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Abstract
The use of complex statistical models has recently increased substantially in the context of species distribution behavior.

This complexity has made the inferential and predictive processes challenging to perform. The Bayesian approach has

become a good option to deal with these models due to the ease with which prior information can be incorporated along

with the fact that it provides a more realistic and accurate estimation of uncertainty. In this paper, we first review the

sources of information and different approaches (frequentist and Bayesian) to model the distribution of a species. We also

discuss the Integrated Nested Laplace approximation as a tool with which to obtain marginal posterior distributions of the

parameters involved in these models. We finally discuss some important statistical issues that arise when researchers use

species data: the presence of a temporal effect (presenting different spatial and spatio-temporal structures), preferential

sampling, spatial misalignment, non-stationarity, imperfect detection, and the excess of zeros.

Keywords Geostatistics � Hierarchical Bayesian models � INLA � Point processes � Preferential sampling �
SPDE

1 Introduction

Understanding spatio-temporal dynamics of species or

diseases is a key issue in many research areas such as

ecology or epidemiology. Indeed, the so-called Species

Distribution Models (SDMs), which link information on

the presence/absence or abundance of a species to envi-

ronmental variables to predict where (and how much of) a

species is likely to be present in unsampled locations or

time periods, are important tools in many applied fields.

In the particular case of ecology, SDMs have been

implemented in different theoretical and practical cases,

including the identification of critical habitats (Zhang

2007; Zhang et al. 2008; Paradinas et al. 2015; Rufener

et al. 2017; Sadykova et al. 2017), the study of the risk

associated with invasive species (Fitzpatrick et al. 2007;

Luo and Opaluch 2011), the potential effects of climate

change (Iverson et al. 2004; Araújo et al. 2005; Brown

et al. 2016), the design of protected areas, the protection of

threatened species (Parviainen et al. 2008; Roos et al.

2015), the distribution of bioclimatic indices (Barber et al.

2017), the reintroduction of vulnerable species (Danks and

Klein 2002; Martinez-Meyer et al. 2006; Hendricks et al.

2016), the delineation of hot spots of biodiversity and

species richness (Jiménez-Valverde and Lobo 2007; Gotelli

et al. 2009; Goetz et al. 2014), the potential distribution of

infectious diseases (Peterson et al. 2002; Fatima et al.

2016; Juan et al. 2017; Martı́nez-Bello et al. 2017; Martı́-

nez-Minaya et al. 2018), among many others.

SDMs have also been used in many other contexts, for

instance evolutionary biology, where they have been

applied to topics such as speciation or hybrid zones (Kozak

et al. 2008); in humans epidemiology, to predict the spread

of diseases in humans (Gosoniu et al. 2006), in veterinary

epidemiology (González-Warleta et al. 2013; Barber et al.
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2016), in plants epidemiology (Meentemeyer et al. 2011;

Václavı́k and Meentemeyer 2009; Neri et al. 2014; White

et al. 2017), etc.

Several review papers on SDMs already exist (see for

example, Guisan and Thuiller 2005; Elith and Leathwick

2009), but most of them are focused on the modeling of

species data, maintaining a more general overview of the

statistical critical issues. Our intention in this review is to

describe in more detail some of the statistical issues that

arise when dealing with SDMs.

In addition, the quantity and the quality of available

datasets has substantially increased over the past ten years,

resulting in a higher complexity of the statistical issues that

have to be addressed when a SDM is performed. Moreover,

a detailed spatial and temporal description of the modeled

phenomenon is becoming mandatory in many research

fields. As a consequence of this increasing complexity, the

performance of the SDM inferential and predictive pro-

cesses are becoming more challenging, forcing researchers

to develop new sophisticated statistical techniques.

Accordingly, new modeling approaches continue to be

developed because using only geographic information

systems (GIS) tools is not totally satisfactory because of

the type of spatial data usually available. Indeed, over time

model complexity has generally increased over time from

the use of simple environmental matching (two good

examples are BIOCLIM, Busby 1991, and DOMAIN,

Carpenter et al. 1993) to the use of models incorporating

more complex non-linear relationships between species

presence and the environment, such as generalized additive

models (Guisan et al. 2002), neural networks (Park et al.

2003), or multivariate adaptive regression splines (Leath-

wick et al. 2005).

But more importantly, although most of the methods

described in previous reviews (see for example, Guisan and

Thuiller 2005; Elith and Leathwick 2009) have increased in

their complexity, they are based on the assumption that the

observations are conditionally-independent, while species

distribution data often depict residual spatial autocorrela-

tion (Kneib et al. 2008; Beale et al. 2010). In this review,

we will focus on the fact that the spatial autocorrelation

should be taken into account in species distribution models,

even if the data were collected in a standardized sampling,

since the observations are often close and subject to similar

environmental features (Muñoz et al. 2013). Other com-

plications also arise in the modeling of the species due to

imperfect survey data such as observer error, gaps in the

sampling, missing data, the spatial mobility of the species

(Latimer et al. 2006) and the fact that data have been

collected over long periods of time. As a consequence,

ignoring these issues in this type of analysis could lead to

misleading results.

As a consequence, the use of spatial and spatio-temporal

models has grown enormously, allowing the incorporation

of all these issues into the modeling process (Banerjee

et al. 2014). Although there are other types of spatial data

that could describe the behavior of a species (see for

instance, Gelfand et al. 2010, for a detailed description of

the three types of spatial data), we will focus in this review

on geostatistical or point-referenced data that derive from

those situations where the concern is to analyze spatially

continuous phenomena. Bearing in mind that we want to

include the effect of possible covariates in the modeling or

to apply it to situations in which the stochastic variation in

the data is known to be non-Gaussian, we will deal with the

model-based geostatistics approach (Diggle and Ribeiro

2007).

This combination of non-Gaussian data, a linear pre-

dictor and unobserved latent variables usually makes esti-

mation and prediction computationally difficult. Bayesian

inference proves to be a good option to deal with spatial

hierarchical models because it allows both the observed

data and model parameters to be random variables (Ban-

erjee et al. 2014), resulting in a more realistic and accurate

estimation of uncertainty. Another advantage of the

Bayesian approach is the ease with which prior information

can be incorporated. Note that prior information can usu-

ally be very helpful in discriminating spatial autocorrela-

tion effects from ordinary non-spatial linear effects

(Gaudard et al. 1999). But, as is usual in Bayesian complex

models, inference needs numerical approaches. Among

them, in this review we will emphasize on the use of the

integrated nested Laplace approximation (INLA) method-

ology (Rue et al. 2009) and software (http://www.r-inla.

org) as an alternative to Markov chain Monte Carlo

(MCMC) methods, the main reason being the speed of

calculation.

To summarize, our intention in this review is to describe

in more detail the main statistical issues that arise when

dealing with these models. In particular, in Sect. 2 we

focus on the statistical aspects of the available data, while

Sect. 3 discusses the basic structure of these models and

how to perform inference. In particular, we provide a

critical review of the Bayesian approach along with a

detailed description of INLA. Our review also includes a

discussion on some of the particularities appearing when

dealing with them, including temporal correlation, prefer-

ential sampling, spatial misalignment, non-stationarity,

imperfect detection and excess of zeros in Sect. 4. Finally

Sect. 5 concludes. To be noted is that we have tried to be

simple in the notation so that the paper is readable by a

large community of scientists.
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2 Sources of information in SDMs

SDMs require basically two types of data input: data

describing the observed species’ distribution, and data

describing the landscape and the environmental charac-

teristics in which the species can be found. In this Sec-

tion we first present biological data, i.e. the observed

species distribution, and then the environmental data and

the usual covariates that characterize the species

distribution.

