of grids). In particular, the model has a tendency to sim-

ulate a weaker nonlinear relationship between pairs of grids

when compared to the observations (panels c and d of

Fig. 7). There is also relatively large bias in the simulation

of tail dependence between grids in some cases, although

this bias is not systematic across all grid pairs (bottom

panels of Fig. 7), i.e. negative tail dependence bias appears

to be approximately as likely as positive tail dependence

bias.

4.2 Simulated runoff comparison

Figure 8a, b compare the distribution and mean of the

simulated runoff with the rain gauge runoff at each

WWTP. The results indicate that the values of runoff

corresponding to the rain gauge data are significantly

higher than the radar simulated runoff at the 95% signifi-

cance level. Since we considered the extreme rainfall field

(76 grids) in the simulation and uniform extreme rainfall in

rain gauge runoff calculation, this overestimation of rain

gauge runoff was expected. Such overestimation of hazard

because of not considering spatial dependence has been

reported in other studies (McRobie et al. 2013; Simões

et al. 2015). This confirms the significance of considering

spatial variation and dependence of extreme rainfall,

hypothesized in this paper.

To check whether there is a systematic bias in the

extreme radar rainfall data, we evaluated the radar rainfall

values at the four grid cells corresponding to the rain gauge

locations on days when extreme events occurred, as

determined by the rain gauge records. We computed the

relative bias in radar data at each rain gauge station during

every extreme event. Figure 9 shows that there is only

modest bias in the radar rainfall values during rain gauges

based extreme rainfall events. The median bias among the

events is 0, 5, 0, and 12% at CP, LGA, JFK, and EWR,

respectively. This bias is acceptable given that rain gauge

rainfall estimates are derived from time integrated point-

based measurements while radar rainfall estimates are

derived from spatially integrated and temporally discrete

sampled measurements. This error has been noted by other

researchers (e.g. Medlin et al. 2007; Villarini et al. 2010;

Park et al. 2016).

4.3 Sewer system uncertainty analysis results

4.3.1 WWTP uncertainty (end-of pipe control)

We estimated the excess runoff at each WWTP and com-

pared the extreme events’ runoff with 2 9 DDWF to

determine the probability of exceeding the capacity at each

WWTP. We accounted for baseflow wastewater [called

Dry Weather Flow or DWF (NYCDEP 2012a)] by

Fig. 8 Runoff values of simulated extreme rainfall fields (radar data) and runoff values of the rain gauge extreme rainfall events at each of 14

WTTPs: a means, b distributions
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assuming that the ratio of DWF and DDWF (DWF/DDWF)

ranges between 35 and 75% during all events. Thus, if Qt
s is

the precipitation generated flow, and we assume that DWF/

DDWF is 50%, then the probability of exceeding the flow

capacity at each WWTP is PðQt
s [ ð1:5 � DDWFÞÞ. The

boxplots in Fig. 10 represent the probability of the simu-

lated runoff exceeding the plant capacities under various

values of DWF/DDWF. For instance, P = 0.02 means that

2% of extreme events exceed the design capacity of the

WWTP. Average baseflow (DWF/DDWF) in NYC

WWTPs during 2011 is presented in Table 2 (from

NYCDEP 2012a). According to this data, the medians of

the probability of exceeding the capacity of WWTP were

mapped in Fig. 11. Results indicated higher probability of

exceeding the capacity (and thus a higher likelihood of

CSO) at the JAM—Jamaica, OH—Owls Head, and BB—

Bowery Bay WWTPs. Recent DEP construction projects

have included upgrades to the wastewater treatment facil-

ities and storm sewer system by expanding the network and

constructing large CSO retention tanks to further mitigate

the chronic source of pollution. Some of the most recent

CSO control systems in the City have been implemented at

the BB, JAM, TI, and CI plant outfalls (http://www.nyc.

gov/dep). The results of Figs. 10 and 11 can be a useful

guide for end-of-pipe stormwater storage and treatment

systems of the City.

4.3.2 Excess runoff prediction (source control)

We also estimated the change in runoff with respect to

changes in stormwater capture infrastructure of the City.

First, we determined Qc as the contribution (%) of each

sub-grid in the corresponding sewershed’s total runoff.

Then, a nonparametric joint distribution was estimated for

the simulated runoff contribution and the corresponding

curve numbers weighted by the area of each sub-grid cell.

The joint distribution of Qc and CN 9 Area of the sub-

grids is presented in Fig. 12a. The x-axis is Curve Number

weighted by area (CN 9 Area), the y-axis is runoff con-

tribution Qc (%), and the contours in 2D plot show the

Fig. 9 Bias check of radar rainfall data with respect to the rain gauge extreme events at: a CP, b LGA, c JFK, d EWR
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probability density function for the joint distribution. This

approach may be useful in planning for the urban infras-

tructure. In NYC, the recent agreement of the City with the

New York State Department of Environmental Conserva-

tion aims to reduce the CSO through a hybrid Green

Infrastructure (GI) and grey infrastructure approach to

improve the water quality in NYC’s waterways (http://

www.nyc.gov/dep). GI is a source control approach to

manage stormwater by detaining or retaining the excess

runoff through capture and controlled release by infiltrating

the runoff into the ground and increase the vegetative

uptake and evapotranspiration. GI, therefore, reduces the

need for end-of-pipe stormwater storage and treatment

systems, while poviding additional benefits such as con-

tracting urban heat island effects (Wang et al. 2013). From

results in Fig. 12a, we were able to estimate the most

effective GI placement from a CSO mitigation perspective.

