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Abstract
Accurate runoff forecasting plays an important role in management and utilization of water resources. This paper

investigates the accuracy of hybrid long short-term memory neural network and ant lion optimizer model (LSTM–ALO) in

prediction of monthly runoff. As the parameters of long short-term memory neural network (LSTM) have influence on the

prediction performance, the parameters of the LSTM are calibrated by using ant lion optimizer. Then the selection of

suitable input variables of the LSTM–ALO is discussed for monthly runoff forecasting. Finally, we decompose root mean

square error into three parts, which can help us better understanding the origin of differences between the observed and

predicted runoff. To test the merits of the LSTM–ALO for monthly runoff forecasting, other models are employed to

compare with the LSTM–ALO. The scatter-plots and box-plots are adopted for evaluating the performance of all models.

In the case study, simulation results with the historical monthly runoff of the Astor River Basin show that the LSTM–ALO

model has higher accuracy than that of other models. Therefore, the proposed LSTM–ALO provides an effective method

for monthly runoff forecasting.

Keywords Monthly runoff forecasting � Long short-term memory neural network � Ant lion optimizer � Errors

decomposition

1 Introduction

Runoff forecasting is extremely important for various

activities of water resources planning and management,

such as operation of water infrastructures, flood control,

dam planning, reservoir operation, distribution of drinking

water and planning for navigation. Among them, monthly

runoff prediction have attracted more attentions because

the storage-yield sequences are generally related to

monthly periods. Meanwhile, long-term forecasting based

on monthly time scales is useful in reservoir operations and

irrigation management decisions (Chen et al. 2014; Liang

et al. 2017; Yuan et al. 2015a).

Since the nonlinear characteristics of runoff time series,

it is very challenging to predict runoff accurately. In the

past decades, researchers have devoted efforts to monthly

runoff prediction. Generally, the methods of monthly run-

off prediction can be divided into two categories: process-

driven methods and data-driven methods. Process-driven

methods are composed of experimental formulae based on

the physical phenomena (Yuan et al. 2014). While these

methods can not reflect the stochastic volatility of medium-

and long-term runoff series. Therefore, data-driven meth-

ods are used as substitute or supplement to process-based

ones in the field of runoff forecasting. Data-driven methods

are fundamentally black-box methods, which are conve-

nient as they can be applied easily without considering the

internal physical mechanism of watershed system (Ada-

mowski and Sun 2010). The multiple linear regression

(MLR) was adopted to predict the runoff of the Ogoki

River located in Province of Ontario, Canada (Seidou and
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Ouarda 2007). Anderson et al. (2013) applied autoregres-

sive moving average (ARMA) based Gaussian function to

get the prediction intervals of monthly runoff. In order to

overcome the shortcomings of MLR and ARMA models

for runoff forecasting, such as difficulty of identification

model’s parameters and not easily capturing nonlinear

characteristics of runoff time series (Kong et al. 2015;

Yaseen et al. 2015), artificial neural network (ANN),

adaptive network-based fuzzy inference system (ANFIS)

and support vector machine (SVM) are applied to runoff

forecasting. Wang et al. (2006) selected hybrid ANNs as

univariate time series models to forecast runoff series.

Kalteh (2013) employed the ANN based wavelet transform

to improve the accuracy of monthly runoff forecasting. El-

Shafie et al. (2007) put forward ANFIS model for inflow

forecasting of the Nile river at Aswan high dam. In order to

improve the performance of the ANFIS model, combina-

tion of ANFIS with loading simulation program C??

(LSPC) model was proposed to forecast runoff (Sharma

et al. 2015). The particle swarm optimization (PSO) based

parameters of SVM was presented to forecast monthly

runoff (Sudheer et al. 2013). Application of wavelet anal-

ysis in improving monthly streamflow forecasting perfor-

mance of the SVM was studied by Kalteh and Chen (2014).

To solve the complex computation in SVM, least squares

support vector machine (LSSVM) was proposed to predict

runoff series in the Tahtali and Gordes Watersheds (Okkan

and Serbes 2012). Kisi (2015) investigates the ability of

LSSVM and ANFIS in forecasting monthly streamflow. In

the above mentioned methods, ANNs depend on the

structure of neural networks and exist over-fitting phe-

nomenon. ANFIS is hard to handle noise. SVM and

LSSVM are difficult to determine the parameters of kernel

function in runoff forecasting.

Recently, long short-term memory (LSTM) neural net-

works has been developed (Hochreiter and Schmidhuber

1997), which has merits of nonlinear predictive capability,

faster convergence and capturing long-term correlation of

time series. Therefore, the LSTM model has been suc-

cessfully applied to speed recognition, handwriting recog-

nition, voice recognition, traffic flow forecasting and so on

(Greff et al. 2016; Bukhari et al. 2017). The previous

researches have demonstrated that the monthly runoff time

series show the characteristics of long-term memory, so

this study applies the LSTM model to prediction of

monthly runoff series. To further improve the forecasting

accuracy, a hybrid model (LSTM–ALO) is put forward by

combining the LSTM with ant lion optimizer (ALO). In the

proposed LSTM–ALO model, the ALO is utilized to

optimize the number of hidden layer neurons and learning

rate of the LSTM. To the best of the authors’ knowledge,

this is the first time to investigate the application of ALO in

parameters tuning of the LSTM model. The LSTM–ALO

not only inherits the advantages of the LSTM, but also

utilizes the superiority of the ALO for solving optimization

problems, where the process of population evolution can

interact with the LSTM in the training process, and auto-

matically calibrate the parameters of the LSTM model.