2.1 Biological data

The first type of data, which usually represent the response

variable, can be either presence-only (i.e. records of

localities where the species has been observed), presence/

absence (i.e. records of presence and absence of the sam-

pling localities), abundance data (i.e. the quantity of the

species at the sampling locations), or proportional data (i.e.

the proportion of the species at the sampling locations).

Consequently, biological data can be measured at nominal

(e.g. presence/absence type), ordinal (e.g. ranked abun-

dance), ratio (e.g. frequency of detection) or continuous

(e.g. abundance, richness) levels, which impacts on the

selection of the appropriate types of modeling algorithms

to use, and subsequently the measurement level of model

of this kind (e.g. probability or suitability of occurrence,

type, expected mean).

Presence-only data lack absence observations, so that

this type of dataset is unsuitable for many of the commonly

used species distribution algorithms, unless pseudo�
absences are assigned to unsampled portions of the study

area. Inclusion of pseudo� absences records can seriously

bias analyses. Indeed, methods used to generate pseudo-

absences and their effects on model performance are an

open research field in the species distribution context

(Barbet-Massin et al. 2012; Iturbide et al. 2015).

With respect to abundance, this could be expressed as a

continuous variable (biomass of the species) or as count

data (number of individuals). Abundance data reflect the

quantitative spatial distribution of the species within the

area of interest, while presence/absence information can be

used to measure the relative occurrence of species, thereby

giving a different approximation. Although abundance data

provide greater information for conservation and manage-

ment purposes, they are less common, because occurrence

data are easier and less expensive to be collected. Indeed,

abundance estimations are sensitive to detectability, and

sampling methods seldom detect all individuals present in

an area. Consequently, many research studies rely on

approximations of species abundance from species occur-

rence, although whether abundance can be inferred from

such information has been questioned, because detection is

not perfect and occurrence probability may not be linearly

related to density (Nielsen et al. 2005; Joseph et al. 2006).

Proportional data are also widely used in many eco-

logical processes. The traditional approach in ecology is

based on Gaussian linear models with previous transfor-

mation in the proportions. However, model parameters

cannot be easily interpreted in terms of the original

response, and measures of proportions typically display

asymmetry: hence, inferences based on the normality

assumption can be misleading (Ferrari and Cribari-Neto

2004). Beta regression has recently appeared as a good

alternative to deal with data of this type, allowing bounded

estimates and intervals with model parameters that are

directly interpretable in terms of the mean of the response

(Paradinas et al. 2016, 2017b).

Also to be noted is that different species do not behave

independently. There are several species whose abundance

(or presence) is constrained by competition: a large

increase in one is unavoidably linked to declines in others.

In these cases, the response variable should be considered

by using a joint distribution. The models used for data of

this type are known as joint species distribution models

(Clark et al. 2014; Pollock et al. 2014; Hui 2017; Taylor-

Rodrı́guez et al. 2017).

All these types of biological data describing the

observed species distribution can be obtained in a variety

of ways, such as museum collection, designed field sur-

veys, related activities (i.e. fisheries) or on-line resources.

2.2 Environmental data

With respect to the explanatory variables that could help to

describe the species behavior, a wide range of environ-

mental variables have been usually incorporated in SDMs.

These variables are commonly related to climate (e.g.

temperature, precipitation), topography (e.g., elevation,

aspect, bathymetry, slope of the seabed), land cover type or

seabed type in marine ecosystems. Variables tend to

describe primarily the abiotic environment, although there

is potential to include biotic interactions within the

modeling.

These variables can be collected in situ, but they are

usually derived from remoted sensing data. CRU (New

et al. 2002), WorldClim (Hijmans et al. 2005), and

MARSPEC (Sbrocco and Barber 2013) are all examples of

spatially explicit datasets of climatic remote sensing con-

ditions. These datasets encompass climatic information

based on interpolations from global weather stations.

However, interpolations are only as good as the underlying

data, and uneven geographical coverage leads to high

model uncertainty, especially in developing countries

where few weather stations are in place (Daly 2006; He
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et al. 2015). When uncertainty in spatial climate variables

is not accounted for, coefficient estimates tend to be biased,

and this leads to poor performances of the SDMs, as

recently shown with simulations by Stoklosa et al. (2015).

This problem, also known as misalignment, is treated in

this review in Sect. 4.3.

3 Inference

In what follows, after presenting the traditional methods

that have been used to perform inference in SDMs, we first

discuss the hierarchical modeling as one of the most flex-

ible and encompassing approaches to deal with them. The

second subsection presents the Bayesian framework as a

good option for dealing with hierarchical models. The final

subsection deals with the INLA approach to approximating

the marginal posterior distributions of the parameters

involved in the SDMs.

3.1 Gaussian fields and hierarchical modeling

A number of alternative modeling algorithms have been

applied to classify species distribution as a function of a set

of environmental variables. A first group of methods

developed to deal with presence-only datasets includes

maximum entropy algorithm, environmental distance,

similarity, and envelope methods such as MAXENT

(Phillips et al. 2006), Gower metric, Mahalanobis distance,

and ecological niche factor analysis, all of which describe

some measure of habitat suitability.

A second group involves machine-learning algorithms

that are iterative in nature, such as artificial neural net-

works. These ensemble methods (e.g. Boosting Regression

Trees, Classification Trees and Random Forests) generally

involve developing multiple models on different subsets of

the data, the results of which are averaged (Franklin 2010).

A third group of methods relates to traditional regression

and includes generalized linear models (GLM) and their

non-parametric extension, generalized additive models

(GAM), both of which can handle several measurement

levels of the response variable by using a different link

function (e.g. logistic for presence/absence or log for

counts). GAM and a related method, multivariate adaptive

regression splines (MARS), are more flexible than GLM as

they are fitted using smoothing and piecewise linear

splines, respectively, and are particularly useful for iden-

tifying the shape of species responses (Leathwick et al.

2005). MARS is computationally faster than GAM and the

results are more easily converted to map predictions in a

GIS; however, the currently used algorithms require nor-

mally distributed error terms. This makes MARS unsuit-

able for use with presence/absence data unless the basis

functions are extracted and used to parameterize a GLM

(Leathwick et al. 2005). Rodrı́guez de Rivera and López-

Quı́lez (2017) present a comparison of these three groups

of methodologies stating that GAM models gave the best

results.

However, most of the above mentioned methods are

based on the assumption that the observations are condi-

tionally-independent. But this is not always the case bea-

cause data of species distribution usually present residual

spatial autocorrelation (Kneib et al. 2008). GAMs and

MARS can model spatial and temporal autocorrelation

using smoothing splines. A very powerful and flexible

alternative is to incorporate this spatial relationship by

considering the species distribution data as point-refer-

enced or geostatistical data. Data of this type appear in

those situations where the interest is to analyze spatially

continuous phenomena. The most basic format for data of

this kind is a pair composed by the spatial location coor-

dinates defined throughout a continuous study region and

the measurement value observed in the location. Geosta-

tistical data require methods that make it possible to relate

the species data with potential related covariates by

quantifying the spatial dependence. However, one of the

main interests in geostatistics concerns predicting the

underlying process on those non-observed locations

(Cressie and Wikle 2011; Banerjee et al. 2014).