Figure 12b presents the median simulated runoff contri-

bution (Qc) of each sub-grid cell at the corresponding

sewershed such that the summation of the Qc at each

sewershed equals 100. Figure 12 illustrates where the most

Fig. 10 Probability of exceeding (2 9 DDWF - DWF) at each NYC WWTP under simulated extreme rainfall events for different ratios of

DWF/DDWF (baseflow) at the plants

Fig. 11 Risk map of the median of probability of exceeding the NYC

WWTPs design capacity (2 9 DDWF - DWF) with respect to the

baseflow (DWF/DDWF) of 2011

Table 2 Average baseflow in NYC WWTPs during 2011 (from NYCDEP 2012a)

WWTP OB JAM TI PR ROC CI OH BB HP 26W RH WI NC NR

Average baseflow (DWF) during 2011 (MGD) 18a 77 49 27 17 82 88 105 125 51 27 196 229 117

(DWF/DDWF) 0.45 0.77 0.61 0.45 0.38 0.75 0.73 0.70 0.63 0.59 0.45 0.71 0.65 0.69

aDWF value of OB—Oakwood Beach was assumed by the authors since the data was reported in the reference
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effective sub-grids are for the introduction of new GI if the

goal is a 1% reduction of runoff within a certain sewershed

by decreasing the CN of the corresponding sub-grid by 1%.

The values of initial runoff contribution and initial land

cover (represented by CN) were taken from Figs. 12b and

2b, respectively. With a comparison of the surface of

Fig. 12a for different neighborhoods (sub-grid cells), we

can find the areas in NYC with higher probabilities of DQc

with DCN 9 Area. Figure 12c indicates those neighbor-

hoods (top 20 sub-grid cells), mostly located at the JAM—

Jamaica, for the assumed criteria. Also, for a specific

neighborhood, if is planned to reduce the Qc for a certain

amount, with optimization between the new CN and the

cost of installing GI, the best plan can be chosen.

5 Conclusions

A novel framework that utilizes the simulation approach of

Lall et al. (2016) was developed in this study to estimate

the urban runoff during extreme precipitation events in

NYC and compare this runoff to wastewater treatment

plant flowrate capacities. The extreme precipitation simu-

lation framework allowed us to simulate the uncertainty of

extreme rainfall without neglecting the spatial structure of

extreme rainfall data. The main conclusions of this study

for NYC are summarized as follows:

1. According to the current analysis, JAM—Jamaica,

OH—Owls Head, and BB—Bowery Bay WWTPs are

more prone to CSO under extreme rainfall events (see

Figs. 10 and 11).

2. In NYC, we were able to determine the neighborhoods

with the highest effects of installing GI in controlling

the excess runoff (see Fig. 12). The results were

presented for the top 20 sub-grid cells for an example

scenario of reducing 1% of runoff within a certain

sewershed by decreasing the runoff coefficient of the

corresponding sub-grid by 1%. However, these loca-

tions may change according to the different infrastruc-

ture scenarios.

In summary, the main contributions of this study are

listed as follows:

1. The results of Sect. 4.2 confirmed the significance of

preserving the spatial dependence of the extreme

rainfall field between the grid cells in hydrologic

modeling. Specifically, assuming uniform extreme

rainfall (based on a rain gauge within a sewershed)

can lead to overestimation of runoff.

Fig. 12 GI installation as a

source control approach: a 2D

plot of probability density

function of runoff contributions

(Qc) and Curve Number times

the Area (CN 9 Area),

b contributed discharge to each

sewershed, mapped for the

median of the simulated

extreme rainfall events in NYC,

c the most effective

neighborhoods (top 20 sub-grid

cells) of installing GI in NYC to

decrease 1% of Qc by

decreasing 1% of CN at the

corresponding sub-grid cell

2306 Stochastic Environmental Research and Risk Assessment (2018) 32:2293–2308

123



2. The uncertainty analysis of WWTPs in Sect. 4.3

provided a guideline approach for end-of-pipe

stormwater management. This paper presented a

straightforward strategy for city planners to investigate

the effect of infrastructure change on stormwater

runoff as a source control system.

Acknowledgements This research was supported by NOAA CREST

Cooperative Agreement NA11SEC4810004. The statements con-

tained within the manuscript are not the opinions of the funding

agency or the U.S. Government but reflect the authors’ opinions. We

thank Naresh Devineni from City College of New York for providing

valuable feedback during the inception of this work.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula

constructions of multiple dependence. Insur Math Econ

44(2):182–198
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