Therefore, the LSTM–ALO can both solve the problem

that the optimal parameters are difficult to be calibrated in

the LSTM modeling and further improve the prediction

performance of the LSTM model. The original LSTM,

LSTM–ALO, and hybrid of LSTM and PSO (LSTM–PSO)

are compared to verify the feasibility and effectiveness of

the ALO for optimizing the parameters of the LSTM

model. At the same time, the ALO is adopted to estimate

the parameters of Back Propagation (BP) Neural Network,

Radial Basis Neural Network (RBNN) and LSSVM

respectively, which can further validate the superiority of

the LSTM–ALO in monthly runoff forecasting. The

monthly runoff data of the Astor River Basin in Northern

Pakistan is chosen to test the prediction effect of the

LSTM–ALO model. For better understanding the origin of

the errors between prediction and observed runoff series,

root mean square error (RMSE) is decomposed into three

parts: bias, the amplitude error and the phase error. Finally,

scatter-plots and box-plots are adopted to show monthly

runoff forecasting of the LSTM–ALO more intuitively.

The rest of the paper is organized as follows. Section 2

overviews the basic principle of LSTM model. Section 3

briefly presents the main steps of ALO. Section 4 describes

the process of the runoff forecasting with the LSTM–ALO

model. Empirical results are reported in Sect. 5. Section 6

gives the conclusions.

2 Overview of long short-term memory
neural network

The LSTM model belongs to a kind of deep learning neural

network, which involves input layer, hidden layer, recur-

rent layer, and output layer. In the LSTM model, the output

of the hidden layer fed back to the hidden layer through a

buffer layer is called the recurrent layer. A special struc-

tural unit in the recurrent layer—memory block can make

the input layer, the hidden layer and the output layer

interact with each other. Therefore, the recurrent layer

makes the LSTM model to supervise learning about time

and spatial information.

The memory block is consisted of one or more con-

nection memory cells and three multiplier units (input gate,

forget gate and output gate) (Hochreiter and Schmidhuber

1997). Three gate units have the same input information,

and each of them has a different activation function. When

the input gate is high-active, the input information will be

stored in the memory cell. While the output gate is high-
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active, the information stored in the memory cell is

released to the next neuron. If the forget gate is high-active,

the information will be deleted from the memory cell.

Since there is a memory block in LSTM, where errors can

flow back forever, and making error flow outside the cell

tends to decay exponentially (Gers et al. 2000). The basic

working principle of the LSTM model is shown in Fig. 1.

In Fig. 1, xt is the input vector at time t; yt is the output

vector at time t; ht is the recurrent output vector at time t; fg
is the forget gate vector; ig is the input gate vector; og is the

output gate vector; ct is the tth iteration state of the

memory cell. First, the input information is passed to the

hidden layer through the input layer, while the output of the

previous generation hidden layers is transferred to the

current-generation hidden layer through the recurrent layer.

Then, the information of the hidden layer and the infor-

mation stored in the previous generation memory cell are

transferred to the next generation of the memory cell

through the input gate and the forget gate. Finally, the

information stored in the new generation memory cell will

be transferred to the recurrent layer through the output

gate. Similarly, the information is repeatedly trained

between the hidden layer and the recurrent layer until the

end of the iteration, and will be transferred to the output

layer to get the final output. As space is limited, the

detailed procedure for implementing the LSTM model can

be found in the literature (Gers et al. 2000).

3 Overview of ant lion optimizer

In recent years, a new optimization method known as ALO

proposed by Mirjalili (2015) has become a candidate for

optimization application due to its flexibility and effi-

ciency, which is based on the hunting behavior of antlions

and entrapment of ants in antlions’ traps. There are two

elements in ALO, one is the ant and the other one is the

antlion. The ants represent the individuals, which are

required to move over the search space using different

random walks. The antlions are allowed to hunt them and

become fitter using traps. There are mainly four operations
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in ALO, namely random walk of ants, update the position

of ant, sliding ants towards antlion and catching preys.

The main implementation steps of the ALO are as

follows:

Step 1 Initialize the population of ants and antlions

randomly;

Step 2 Calculate the fitness of ants and antlions;

Step 3 Find the best antlions and assume it as the elite;

Step 4 Building trap. The antlion individuals are selected

based on their fitness by using roulette wheel technique;

Step 5 Sliding ants towards ant lion. Once the selection

of antlion is over, update the ants by decreasing the radius

of ant’s random walks;

Step 6 Trapping of ants in antlion’s pits. As the search

space of ants is shrinking around the antlion with the

number of iterations increasing, the position of the updated

ants will tend to the selected antlion;

Step 7 Catching prey and re-building the pit. Calculate

the fitness of all updated ants. If the fitness of the ant

caught by the antlion is better than the antlion’s, the

positions of antlions are replaced with the captured ants.