Geostatistical or point-referenced data can be seen as

realizations of a spatial process (random field) fyðsÞ; s 2
Dg characterized by a spatial index s which varies con-

tinuously in the fixed domain D. This process is called a

Gaussian field (GF) if for any n� 1 and for each set of

locations ðs1; . . .; snÞ, the vector ðyðs1Þ; . . .; yðsnÞÞ follows a
multivariate Normal distribution with mean l ¼
ðlðs1Þ; . . .; lðsnÞÞ and with covariance matrix R defined by

a covariance function Cð�; �Þ, such that

Rij ¼ CovðyðsiÞ; yðsjÞÞ ¼ CðyðsiÞ; yðsjÞÞ. If the mean is

constant in space, i.e. lðsiÞ ¼ l for each i, and the generic

spatial covariance matrix element depends only on the

difference vector ðsi � sjÞ 2 R2, the spatial process is

second-order stationary. In addition, if the covariance

function only depends on the Euclidean distance jjsi � sjjj,
the process is said to be isotropic.

In a hierarchical framework, the first step in defining a

model for a random field is to identify a probability dis-

tribution for the observations available at n spatial loca-

tions and represented by the vector

y ¼ ðyðs1Þ; . . .; yðsnÞÞ ¼ ðy1; . . .; ynÞ (the notation is sim-

plified and the index i is used for denoting the generic

spatial points si). At the first level of the hierarchy, we

usually select a distribution from the exponential family,

characterized by a set of parameters. These parameters are

linked with a linear predictor which also includes a latent
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GF denoted by nðsÞ whose covariance function R depends

on two parameters: r2 which represents the variance

(partial sill in kriging terminology) and the range / of the

spatial effect.

Computational costs required to estimate these param-

eters are high when we deal with the spatial covariance

function because the generated matrices are dense. This

problem is known as the ‘‘big n problem’’ (Banerjee et al.

2014; Jona Lasinio et al. 2013) and despite computational

power today, it is still a computational bottleneck in many

situations. A computationally effective alternative is given

by the stochastic partial differential equation (SPDE)

approach proposed by Lindgren et al. (2011) (see

Sect. 3.3).

In addition to the spatial pattern, the temporal variation

could be equally important because the phenomenon can

vary not only in space but also in time (see Hefley and

Hooten 2016, for a comprehensive overview of modeling

species distribution with a spatio-temporal perspective).

Then, extending the spatial case to the spatio-temporal case

including a time dimension, the process indexed by space

and time can be defined as fyðs; tÞ; ðs; tÞ 2 D � R� Rg,
and is observed at n spatial locations and at T time points.

The general structure for modeling the spatial distribu-

tion of species is given by the following formulation and

notation. If y ¼ ðy1; . . .; ynÞ represents the observed values

of the corresponding response variable Y with mean

l ¼ ðl1; . . .; lnÞ, each li can be easily linked to a struc-

tured additive predictor gi through a link function gð�Þ, so
that gðlÞ ¼ g. The structured additive predictor g accounts

for the effect of various covariates in an additive way:

gi ¼ b0 þ
XM

m¼1

bmxmi þ
XL

l¼1

flðzliÞ; ð3:1Þ

where b0 corresponds to the intercept; the coefficients b ¼
fb1; . . .; bMg quantify the (linear) effect of some covariates

x ¼ ðx1; . . .; xMÞ on the response; and f ¼ ff1ð�Þ; . . .; fLð�Þg
are unknown functions of the covariates z ¼ ðz1; . . .; zLÞ,
and can assume different forms such as smooth nonlinear

effects of covariates, time trends and seasonal effects,

random intercept and slopes as well as temporal or spatial

random effects. Note that this general structure can also be

seen as a Generalized Additive Mixed Model (GAMM).

Also to be noted is that here it is assumed that covariates

are observed at the same locations of the response variable.

The situation where covariates are observed in locations

different from those of the response variable (misalign-

ment) will be discussed in Sect. 4.3.

In many statistical applications, in particular, in SDMs,

the model involves multiple parameters that can be regar-

ded as related or connected in some way by the structure of

the problem, implying that a joint probability model for

these parameters should reflect their dependence (Gelman

et al. 2014). It is common to model such a problem hier-

archically, with observable outcomes modeled condition-

ally on certain parameters, which in turn are given a

probabilistic specification in terms of further parameters,

adding various levels of the modeling and thus defining a

hierarchical model (HM). Note that Hierarchical models

provide a generalization of all the models presented here;

and moreover that they are able to deal with all the types of

the data that we can be found when dealing with SDMs.

Table 1 describes all the models mentioned in this sub-

section along with a diagram emphasizing their nested

nature.

Although other approaches can be used such as maxi-

mum likelihood (MLE; Le Cam 1990), restricted maxi-

mum likelihood (RMLE; Bartlett 1937), quasi-maximum

likelihood (QMLE; Cox and Reid 2004), the method of

moments (Bowman and Shenton 2006), the generalized

method of moments (GMM; Hansen 1982), M-estimators

(Shapiro 2000), the maximum spacing estimation (MSE;

Anatolyev and Kosenok 2005), etc., here we will focus on

the Bayesian approach to making inference for hierarchical

models with a linear predictor of the form (3.1).

3.2 Bayesian approach

The use of the Bayesian framework as a way to make

inference has increased in the past 50 years and it has been

applied in different areas, such as social sciences (Jackman

2009), medicine and public health (Berry and Stangl 1999),

finance (Rachev et al. 2008), ecology (McCarthy 2007),

bioinformatics (Mallick et al. 2009), health economics

(Baio 2012), physical sciences (Andreon and Weaver

2015) and econometrics (Gómez-Rubio et al. 2014).

Bayesian reasoning is based on the assumption that

parameters are random variables, and prior knowledge has

to be incorporated via the corresponding prior distributions

of the said parameters. Bayes’ theorem is the tool that

combines prior information with the likelihood yielding the

posterior distributions. To be noted is that the Bayesian

approach is perfectly suited for complex spatial models

such as SDMs because it allows model parameters to be

random variables, resulting in a more realistic and accurate

estimation of uncertainty.

SDMs are a very good example of a hierarchical struc-

ture that can be expressed as a hierarchical Bayesian model

(Wikle and Hooten 2010; Hefley and Hooten 2016). They

can be structured in three levels: the first one refers to the

data and is conditioned on the process and parameters in

whatever aspects of the process are appropriate. The sec-

ond level contains the latent components, which can be

spatial and/or dynamic and the stochastic form can be

univariate or multivariate. Finally, the third stage defines
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the priors for the parameters on which the latent processes

depend. The parameters in this level are also known as

hyperparameters.

The approach most commonly used to perform Bayesian

inference for spatial species distribution models is based on

MCMC methods (Gelfand et al. 2006); they are flexible

computational tools which can be easily adapted to any

kind of inferential problem. The software most frequently

used to implement MCMC algorithms are WinBUGS (Lunn

et al. 2000; Brooks et al. 2011), OpenBUGS (Lunn et al.

2009) and JAGS (Plummer 2016), which can also be run

within other programs like R (through the R2OpenBUGS,

R2WinBUGS, BRugs and rjags packages), Stata and

SAS. Alternatively other R packages are BayesX (Brezger

et al. 2003), CARBayes (Lee 2013), stocc (for binary

data only), spatcounts (for count data only), CAR-

ramps (for Gaussian data only), and spdep (for Gaussian

data only). Several hierarchical models including ecologi-

cal processes (habitat suitability, spatial dependence and

anthropogenic disturbance) and observation processes

(species detectability) can also be performed using the

hSDM package of R developed by Vieilledent et al. (2014).

Functions in this R package use an adaptive Metropolis

algorithm (Robert and Casella 2011) in a Gibbs sampler

(Gelfand and Smith 1990) to obtain the posterior distri-

bution of model parameters. The Gibbs sampler is written

in C code and compiled to optimize computation effi-

ciency. Thus, the hSDM package can be used for very large

data-sets while drastically reducing the computation time.

However, with hSDM it is not possible at present to model

spatio-temporal or proportion response variables.

Despite their generalized use, to be noted is that MCMC

methods still have many challenges to deal with (like the

so-called ‘‘big n problem’’ mentioned above; see Banerjee

et al. 2014; Jona Lasinio et al. 2013). Indeed, they can be

extremely slow and even computationally unfeasible

especially when the models are extremely complex (with

many random effects or hierarchical levels) or when big

datasets are considered in the space-time setting.

As a result, other options have appeared to make

inference in SDMs. Taking advantage of the hierarchical

structure of SDMs, Golding and Purse (2016) propose the

use of an empirical Bayesian approach. In particular, they

maximize the marginal posterior density of the model,

which, in their words, enables the incorporation of prior

knowledge over hyperparameters whilst being much less

computationally intensive than fully Bayesian inference.

Here, we will focus on the integrated nested Laplace

approximation (INLA) methodology (Rue et al. 2009), as a

computational effective alternative to MCMC. Our choice

is due to two considerations: the speed of calculation, and

the ease with which model comparison can be performed.

3.3 INLA and SPDE framework

The INLA methodology is now a well-established tool for

Bayesian inference in several research fields, including

ecology, epidemiology, econometrics and environmental

science (Rue et al. 2017). It can be used through R with the

R-INLA package. For more details on INLA for spatial

and spatio-temporal models we refer the reader to Blan-

giardo et al. (2013) and Blangiardo and Cameletti (2015),

where practical examples and code guidelines are also

provided.

The reason why INLA can be used is that SDMs can be

seen as latent Gaussian models (Rue and Held 2005), for

which the class of models INLA is designed. After iden-

tifying the distribution for the observed data, we can link

its corresponding mean to the linear predictor as in

Eq. (3.1). If conditional independence is assumed, the

distribution of the n observations is given by the likelihood

pðy j h;wÞ ¼
Yn

i¼1

pðyi j hi;wÞ; ð3:2Þ

where h represents the set of latent (nonobservable) com-

ponents of interest h ¼ fb0; b; fg, also known as the latent

field, and w ¼ ðw1; . . .;wKÞ denotes the vector of K

hyperparameters. As we can observe in Eq. (3.2), each data

Table 1 Matching of models

presented and data types
Explanatory variable (s) Response variable distribution

NORMAL OTHER DIST. EXP. FAMILY

LP LM GLM

R. effects LMM GLMM

Non-Lin. effects AM GAM

R. effects ? Non-Lin. effects AMM GAMM

LM linear models, LMM linear mixed models, GLM generalized linear models, GLMM generalized linear

mixed models, AM additive models, AMM additive mixed models, GAM generalized additive models,

GAMM generalized additive mixed models, HM hierarchical models

By construction, these models are nested: LM\GLM\GAM\GAMM\HM

3232 Stochastic Environmental Research and Risk Assessment (2018) 32:3227–3244

123



point yi is connected to one element hi in the latent field.

This assumption can be relaxed, and each observation can

be connected with a linear combination of elements in h

(Martins et al. 2013). In addition, the multiple likelihood

case can also be taken into account.

In the context of latent Gaussian models, assumed is a

multivariate Normal prior distribution on h with mean 0

and precision matrix QðwÞ, i.e, h�Nð0;Q�1ðwÞÞ with

density function given by

pðh j wÞ ¼ ð2pÞ�n=2jQðwÞj1=2 exp � 1

2
h0QðwÞh

� �
; ð3:3Þ

being j � j the matrix determinant and 0 the transpose

operation. When the precision matrix QðwÞ is sparse a GF

becomes a Gaussian Markov random field (GMRF, Rue

and Held 2005). Interestingly, when making inference with

GMRFs, linear algebra operations are performed using

numerical methods for sparse matrices, and this yields

computational benefits.

In spite of the wide acceptance of INLA, its precision

and its computational efficiency in many latent Gaussian

models (see for instance, Martino et al. 2011; Schrödle

et al. 2011; Ruiz-Cárdenas et al. 2012, for a description of

how to use INLA in spatio-temporal disease mapping, in

state-space models and in survival models, respectively),

INLA cannot be directly applied when dealing with models

that incorporate geostatistical data (that is, continuously

indexed Gaussian Fields). The underlying reason is that a

parametric covariance function needs to be specified and

fitted based on the data, which determines the covariance

matrix R and enables prediction in unsampled locations.

But from the computational perspective, the cost of fac-

torizing the dense covariance matrix R is cubic in its

dimension. Despite current computational power, in many

situations it is still challenging to factorize it for computing

the inverse and the determinant.

Lindgren et al. (2011) proposed an alternative approach

by using an approximate stochastic weak solution to a

Stochastic Partial Differential Equation (SPDE) as a

GMRF approximation to a continuous Gaussian Field (GF)

with Matérn covariance structure. Specifically, they used

the fact that a Gaussian Field nðsÞ with Matérn covariance

is a solution to the linear fractional SPDE

ðj2 � DÞa=2ðsnðsÞÞ ¼ WðsÞ;
s 2 Rd; a ¼ mþ d=2; j[ 0; m[ 0;

ð3:4Þ

where D is the Laplacian, a controls the smoothness, j is

the scale parameter, s controls the variance, and WðsÞ is a
Gaussian spatial white noise process. The exact and sta-

tionary solution to this SPDE is the stationary GF nðsÞ with
Matérn covariance function given by:

CovðnðsiÞ; nðsjÞÞ ¼ Cðni; njÞ

¼ r2

2m�1CðmÞ ðjjjsi � sjjjÞmKmðjjjsi � sjjjÞ;
ð3:5Þ

being jjsi � sjjj the Euclidean distance between two loca-

tions si; sj 2 Rd, and r2 the marginal variance. Moreover,

Km is the modified Bessel function of the second kind and

order m[ 0, which measures the degree of smoothness of

the process. This parameter is usually kept fixed due to its

poor identifiability. Conversely, j[ 0 is a scaling param-

eter related to the distance at which the spatial correlation

becomes almost null, i.e., the range (for more information

on the Matérn covariance model see Handcock and Stein

1993; Stein 1999). Typically, as pointed out in Lindgren

et al. (2011), the empirically derived definition for the

range is r ¼
ffiffiffiffi
8m

p

j , with r corresponding to the distance at

which the spatial correlation is close to 0.1, for each m� 1
2
.