Then update the fitness of all antlions, choose the best

antlion and compare with elite individual. If the fitness of

the best antlion is better than elite individual, then replace

elite individual with the antlion; otherwise proceed to the

next iteration;

Step 8 Repeat Steps 3–7 until the maximum number of

iterations is reached, and output elite individual as optimal

solution.

4 The monthly runoff forecasting based
on LSTM–ALO model

4.1 Hybrid LSTM–ALO model

The key of the proposed LSTM–ALO model is to make full

use of the advantages of the LSTM model and the ALO

algorithm, respectively. The ALO is utilized to optimize

the key parameters of the LSTM model, which establishes

a hybrid LSTM–ALO model for monthly runoff prediction.

There are two key parameters directly influencing the

output of the LSTM model, namely, the number of hidden

layers (HN) and the learning rate of weight coefficient

updating (a). Therefore, the ALO is adopted to find optimal

values of HN and a in the LSTM model. In the LSTM–

ALO model, the individuals of populations Ant and

Antlion are consisted of the parameters (HN, a) which need

to be optimized in the LSTM model. By building the

corresponding LSTM model with each Ant and Antlion,

the mean square root error (RMSE) of the training data set

is used as the fitness of the LSTM Model, which can help

optimally search and eventually find the optimal values of

the parameters (HN, a). Thus, the LSTM–ALO prediction

model can be determined. The main steps of the LSTM–

ALO implementation are as follows:

1. Initialize population of individuals

Populations of Ant and Antlion are represented as

Ant ¼ ½A1
1;A

1
2; . . .;A

1
NP�; Antlion ¼ ½Al11;Al12; . . .;Al1NP�;

where NP denotes the size of population.

Each individual in the populations of Ant and

Antlion consists of parameters (HN, a), namely A1
i is

composed of hn1
i and a1

i , and Al1i is composed of h~n1
i

and ~a1
i respectively. The initial populations of Ant and

Antlion are generated randomly.

First, construct the corresponding LSTM model

from the individuals in the initial Ant and Antlion

populations. Assume that the HN and a of the A1
i are

hn1
i and a1

i respectively, and the initial weight coeffi-

cient matrix of the memory block neurons in the

corresponding LSTM model denotes as W1
i . W1

i is

determined by the hn1
i and the dimension of each

structure in memory block neurons, where each initial

weight element consists of a random number between

0 and 1.

2. Calculate the fitness of individuals

In the evolution process of ALO, let A
gen
i is the ith

individual of population Ant in generation gen, and

Al
gen
i is the ith individual of population Antlion in

generation gen. The corresponding LSTM model

established by A
gen
i denotes as LSTM

gen
i and the HN

and a of LSTM
gen
i express as hn

gen
i and ageni respec-

tively. The input vector of LSTM
gen
i at time t is xt, and

the number of inputs is M. The input of memory block

at time t is ĉt. The recurrent weight matrices of

LSTM
gen
i are Wi

gen
i , Wf

gen
i , Wo

gen
i and Wc

gen
i in

Rhn
gen

i
�ðMþhn

gen

i
Þ and the corresponding bias terms are

bi
gen
i , bf

gen
i , bo

gen
i and bc

gen
i respectively. The hidden

layer vector ht at time t of the LSTM
gen
i in the forward

training process can be expressed as:

igt ¼ r Wi
gen
i H þ bi

gen
ið Þ

fgt ¼ r Wf
gen
i H þ bf

gen
ið Þ

ogt ¼ r Wo
gen
i H þ bo

gen
ið Þ

ĉt ¼ tanh Wc
gen
i H þ bc

gen
ið Þ

ct ¼ fgt � ct�1 þ igt � ĉt
ht ¼ tanhðogt � ctÞ

8
>>>>>><

>>>>>>:

ð1Þ

where igt, fgt and ogt denote the activation of the input

gate, forget gate and output gate at time t, respectively;

ĉt represents the input of memory block at time t; r(�)
is the sigmoid function, which is defined in Eq. (2),

and tanh (�) denotes the tanh function, which is defined

in Eq. (3); � is the pointwise multiplication of two

vectors and H in RMþhn
gen

i represents the concatenation
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of the input xt and the previous hidden vector ht- 1,

H ¼ Ixt
ht�1

� �

:

rðxÞ ¼ 1

1 þ e�x
ð2Þ

tanhðxÞ ¼ ex � e�x

ex þ e�x
ð3Þ

So, the output yft at time t of the LSTM
gen
i in the

forward training process can be expressed as:

yft ¼ r Wy
gen
i ht þ by

gen
ið Þ ð4Þ

where Wy
gen
i in Rhn

gen

i is the weight matrices in the

output layer; by
gen
i is the bias terms.

When the forward training process is completed,

then the backward training. Calculate training losses Dt

at time t:

Dt ¼ ðTyt � yftÞ2 ð5Þ

where Tyt is the observed value of the training sample

at time t.

Following the work of Hochreiter and Schmidhuber

(1997), the updated weight coefficients bias terms with

Dt and learning rate ageni , then go on the next training

of the LSTM
gen
i at time t ? 1. After the training of the

LSTM
gen
i is finished, we can get the training result

Y
gen
i ¼ ðygeni ð1Þ; ygeni ð2Þ; . . .; ygeni ðMÞÞ, where y

gen
i ðMÞ

is the training result of the LSTM
gen
i at time M.

We use RMSE as an optimization criterion for the

LSTM–ALO model, from which we calculate the fit-

ness of Ant and Antlion. The fitness function (fitðAgen
i Þ)

of the ith Ant in the genth iteration is expressed as:

fit A
gen
ið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

n¼1

y
gen
i ðnÞ � Tytð Þ2

v
u
u
t ð6Þ

where N is the number of training set. In each iteration,

the error (RMSE) is calculated by the output of each

corresponding LSTM model and the observed sample,

the smaller the RMSE of the LSTM model is, the better

performance of the corresponding Ant individual.

Calculate the fitness fitðAÞ of each individual in

population Ant according to Eq. (6). Similarly, calcu-

late the fitness fitðAlÞ of each individual in population

Antlion, and then determine the elite individual and its

corresponding LSTM model.

3. Update individuals

Update the individuals according to the ALO’s

working principle. The current updated individual of

the Ant population is expressed as: A
genþ1
i ¼ ½ðhngenþ1

1 ;

agenþ1
1 Þ; ðhngenþ1

2 ; agenþ1
2 Þ; . . .; ðhngenþ1

NP ; agenþ1
NP Þ�

4. Calculate the fitness of all individuals in population

Ant

The fitness of each individual in population Ant is

calculated and compared with its corresponding indi-

viduals in population Antlion. The Antlions are

replaced with their corresponding Ants, if the fitness

of the updated individual in Ants is greater than that in

Antlions. Then update the corresponding LSTM

model.

5. Update the elite individual

Choose the best individual from the updated Antlion

population as the elite individual, and update the elite

individual and the corresponding LSTM model.

6. Repeat Steps (2–5) until the termination criterion is

satisfied. The optimal parameter combination

(HN�; a�) and the corresponding optimal LSTM*

model can be obtained from the elite individual.

7. The LSTM–ALO model is validated by test data set

based on the best LSTM* model. Thus, a hybrid model

LSTM–ALO is obtained for predicting the monthly

runoff series.

The flow chart of the LSTM–ALO model for monthly

runoff prediction is given in Fig. 2.

4.2 Normalization of the original runoff series
data

In order to avoid data patterns and attributions with large

numerical ranges dominating the role of the smaller

numerical ranges and increase the prediction flexibility, we

normalize the input data as follows:

~Qt ¼
Qt � Qmin

Qmax � Qmin

ð7Þ

where Qmin and Qmax denote the minimum and maximum

value of runoff series; Qt and ~Qt are the observed and

normalized runoff at time t, respectively.

4.3 The evaluation performance index of runoff
prediction model

In order to test the performance of prediction models,

normalized mean absolute error (NMAE), coefficient of

correlation (R2) and Nash–Sutcliffe efficiency coefficient

(NSEC) (McCuen et al. 2006) are used as evaluation

indexes. The definitions of these indexes are given as

follows.

NMAE ¼ 1

N

XN

i¼1

yiP � yiT
�
�

�
�

 !

ð8Þ
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R2 ¼
PN

i¼1 yiT � �yT
� �2

yiP � �yP
� �2

PN
i¼1 yiT � �yTð Þ

PN
i¼1 yiP � �yPð Þ

ð9Þ

NSEC ¼ 1 �
PN

i¼1 yiT � yiP
� �2

PN
i¼1 yiT � �yTð Þ2

" #

ð10Þ

where yiP is the ith prediction; �yT is the average of the

observed runoff; �yP is the average of forecast runoff. If the

value of RMSE and NMAE are close to 0, the error of

prediction is smaller. Moreover, if the value of R2 and

NSEC are close to 1, the correlation between the observed

and predicted runoff series is stronger.

To further evaluate the performance of the model, the

RMSE can be decomposed into three terms (De Giorgi

et al. 2014): the bias, the amplitude error (SDbias) and the

phase error (DISP). SDbias reflects the deviation of the

predicted results from the observed values. DISP is due to a

time shift of the predicted values in respect to the observed
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Fig. 2 Flow chart of the LSTM–ALO model for monthly runoff prediction
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data that occurs if the amplitude of the forecast is right, but

arrives too early or too late. The mathematical expressions

are as follows:

RMSE2 ¼ bias2 þ SD2
bias þ DISP2 ð11Þ

bias ¼ 1

N

XN

i¼1

yiP � yiT ð12Þ

SDbias ¼ rT � rP ð13Þ

DISP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rTrTð1 � RTPÞ

p
ð14Þ

where rT is the standard deviation of the observed runoff;

rP is the standard deviation of the prediction runoff; RTP is

the cross-correlation coefficient between the observed and

prediction runoff. The closer SDbias is to 0, the smaller the

error amplitude fluctuation is. If DISP[ 0, the phase of

predicted runoff lags behind the observed phase.

4.4 The implementation process of LSTM–ALO
for runoff prediction

The runoff prediction process based on the LSTM–ALO

model is implemented as follows.