The link between Eqs. (3.4) and (3.5) is given by the

expressions m ¼ a� d
2
, and r2 ¼ CðmÞ

CðaÞð4pÞd=2j2ms2
. In the par-

ticular case where the dimension is 2, i.e., d ¼ 2, it follows

that m ¼ a� 1 and r2 ¼ CðmÞ
CðaÞð4pÞj2ms2.

Finally, in R-INLA, the Gaussian field nðsÞ is found

numerically as a weak solution to the SPDE in (3.4), and by

default the smoothness parameter a is fixed to 2, corre-

sponding with m ¼ 1. With this assumption, the range is

given by / � r ¼
ffiffiffi
8

p
=j, while the variance is given by

r2 ¼ 1=ð4pj2s2Þ.
Bayesian geostatistical analysis using R-INLA has

already been applied in various contexts. Along with

introducing the geostatsinla package for performing

geostatistics with INLA in an easy way, Brown (2015)

applies it in the context of mapping the Loa loa filiarasis

disease (a dataset previously cited in Diggle and Ribeiro

2007). Moreover, Karagiannis-Voules et al. (2013) have

used Bayesian geostatistical negative binomial models to

analyze reported incidence data of cutaneous and visceral

leishmaniasis in Brazil covering a 10-year period, while

González-Warleta et al. (2013) have used Bayesian geo-

statistical binomial models to predict the probability of

infection of paramphistomosis in Galicia (NW Spain). In

the context of fisheries, Bayesian geostatistical analysis

using R-INLA has also been used to predict the presence/

absence, the abundance, or the proportion of fish species

(Muñoz et al. 2013; Pennino et al. 2013, 2014, 2016, 2017;

Paradinas et al. 2015, 2016; Cosandey-Godin et al. 2015;

Quiroz et al. 2015; Roos et al. 2015; Rufener et al. 2017).
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4 Extending statistical modeling of species
distribution

There are a number of additional potential sources of bias

and error that should be carefully considered when ana-

lyzing and modeling species distribution data. Errors may

arise through the incorrect identification of species, or

inaccurate spatial referencing of samples. Biases can also

be introduced because collectors tend to sample in easily

accessible locations. Here we discuss some of these issues.

4.1 Temporal autocorrelation

As mentioned above, in addition to the spatial pattern, the

temporal variation could be equally important because the

phenomenon may vary not only in space but also in time.

This happens in problems such as the evolution of epi-

demics (Stein et al. 1994; Hefley et al. 2017b), the spatio-

temporal evolution of temperature (Hengl et al. 2012) or

the understanding of the spatial dynamism of species over

time (Wikle 2003; Hooten et al. 2007; Hooten and Wikle

2008; Paradinas et al. 2015, 2017a; Williams et al. 2017).

As pointed out by Cressie and Wikle (2011), temporal

correlation depends on the same principle as spatial cor-

relation: temporally close observations tend to be more

related than temporally distant ones. Consequently, model

fitting and predictions improve when a temporal term is

added. However, temporal and spatial scales are different

and the spatio-temporal analysis is more complicated than

the simple addition of an extra dimension to the continuous

spatial domain.

In the context of species distribution modeling, most

studies (surveys, plant coverage surveys, air pollution

surveys, etc.) have been repeated periodically for long

periods of time (Gitzen 2012; Aizpurua et al. 2015).

Although the main interest is the spatial evolution of the

system under study, it must be considered that it varies not

only in space but also in time. Here we focus on this most

common situation of discrete and regular time observa-

tions. For situations in which data are collected in irregular

time-lags—that is, when the issue is handling continuous-

time data—a good option is to consider 1D SPDE models

with a second order B-Spline basis representation (Lind-

gren and Rue 2015a, b).

The spatio-temporal behavior of the data can vary

depending on the nature of the process under study and the

available sampling resolution. In particular, the basic

model in (3.1) can be rewritten by splitting the f term into

two terms, one indicating different possible spatio-tempo-

ral structures, and the other indicating any other latent

model or non-linear effect. If yit represents the response

variable analyzed at location si (i ¼ 1; . . .; n) at time t

(t ¼ 1; . . .; T), then the mean of the response variable lit is
linked to the linear predictor with a link function gð�Þ, as

git ¼ gðlitÞ ¼ b0 þ
XM

m¼1

bmxmit þ
XK

k¼1

fkðzkitÞ þ uit; ð4:1Þ

where b0 corresponds to the intercept; the coefficients b ¼
fb1; . . .; bMg quantify the linear effect of some covariates

on the response; uit represents the spatio-temporal structure

of the model; zkit is the value of the k-th explanatory

variable at a given location si and time t; and f represents

any latent model applied to the covariates.

Among other structures, and following Paradinas et al.

(2017a), we comment here on four basic structures for uit,

each one allowing for different degrees of flexibility in the

temporal domain of the spatio-temporal model. Paradinas

et al. (2017a) provide a figure that schematically illustrates

all these structures:

– Opportunistic spatial distribution this flexible struc-

ture consists in expressing uit as different spatial

realizations wt ¼ fw1t; . . .;wit; . . .;wntg of the same

spatial field for each time unit t, while sharing a

common covariance function (same j and s) to avoid

overfitting:

uit ¼ wit;

wt � Nð0;Q�1ðj; sÞÞ:
ð4:2Þ

This structure is a good approximation for processes

where the spatial distribution varies considerably

among different time units and unrelatedly among

neighboring times. This structure has been used in

Cosandey-Godin et al. (2015) and in Paradinas et al.

(2015).

– Persistent spatial distribution with random intensity

changes over time when the pattern of spatial variation

persists over time, but with possibly varying scales of

intensity, a time structure is introduced into the model

using a zero mean Gaussian random noise effect vt. In

this case, uit is decomposed in a common spatial

realization wit along with an independent random noise

effect vt that absorbs the different mean intensities at

each time t:

uit ¼ wit þ vt;

wt � Nð0;Q�1ðj; sÞÞ;
vt � Nð0; s�1

v Þ:
ð4:3Þ

For processes where the spatial component persists in

time, this structure may be the most suitable. It has

been used by Pennino et al. (2014) and in Paradinas

et al. (2015).
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– Persistent spatial distribution with temporal inten-

sity trend the process could show a temporal progres-

sion in its mean. To model that, a temporal trend effect

h(t) can be added to the linear predictor. In this case, uit
is decomposed into a common spatial realization wi and

an independent temporal structured trend h(t) to absorb

the temporal progression of the process:

uit ¼ wi þ hðtÞ;
w� Nð0;Q�1ðj; sÞÞ:

ð4:4Þ

This structure is highly recommended in situations

where a temporal tendency is present. It was proposed

by Paradinas et al. (2016) to identify intra-annual

trends in fishery discards.

– Progressive spatio-temporal distribution this struc-

ture incorporates both spatial and temporal correlation

of the data to accommodate those cases where the

spatial realizations change in a related manner over

time. Here, uit is decomposed into a common spatial

realization wit and an autoregressive temporal term rit
expressing the correlation among temporal neighbors of

order K:

uit ¼ wit þ rit;

wt � Nð0;Q�1ðj; sÞÞ;

rit � N
XK

k¼1

qkriðt�kÞ; s
�1
r

 !
:

ð4:5Þ

This structure is preferred when the spatial realization

varies between different times but not as much as in

(4.3). Indeed, the structure has been used by Cameletti

et al. (2011, 2013) and also by Cosandey-Godin et al.