1. Divide the runoff series data into training set QT and

prediction set QP. Then the data are normalized

according to Eq. (7);

2. Set parameters of the LSTM–ALO model and ran-

domly generate initial population (HN, a) for ALO;

3. Train LSTM–ALO model: the training data set QT is

used as the input of the LSTM–ALO model, and the

corresponding output is obtained by the LSTM–ALO

model;

4. Obtain the optimal parameters combination (HN, a) for

LSTM–ALO model by using ALO;

5. Build LSTM–ALO prediction model with test data set

QP;

6. Get the runoff prediction.

5 Case study

5.1 Study area

The Astor River Basin is situated in the high mountains of

Hindukush–Karakoram–Himalaya (HKH) region at the

North of Pakistan. The geographical location of the region

is approximately between longitudes 74�240 and 75�140E,

and between latitudes 34�450 to 35�380N. The Astor River

covers drainage area of 3990 km2. Water and power

development authority (WAPDA) has one gauge station,

i.e. Doyian hydrometric station in this area for the flow

record. The elevation of this gauge station is 1583 m and

its geographical location in the basin is 35�330 latitude and

74�420 longitude. The mean annual flow of the river is

137 m3/s, i.e. it is equivalent to 1084 mm of water depth

(Tahir et al. 2015). The flow data at Astor River was col-

lected by WAPDA under surface water hydrology project

(SWHP), Pakistan. This gauge station was installed in 1974

and has recorded monthly runoff since 1974. The historical

monthly runoff data from 1974 to 2009 in the basin is

shown in Fig. 3.

The average value ( �Q), standard deviation (Sd), Kurtosis

criterion (Kc) and Skewness criterion (Sc) of the monthly

runoff data in the Astor River Basin are 137.0, 140.94 m3/

s, 1.433 and 1.235 respectively. From these statistical

values, we can see that the monthly runoff series in this

basin have more dynamic and stronger randomness. Both

Kc and Sc are not zero, and it means that the monthly runoff

series does not obey the normal distribution. Therefore, the

historical runoff series data of the Astor River Basin are

chosen as a case study to test the feasibility and effec-

tiveness of the LSTM–ALO model for monthly runoff

prediction.

5.2 Selection of model structure and input
variables

In this study, the monthly mean runoff data in the Astor

River Basin are divided into two parts: calibration data set

and validation data set. The calibration period covered the

data are from 1974 to 2002 (336 months) and have been

chosen to establish LSTM–ALO, BP, RBNN and LSSVM

models. The validation period covered the runoff data are

from 2003 to 2009 (84 months) and have been used to

evaluate the performance of these models.

First, according to the Eq. (7), the input runoff data is

normalized. Subsequently, in order to find out the influence
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of suitable time lags runoff on the current time interval

runoff, the following five cases of input variable (M1, M2,

M3, M4, M5) were designed with lagged t ranged from one

up to 5 months before the current time for runoff

forecasting.

1. M1 : Qðt þ 1Þ ¼ f ðQðtÞÞ;
2. M2 : Qðt þ 1Þ ¼ f ðQðt � 1Þ;QðtÞÞ;
3. M3 : Qðt þ 1Þ ¼ f ðQðt � 2Þ;Qðt � 1Þ;QðtÞÞ;
4. M4 : Qðt þ 1Þ ¼ f ðQðt � 3Þ;Qðt � 2Þ;Qðt � 1Þ;QðtÞÞ;
5. M5 : Qðt þ 1Þ ¼ f ðQðt � 4Þ;Qðt � 3Þ;Qðt � 2Þ;

Qðt � 1Þ; QðtÞÞ:
where Qðt þ 1Þ is the target output or predicted runoff;

QðtÞ is the 1-month lagged Qðt þ 1Þ, Qðt � 1Þ is the 2-

month lagged Qðt þ 1Þ. The rest can be done in the same

manner. f ð�Þ represents the models’ type (i.e., LSTM, BP,

RBNN or LSSVM).

5.3 Monthly runoff forecasting based on LSTM,
LSTM–PSO and LSTM–ALO

As we know, the parameters have a significant influence on

the prediction performance of the LSTM model. Therefore,

the LSTM–ALO model was employed to forecast monthly

runoff. The maximum number of iterations is set 500, the

number of hidden layer neurons (HN) is set in the range [1,

50] and the learning rate (a) is set in the range [0, 1]. In

order to verify the efficiency and stability of the ALO

optimizing the parameters of the LSTM model, PSO is also

applied to optimize the parameters of the LSTM model

(LSTM–PSO). At the same time, LSTM–ALO is compared

with the original LSTM model and the LSTM–PSO model.

Five kinds of input variables (M1, M2, M3, M4, M5) are

performed 20 successive random trials by using the three

models. The statistical analysis of the best, average and

worst values of the performance metrics over 20 trials are

shown in Table 1.

As can be seen from Table 1, the best, average and

worst values of each metric of the LSTM–ALO model and

the LSTM–PSO model have improved in different degrees

compared with the LSTM model, which indicates that the

parameters optimization can improve the forecasting per-

formance of the LSTM model. Four evaluation metrics of

the LSTM–ALO are better than those of LSTM–PSO in the

whole, which means that the ALO is better than PSO for

the parameters optimization of the LSTM model. So, the

parameters optimization LSTM model based ALO is more

suitable for the monthly runoff forecasting. In addition, the

computation time for the execution of the LSTM–ALO,

LSTM–PSO and LSTM models with five cases of input

variables (M1, M2, M3, M4, M5) gives in Table 2. All the

Table 1 Comparisons of the performance of calibration results for different models

Input Metrics NMAE RMSE R2 NSEC

B A W B A W B A W B A W

M1 ALO- 0.043 0.045 0.047 0.072 0.079 0.086 0.943 0.931 0.918 0.889 0.877 0.855

PSO- 0.048 0.050 0.052 0.085 0.089 0.092 0.918 0.912 0.906 0.843 0.838 0.836

LSTM 0.051 0.054 0.059 0.085 0.093 0.101 0.905 0.901 0.890 0.818 0.809 0.737

M2 ALO- 0.039 0.040 0.041 0.071 0.072 0.075 0.943 0.942 0.938 0.889 0.882 0.873

PSO- 0.042 0.045 0.049 0.077 0.080 0.083 0.933 0.929 0.924 0.870 0.866 0.857

LSTM 0.045 0.047 0.048 0.079 0.080 0.083 0.931 0.927 0.922 0.866 0.855 0.813

M3 ALO- 0.038 0.039 0.039 0.065 0.069 0.072 0.951 0.946 0.942 0.910 0.893 0.883

PSO- 0.039 0.040 0.042 0.072 0.074 0.076 0.942 0.940 0.937 0.888 0.882 0.862

LSTM 0.043 0.044 0.046 0.074 0.077 0.081 0.938 0.934 0.927 0.880 0.871 0.847

M4 ALO- 0.038 0.039 0.039 0.071 0.071 0.077 0.944 0.943 0.935 0.891 0.885 0.874

PSO- 0.039 0.040 0.043 0.070 0.074 0.078 0.946 0.940 0.931 0.895 0.875 0.865

LSTM 0.050 0.051 0.053 0.085 0.087 0.094 0.919 0.913 0.901 0.844 0.835 0.816

M5 ALO- 0.039 0.039 0.040 0.069 0.071 0.074 0.947 0.944 0.940 0.897 0.886 0.872

PSO- 0.042 0.043 0.044 0.073 0.076 0.079 0.941 0.937 0.931 0.885 0.869 0.852

LSTM 0.050 0.052 0.056 0.081 0.086 0.095 0.928 0.917 0.899 0.860 0.843 0.806

ALO- denotes LSTM–ALO model, PSO- denotes LSTM–PSO model, B denotes the best value, A denotes the average value and W denotes the

worst value

Table 2 The computational time of LSTM–ALO, LSTM–PSO and

LSTM models (unit: second)

M1 M2 M3 M4 M5

LSTM–ALO 266 276 300 337 366

LSTM–PSO 452 506 550 598 643

LSTM 152 176 194 228 260
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simulations are implemented in MATLAB R2017a envi-

ronment running on the personal computer (Windows 10

operation system; CPU: Intel (R) Core (TM) i5-4200H

CPU @ 2.80 GHz; RAM: 8 GB). The total execution time

of the LSTM–ALO is less than that of the LSTM–PSO.

Therefore, the execution time of the LSTM–ALO is

acceptable for practical application of the monthly runoff

prediction. According to the computational time associated

with the three models, the model can be chosen for the

monthly runoff prediction based on the performance and

computational cost trade-off.

In order to further verify the effectiveness of the LSTM–

ALO model in monthly runoff forecasting, the Wilcoxon

rank sum test with significance level 0.05 has been applied

to evaluate the statistical significance of the difference of

four indexes between the LSTM–ALO model and the

compared models (LSTM–PSO, LSTM) respectively (Ji

et al. 2014; Yuan et al. 2015b). The results are shown in

Table 3. The p\ 0.05 and h = 1 imply that the LSTM–

ALO model significantly outperforms the compared mod-

els in statistically.