(2015).

Note that this list is only an overview of the different

spatio-temporal structures which allow us to discern the

nature of the general spatial behavior of the process over

time. Unfortunately, the temporal resolution of spatio-

temporal datasets is typically too low to fit most of the

highly structured models.

4.2 Preferential sampling

In studies on species distributions, collecting data on the

species of interest is not a trivial problem. With the

exception of a few studies, species distribution models

rely on opportunistic data collection due to the high cost

and time-consuming nature of collecting data in the field,

especially on a large spatial scale. As an example, studies

on bird monitoring data are often collected by volunteers

who concentrate the sampling process on areas where they

expect to find species of interest. These types of

opportunistically collected data tend to suffer from a

specific complication: the sampling process that determi-

nes the data locations and the species observations are not

independent (Diggle et al. 2010). Statistical models used

for species distribution usually assume, if only implicitly,

that sampling is non-preferential and that the selection of

the sampling locations does not depend on the values of

the spatial variable. However, opportunistic data are a

clear example of preferential sampling, that occurs

because sampling locations are deliberately chosen in

areas where the values of the species of interest are

thought likely to be particularly high or low (Diggle et al.

2010).

Hence, applying standard geostatistical methods to

preferentially sampled data potentially yields biased results

if the choice of monitoring locations is not accounted for in

the modeling process. A possible approach to correct this

issue is to interpret the data as a marked point pattern

(Fortin and Dale 2005; Diggle 2013) where the sampling

locations form a point pattern and the observations taken in

those locations are the marks. By assuming that the

intensity of the point process depends on the amount of

species of interest, the marks and the pattern become not

independent.

A preferential sampling model can be considered as a

two-part model that share information. Firstly, it is sup-

posed that the observed locations ðs1; . . .; snÞ come from a

non-homogeneous Poisson process with intensity

Ki ¼ exp a1 þ wif g, i.e., a log-Gaussian Cox process

(LGCP; Fortin and Dale 2005; Diggle 2013) is assumed,

being a1 the intercept of the LGCP and wi the spatial effect

of the model and i ¼ 1; . . .; n the index corresponding to

the si location. Secondly, the species characteristic (usually

the abundance) yi is assumed to follow an exponential

family distribution (such as a Normal or a Gamma distri-

bution when dealing with abundances, although other

options such as exponential, lognormal, etc., could clearly

be possible), whose mean is related with the spatial term

using a link function gð�Þ, gðliÞ ¼ a2 þ bwi, being a2 the

intercept of the model and wi the spatial term shared with

the LGCP, but scaled by b to allow for the differences in

scale between the abundances and the LGCP. More for-

mally, the model can be expressed as follows:

yi � Fðli; c2Þ
gðliÞ ¼ a2 þ bwi

w� Nð0;Q�1ðj; sÞÞ
ð4:6Þ

where w ¼ fw1; . . .;wng, the precision matrix Qðj; sÞ is

computed internally by the SPDE approach and represents

the GMRF approximation to the continuous GF (see Illian

et al. 2012; Krainski et al. 2017; Pennino et al. 2018, for

details about how to implement these models within
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INLA), and Fðl; cÞ represents a distribution coming from

the Exponential family with mean l and variance c2.

4.3 Spatial misalignment

A crucial issue in studying the effect of environmental

physical factors on species distribution concerns spatial

misalignment (Clark and Gelfand 2006; Gelfand et al.

2010; Foster et al. 2012; Miller 2012).

This occurs when the response biological variable (e.g.

presence/absence of the species) is observed in locations

which are different from the spatial points where covariate

data are available. Additionally, it can happen that

covariates have a different spatial scale if they are defined

at the area or cell grid level (as in the case of remote

sensing data).

The naı̈ve solution for spatial misalignment is a two-

stage approach: the first step consists in the prediction of

the covariate in the spatial locations where the response

variable is observed (through a geostatistical model by

means of kriging or inverse-distance weighting) or in the

downscaling of the gridded covariate to the point-level

resolution (usually considered is the value of the cell where

the spatial point is located). Then, at the second stage, these

predicted values are plugged into the linear predictor (3.1)

as known constants. The problem with this approach is that

it does not take account of the uncertainty related to the

covariate spatial estimation of the first stage, with the

consequence of erroneous inference of the statistical model

and a potential biased estimate of the environmental vari-

able effect on the response variable (Foster et al. 2012).

A solution to incorporate the spatial prediction uncer-

tainty in SDMs consists in implementing one of the so-

called errors-in-variables models (Carroll et al. 2016)

which can be estimated in a frequentist (by means of the

EM-algorithm) or Bayesian framework (with MCMC or

INLA). If we assume for example that the predicted

covariate is a noisy version of the true one, a classic

measurement error model can be adopted (Stoklosa et al.

2015). Otherwise, a Berkson-error model can be considered

if the predicted covariate is a smoothed (i.e. less variable)

version of the true variable (Foster et al. 2012). As reported

in Stoklosa et al. (2015) ‘‘Which of these two types of error

models to consider will depend on what the analyst

believes to be the true underlying explanatory variable, and

how the data were collected/measured. The analyst must

take into account: how and whether the species responds to

a particular climate observation (Berkson); or that it might

respond to an average, such that relatively minor deviations

from this are immaterial (classical)’’.

Another alternative to the two-stage approach is the joint

modeling strategy implemented in Barber et al. (2016) to

evaluate the presence of the Fasciola hepatica in Galicia

(Spain) using the annual mean temperature as covariate. In

this case a spatial geostatistical model is specified for the

covariate and is estimated jointly with the species distri-

bution models in a Bayesian context. The joint model is

specified as follows

yi �BernoulliðpiÞ
logitðpiÞ ¼ b0 þ b1/i þ wi

w�Nð0;Q�1ðj; sÞÞ

xi �
iid
Nð/i; r

2
xÞ

/�Nð0;Q�1ðc; dÞÞ

ð4:7Þ

where pi is the probability of occurrence at site si, xi is the

covariate of interest whose spatial distribution is specified

through its mean (a realization of the Matérn Gaussian

process / depending on the parameters c and d), and

through its variance r2x , which is introduced to express any

possible measurement error. The model also includes

another spatial process for the response represented by w.

This kind of model pertains to the latent Gaussian model

family and can be estimated using the SPDE-INLA

approach (see Blangiardo and Cameletti, 2015, Chap. 8 and

Muff et al. 2015). The advantage is that this joint model

allows to properly propagate all the uncertainty related to

the covariate prediction; on the other it can be extremely

computationally expensive especially when there is more

than one explanatory variable.

Finally, another alternative is the one proposed by

Gómez-Rubio and Rue (2017) that, using a more general

approach, deals with missing values in the covariates,

based on fitting conditional latent Gaussian models where

covariates are imputed using a Metropolis-Hastings

algorithm.

4.4 Non-stationarity

The Matérn spatial covariance function Cð�; �Þ specified by

Eq. (3.5) enjoys the second-order stationarity and isotropy

property, i.e. it depends only on the distance between the

spatial locations and not on the direction or the coordinates.