As can be seen from Table 3, the p of all performance

indexes are less than 0.05 and the h are equal to one with

all five different input variables. The results show that the

Wilcoxon rank sum test rejects all of null hypothesis in the

difference between the LSTM–ALO and the compared

models (LSTM–PSO, LSTM) on the monthly runoff fore-

casting, which means that there is a significant difference

between the results of the LSTM–ALO model, the LSTM–

PSO and LSTM models. So, as can be seen from Tables 1

and 3, it demonstrates that the LSTM–ALO is superior to

Table 4 Validation

performance of four models for

different inputs

Model input Indicator LSTM–ALO BP–ALO RBNN–ALO LSSVM–ALO

M1 NMAE 0.048 0.113 0.086 0.110

RMSE 0.085 0.162 0.134 0.155

R2 0.932 0.727 0.636 0.748

NSEC 0.867 0.520 0.353 0.557

M2 NMAE 0.043 0.069 0.062 0.065

RMSE 0.079 0.102 0.097 0.096

R2 0.940 0.901 0.912 0.911

NSEC 0.884 0.811 0.828 0.829

M3 NMAE 0.040 0.058 0.059 0.053

RMSE 0.074 0.090 0.091 0.087

R2 0.948 0.924 0.923 0.929

NSEC 0.899 0.850 0.849 0.862

M4 NMAE 0.041 0.066 0.056 0.054

RMSE 0.076 0.095 0.096 0.087

R2 0.945 0.913 0.914 0.929

NSEC 0.893 0.833 0.832 0.861

M5 NMAE 0.041 0.077 0.066 0.053

RMSE 0.075 0.120 0.104 0.088

R2 0.947 0.860 0.901 0.926

NSEC 0.897 0.735 0.803 0.857

Table 3 Comparison of Wilcoxon rank sum test for different models

Input Metrics LSTM–PSO LSTM

p h p h

M1 NMAE 1.45E-11 1 1.45E-11 1

RMSE 5.80E-11 1 2.90E-11 1

R2 1.45E-11 1 1.45E-11 1

NSEC 1.45E-11 1 5.80E-11 1

M2 NMAE 1.45E-11 1 1.45E-11 1

RMSE 1.45E-11 1 1.45E-11 1

R2 1.45E-11 1 1.45E-11 1

NSEC 1.45E-11 1 1.45E-11 1

M3 NMAE 1.45E-11 1 1.45E-11 1

RMSE 2.90E-11 1 1.45E-11 1

R2 5.80E-11 1 1.45E-11 1

NSEC 1.10E-05 1 1.45E-11 1

M4 NMAE 6.53E-10 1 1.45E-11 1

RMSE 2.00E-06 1 1.45E-11 1

R2 8.00E-03 1 1.45E-11 1

NSEC 3.03E-08 1 1.45E-11 1

M5 NMAE 1.45E-11 1 1.45E-11 1

RMSE 1.02E-10 1 1.45E-11 1

R2 5.80E-11 1 1.45E-11 1

NSEC 1.00E-06 1 1.45E-11 1
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the LSTM–PSO and the LSTM in monthly runoff

forecasting.

5.4 Monthly runoff forecasting based
on different models optimized by ALO

To verify the performance of the LSTM–ALO, other three

approaches are also adopted to forecast the monthly runoff

series. The BP, RBNN and LSSVM models are employed

to compare with the LSTM–ALO model. We optimize the

parameters of hidden layer and output layer weight coef-

ficient of the BP neural network, diffusion degree and

maximum neuron number of radial basis functions in the

RBNN model and the penalty factor of the LSSVM model

by using ALO respectively. Three-fourths of the datasets

are adopted to calibration while the validation process

employs one-fourths of the dataset. The forecast results of

four models (LSTM–ALO, BP–ALO, RBNN–ALO,

LSSVM–ALO) with five cases of input variables are given

in Table 4 in terms of the performance indices of NMAE,

RMSE, R2, and NSEC.

In Table 4, we can see that there is a general trend of the

prediction accuracy increasing as the time lag reached

three, and then the trend is stable. Compared with BP–

ALO, RBNN–ALO and LSSVM–ALO models, the

LSTM–ALO performs much better. It can be seen that the

change trend of results with the influence by inputs of the

LSTM–ALO model are relatively stable, of which reason is

that the LSTM–ALO can utilize a series of memory cells to

handle input data and enhance the learning ability of runoff

series.

In order to better understanding the origin of the errors

between the observed and predicted runoff, the RMSE has

been decomposed into three components, namely the

forecast bias (bias), the amplitude error SDbias and the

phase error DISP. The results are presented as Fig. 4.

As shown in Fig. 4, the RMSE of the LSTM–ALO is

much smaller than other models with each input model,

which shows the prediction error of the LSTM–ALO is

smaller than other models. The bias of the LSTM–ALO

model is much closer to zero than other models with the

same input, which demonstrates the variation of prediction
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error for the LSTM–ALO is smaller than others. The

amplitude error (SDbias) of the LSTM–ALO model is less

than other models, and SDbias is increasing while the time

lags increasing but there is little difference among M2 to

M5. The SDbias of the BP–ALO and the RBNN–ALO are

best when the time lag is four. The SDbias of the LSSVM–

ALO model is increasing with the time lags increasing. The

DISP of all models gets the best when the time lags are

three. From the overall point of view of Table 4 and Fig. 4,

when the time lags is three, the SDbias and DISP of all

models tend to be saturated, and the LSTM–ALO performs

best. Therefore, we choose M3 as the inputs of the monthly

runoff forecasting models. The observed and predicted

runoff of four models for the validation period are shown in

Table 5.

To further analyze the prediction performance of the

LSTM–ALO, Fig. 5 shows the scatter plots of the observed

and predicted runoff in comparison with the LSTM–ALO,

BP–ALO, RBNN–ALO and LSSVM–ALO models. In

contrast to the wide deviations by BP–ALO, RBNN–ALO

and LSSVM–ALO models, the LSTM–ALO model leads

to much stronger correlations between the observed and

predicted runoff, which is consistent with the highest R2 of

LSTM–ALO as shown in Table 4, and it can be seen that

the predictions by the LSTM–ALO have the minimal

deviations and the strongest correlation. This is mainly due

to the fact that the LSTM–ALO model can capture the

long-term dependence of runoff series.