In some situations, this stationarity assumption, which is

very convenient to simplify the inferential procedures, may

not be suitable. For example, for some applications it is not

realistic to assume that the spatial dependence structure is

the same throughout the domain considered, especially

when geographical elements or physical barriers (river,

lakes, islands, etc.) exist. In such situations characterized

by spatial heterogeneity and barriers, it may be more rea-

sonable to adopt a non-stationary Gaussian field (see Gel-

fand et al. 2010, Chapter 9 and Risser 2016 for a review).
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In ecological applications, heterogeneity in space (i.e.

non-stationarity) occurs when a latent global process is

also affected by some underlying local processes (Miller

2012). A local modeling technique to include this hetero-

geneity in SDMs is given by the geographically weighted

regression (GWR) characterized by covariate coefficients

which vary spatially and are specific for each spatial

location; a spatial kernel function is used to define spatial

neighborhoods (see e.g. Brunsdon et al. 1998; Windle et al.

2010; Holloway and Miller 2015; Liu et al. 2017). Some

authors do not completely agree with the use of these

models due to the large degree of multicollinearity that

their coefficients tend to exhibit, as well as strong positive

spatial autocorrelation. As an alternative, spatial filtering

provides a methodology for dealing better with multi-

collinearity, while accounting for spatial autocorrelation

(see e.g. Griffith 2008). The Bayesian counterpart of GWR

models, which are usually estimated by weighted least

squares, is given by spatially-varying coefficients models

(Gelfand et al. 2003; Finley 2011).

In the SPDE framework non-stationarity is achieved by

allowing the Matérn covariance function parameters to

vary smoothly over space according to a log-linear func-

tion: thus, we will have r2ðsÞ for the marginal variance in

(3.5) and rðsÞ for the spatial range (Ingebrigtsen et al.

2014; Lindgren and Rue 2015b). Bakka et al. (2016)

extend this approach to solve specifically the barrier

problem for SDMs. In particular, they force the spatial

correlation to go around the barriers (and not through them)

by means of a partition of the considered spatial field—in a

normal and in a barrier area—and in the specification of

two corresponding non-stationary processes with different

range parameters (in particular for the barrier region the

range parameter is almost zero). The application consid-

ered in Bakka et al. (2016) regards fish larvae data in the

Finnish archipelago.

4.5 Imperfect detection

Studies on species abundance and distribution are often

imperfect due to observer error (Nichols et al. 2000),

species rarity (Dettmers et al. 1999) or because detection

varies with confounding variables such as environmental

conditions (Gu and Swihart 2004; Pennino et al. 2017).

When detection is imperfect, additional steps are usually

needed to improve inference. Indeed, failure to do so could

result in biased estimation and erroneous conclusions.

In recent years, new models called site-occupancy

(Hoeting et al. 2000; MacKenzie et al. 2002) for presence-

absence data and N-mixture models (Royle 2004) for

abundance data have been developed to solve this problem.

These models combine two processes: an ecological

process to describe habitat suitability and an observation

process to take imperfect detection into account. To esti-

mate detectability, these models use information from

repeated observations at several sites. Detectability may

vary with site characteristics such as habitat variables, or

survey characteristics such as weather conditions, since

suitability relates only to site characteristics. Various

studies showing the advantages of site occupancy and

N-mixture models over classical models that do not con-

sider the problem of detectability can be found in the lit-

erature: Royle (2004), Dorazio et al. (2006) for birds,

MacKenzie et al. (2002) for amphibians or Pennino et al.

(2017) for cetaceans. In addition to the detectability

problem, a variety of methods have been developed to

correct for the effects of spatial autocorrelation (Latimer

et al. 2006; Johnson et al. 2013; Hefley et al. 2017a).

A Bayesian version for site-occupancy spatial models

and N-mixture spatial models could also be implemented to

take simultaneously account of both imperfect detection

and spatial autocorrelation. To describe Bayesian site-oc-

cupancy spatial models, let zi be a random variable

describing habitat suitability at site si. It can take the value

1 or 0 depending on the habitat suitability, i.e. zi = 1 or zi =

0, thus a Bernoulli distribution is assumed with parameter

pi. Several visits at time t ¼ 1; . . .; T can happen at site i.

Let yit be a random variable representing the presence of

the species at site i and time t. The species is observed at

site i ð
P

t yit � 1Þ only if the habitat is suitable ðzi ¼ 1Þ.
The species is unobserved at site i ð

P
t yit ¼ 0Þ if the

habitat is not suitable ðzi ¼ 0Þ, or if the habitat is suit-

able ðzi ¼ 1Þ but the probability ait of detecting the species

at site si and time t is lower than 1. Then, yit follows a

Bernoulli distribution of parameter ziait, and the model is

expressed as follows

Ecological process

zi �BernoulliðpiÞ;

logitðpiÞ ¼ b0 þ
XM1

m¼1

bmx
ð1Þ
mi þ wi;

ð4:8Þ

Detection process

yit �Bernoulliðzi aitÞ;

logitðaitÞ ¼ c0 þ
XM2

m¼1

cmx
ð2Þ
mit;

ð4:9Þ

where fb0; . . .; bM1
g and fc0; . . .; cM2

g are the parameters

that quantify the linear effects of some covariates

ðxð1Þ1 ; . . .; x
ð1Þ
M1
Þ and ðxð2Þ1 ; . . .; x

ð2Þ
M2
Þ in the ecological and

observation process respectively. These covariates are

usually variables refereed to site characteristics such as

habitat variables or survey characteristics such as weather
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conditions. w ¼ ðw1; . . .;wnÞ represents the spatial effect in
the ecological process. Normally, this spatial effect is a

Gaussian process that can be incorporated as geostatistical

terms (in the way already introduced in Sect. 3), but other

options are possible (such as CAR Normal distributions, as

in Pennino et al. (2017)). The R-package hSDM, which

make inference using MCMC, can be used easily to fit some

of these models. In addition, the inlabru package also

handle the problem of detectability (Yuan et al. 2016).

With respect to N-mixture models, which are used for

count data with imperfect detection, they implement a

Poisson distribution for the ecological process, while using

a Binomial distribution for the observability process (Royle

and Nichols 2003; Dodd and Dorazio 2004; Royle 2004).

The structure of the model is similar to the site-occupancy

model, in particular:

Ecological process

Ni � PoissonðkiÞ;

logðkiÞ ¼ b0 þ
XM1

m¼1

bmx
ð1Þ
mi þ wi;

ð4:10Þ

Detection process

yit �BernoulliðNi aitÞ;

logitðaitÞ ¼ c0 þ
XM2

m¼1

cmx
ð2Þ
mit:

ð4:11Þ

The R-package hSDM allow us to fit some of these models.

In addition, the INLA group is developing some methods to

fit N-mixture models (Meehan et al. 2017).

4.6 Excess of zeros

The study of datasets with zero excess has an important

role in the literature, particularly, in species distribution

modeling (Agarwal et al. 2002; Ver Hoef and Jansen 2007;

Neelon et al. 2013), becoming highly relevant in recent

years especially. Bayesian softwares like INLA already

contain different functions to handle situations with zero

excess. Generally, these situations are a source of

overdispersion caused by a disagreement between the data

and the distribution assumed: there are more zeros in the

dataset than the proposed distribution could reasonably

explain.