To compare among these models with more detailed

analysis, the box-plots in Fig. 6 are utilized to indicate the

degree of overall spread in the observed and predicted

runoff series. We generate box-plots with the respective

distributions of the original monthly runoff series and all

approaches. Based on the box-plots, it can be seen that the

Table 5 Runoff prediction for LSTM–ALO, BP–ALO, RBNN–ALO and LSSVM–ALO models

Time (month) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Observed runoff 72 223 375 288 241 108 57 43 38 33 31 32 59 281 574 479 248

LSTM–ALO 73 240 388 328 186 99 57 36 31 27 27 35 83 218 410 441 256

BP–ALO 67 192 400 330 207 115 16 46 31 53 53 57 66 149 426 471 211

BNN–ALO 49 230 355 389 179 111 47 40 59 59 44 44 53 174 400 384 262

LSSVM–ALO 59 216 370 402 139 127 52 40 40 53 46 50 60 165 403 427 268

Time (month) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Observed runoff 145 82 61 44 34 32 54 126 310 419 353 206 106 62 46 34 30

LSTM–ALO 105 70 52 43 36 32 37 89 304 470 375 231 105 65 48 41 36

BP–ALO 196 77 46 46 39 38 54 130 297 382 256 175 97 46 38 35 36

RBNN–ALO 148 65 55 83 51 38 48 154 317 375 333 175 110 53 52 62 34

LSSVM–ALO 127 71 59 68 38 33 49 146 309 386 316 182 109 61 47 43 28

Time (month) 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Observed runoff 30 30 69 208 440 612 306 147 65 49 42 38 35 33 78 389 347

LSTM–ALO 30 32 66 219 407 415 343 142 71 55 46 40 33 35 70 249 514

BP–ALO 46 60 64 181 391 375 414 170 105 44 35 53 60 60 61 197 446

RBNN–ALO 38 46 45 219 354 437 349 147 70 33 71 66 60 54 50 246 479

LSSVM–ALO 40 53 55 206 369 452 337 102 90 43 51 56 57 55 54 230 432

Time (month) 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

Observed runoff 343 261 83 45 38 35 34 33 33 123 245 349 271 221 119 53 39

LSTM–ALO 329 225 125 61 45 41 35 29 34 86 308 405 304 185 94 57 39

BP–ALO 269 153 131 10 68 37 58 64 64 66 300 393 247 188 120 40 19

RBNN–ALO 256 145 132 38 39 59 54 55 52 54 364 294 341 165 107 60 18

LSSVM–ALO 354 198 137 49 36 43 54 58 57 60 353 314 313 123 114 61 17

Time (month) 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

Observed runoff 35 31 30 31 49 203 399 241 224 104 63 44 37 35 32 33

LSTM–ALO 35 34 31 40 98 239 371 364 185 96 58 37 32 31 32 41

BP–ALO 24 51 54 58 66 121 390 385 181 103 12 49 29 45 59 58

RBNN–ALO 51 53 40 43 50 133 392 417 142 94 41 57 51 53 56 45

LSSVM–ALO 30 49 45 51 59 130 406 434 135 117 41 54 34 45 56 50
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spread of predictions based on the three LSTM models

(LSTM–ALO, LSTM–PSO, LSTM) closely resembled the

observed runoff between the 25th percentiles to the 75th

percentiles. On the other hand, BP–ALO, RBNN–ALO and

LSSVM–ALO models show that poorer predictive cover-

age for the lower flows when compared to the observed

runoff and the LSTM models. In the three LSTM models,

LSTM–ALO is closer to the observed runoff between the

50th percentiles to the 75th percentiles than other two

LSTM models (LSTM–PSO, LSTM), and the outliers of

LSTM–ALO are closest to the observed runoff. Therefore,

the LSTM–ALO is the most effective model in terms of

forecasting monthly runoff accurately for the validation set.

6 Conclusions

The accuracy of LSTM–ALO model had been investigated

for monthly runoff forecasting in this study. Different

combinations of runoff data in the Astor River Basin of

Northern Pakistan were discussed for choosing as the input

variables of the LSTM–ALO. The simulation results by the

LSTM–ALO were compared with those of the LSTM and

LSTM–PSO. The comparisons show that the ALO could

increase the accuracy of the LSTM model in forecasting

monthly runoff with different inputs of the models. The

BP, RBNN and LSSVM models were also compared with

three LSTM models for monthly runoff forecasting. All the

parameters of these models are optimized by ALO and

evaluated by the indexes of NMAE, RMSE, R2 and NSEC.

We find that the performances of all models are becoming

better with time lags increasing and the LSTM–ALO is the

best among these models. The prediction ability of the

LSTM–ALO with few time lags is much better than other

models. Meanwhile, it should be noticed that the time lags

have little influence on the LSTM–ALO. For further

analysis, the bias, the amplitude error and phase error of the

LSTM–ALO were less than other models. Therefore, the

LSTM–ALO model can improve the prediction accuracy of

the monthly runoff forecasting.
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