Zero-inflated models are a widely known tool for deal-

ing with this problem. These models assume that the data

follow a finite mixture of a degenerate distribution with all

its mass at zero with a discrete distribution with support in

Zþ [ f0g (Yau et al. 2003). If 1� pi represents the prob-

ability of species presence, pi the probability of the species

absence, i.e., pðyijpiÞ ¼ pi and pðyi [ 0Þ ¼ 1� pi, and h a

probability mass function (pmf) of some parametric dis-

crete distribution with support on Zþ [ f0g, the distribu-

tion of yi has the following mixture density:

pðyijpi; li;w1Þ ¼ pid0 þ ð1� piÞhðyijli;w1Þ; ð4:12Þ

being d0 the Dirac delta function, li and w1 hyperparam-

eters depending on h, and h is a pmf coming from a

Poisson, binomial or negative-binomial (note that this latter

distribution is one of those considered to account for

overdispersion). The model is completed when linking pi
and li with the linear predictors by means of:

logitðpiÞ ¼ gð1Þi ¼ að1Þ þ
XMð1Þ

m¼1

bð1Þm x
ð1Þ
mi þ

XLð1Þ

l¼1

f
ð1Þ
l ðzð1Þli Þ;

gðliÞ ¼ gð2Þi ¼ að2Þ þ
XMð2Þ

m¼1

bð2Þm x
ð2Þ
mi þ

XLð2Þ

l¼1

f
ð2Þ
l ðzð2Þli Þ;

ð4:13Þ

where logit denotes the link function between the linear

predictor gð1Þi and the probability of absence pi, and gð�Þ is
an appropriate link for the mean of h.

An alternative to these models is given by hurdle models

(Mullahy 1986; Cameron and Trivedi 1998), where data

are assumed to follow a finite mixture of a degenerate

distribution with all its mass at zero and a zero truncated

discrete distribution. That is, unlike the zero inflated

models, in hurdle models, all observed zeros come from the

zero-degenerate distribution. Following the same notation

of Eq. (4.12), a hurdle model can be expressed as follows:

pðyijpi; li;w1Þ ¼ pid0 þ ð1� piÞhðyijli;w1ÞI½yi [ 0	:

ð4:14Þ

As in (4.13), the hurdle model is completed when linking pi
and li with their corresponding linear predictors.

However, the response variable is not always a discrete

variable. Semi-continuous processes like rain, plant cov-

erage, chemical concentrations, etc., are measured in the

½0;1Þ interval having high proportions of zero values, and

there are neither an appropriate probability distribution nor

a transformation available to fit them adequately. To model

processes of this type, an extension of hurdle models for

continuous data is required (Aitchison 1955; Quiroz et al.

2015). Again, data are modeled as two independent sub-

processes: one determines whether the response is zero,

and the other determines the intensity when the response is

non-zero using a continuous well known distribution like

the log-Normal or the Gamma (Stefánsson 1996; Bryn-

jarsdóttir and Stefánsson 2004; Paradinas et al. 2017b). In

this case, hurdle models are defined as a finite mixture of a

degenerate distribution with point mass at zero and a dis-

tribution with support on Rþ. If h is a pdf of some
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parametric continuous distribution with support on Rþ (e.g.

Gamma, log-Normal or log-logistic), the hurdle model for

yi (now assumed to be a continuous distribution) has the

same mixture density as in (4.14). Although there exist an

extensive list of zero-inflated or hurdle models dealing with

correlated discrete data in many fields (Agarwal et al.

2002; Ver Hoef and Jansen 2007), this approach has not

been widely used with continuous responses.

It is worth noting that all the models commented upon in

this section are a mixture of two processes, and in almost

all cases, they are modeled independently (Neelon et al.

2013; Balderama et al. 2016). However, generally both

sub-processes are related: low intensities are linked to low

probabilities of presence and vice versa. Shared component

modeling (SCM) is a good tool to deal with it by com-

bining information both from the two subprocesses

(Paradinas et al. 2017b).

5 Discussion

This paper has reviewed some of the statistical challenges

that can arise when the distribution of the species is

modeled using geostatistical or point-referenced data. In

particular, after describing in detail data and methods

commonly used to model species distribution, we have

focused on complex issues and we have discussed how they

can be solved using Bayesian hierarchical spatio-temporal

models. Specifically, in this review we have focused on the

Bayesian approach and the INLA methodology (Rue et al.

2009) because they have several benefits with respect to the

classic geostatistical methods. INLA makes it possible to

perform complex models with a minimum computational

effort while obtaining accurate estimates. Its importance in

the context of SDMs can be even more appreciated with the

appearance of the recent project inlabru which has been

created to develop and implement innovative methods to

model spatial distribution and change from ecological

survey data (https://sites.google.com/inlabru3.org/inlabru).

In addition, classic geostatistical methods typically over-

estimate their predictive accuracy by using plug-in esti-

mations of parameters in their predictive equations. (Diggle

and Ribeiro 2007). On the contrary, inference about

uncertainty, based on the observations and models, is a

byproduct of the model predictions when the Bayesian

framework is employed.

However, some limitations can arise when the INLA

approach is used. For example, INLA can not handle

missing values in spatially structured covariates. This issue

can be framed in the misalignment problem discussed in

Sect. 4.3; this means that it could be overcome by applying

a two-stage or joint modeling approach that allows

prediction of the covariate values in the locations where

they were not measured. As mentioned above, an alterna-

tive is the one proposed by Gómez-Rubio and Rue (2017)

that, using a more general approach, deals with missing

values in the covariates, based on fitting conditional latent

Gaussian models where covariates are imputed using a

Metropolis-Hastings algorithm.

We would like to remark that, due to space limitations,

we have not fully reviewed the several complications that

can derive from the sampling process. Indeed, we have

only focused on the preferential sampling problem (Diggle

et al. 2010), which, as previously mentioned, refers to the

possibility that the sample design is stochastically depen-

dent on the studied process. Nevertheless, other types of

sampling procedures could produce different issues that

should be taken into account in the statistical analysis. For

example, one of the most popular methods used in ecology

to estimate an animal population’s size is the capture-re-

capture method that involves capturing, marking and

releasing an initial sample of individuals (Otis et al. 1978;

McInerny and Purves 2011). Subsequently, a second sam-

ple of animal individuals is obtained independently and it is

noted how many of them in that sample were marked. To

model data of this type, a feasible solution could be the

implementation of Bayesian hierarchical N-mixture models

described in Sect. 4.5, which are currently being developed

in INLA (Meehan et al. 2017).

Finally, an important point to consider is that INLA is

not the only computational approach to making inference

for Bayesian spatio-temporal models. In recent years, other

approaches that also make it possible to achieve accurate

species distribution models results, such as stan (Stan

Development Team 2017; Monnahan et al. 2017), have

been widely used.
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Gómez-Rubio V, Rue H (2017) Markov chain monte carlo with the

integrated nested Laplace approximation. arXiv:1702.07007
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(2013) Modeling sensitive elasmobranch habitats. J Sea Res

83:209–218

Pennino MG, Muñoz F, Conesa D, López-Quı́lez A, Bellido JM
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