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Abstract
Joint inversion of physical and geochemical parameters in groundwater reactive transport models is still a great challenge

due to the intrinsic heterogeneities of natural porous media and the scarcity of observation data. In this study, we make use

of a sequential ensemble-based optimal design (SEOD) method to jointly estimate physical and geochemical parameters of

groundwater models. The effectiveness and efficiency of the SEOD method are illustrated by the comparison between the

sequential optimization strategy and the conventional strategy (using fixed sampling locations) for two synthetic cases.

Since the SEOD method is an optimization method based on the ensemble Kalman filter (EnKF), it invokes the time-

consuming genetic algorithm at every assimilation step of the EnKF to obtain the optimal sampling locations. To enhance

its computational efficiency, we improve the SEOD method by replacing the EnKF with the ensemble smoother with

multiple data assimilation. Furthermore, the influence factors of the original and improved SEOD method are also

discussed. Our results show that the SEOD method provides an effective designed sampling strategy to accurately estimate

heterogeneous distribution of physical and geochemical parameters. Moreover, the improved SEOD method is more

advantageous than the original one in computational efficiency, making this SEOD framework more promising for future

application.

Keywords Optimal sampling strategy � Physical and geochemical heterogeneity � Parameter estimation � Reactive transport
model � Data assimilation

1 Introduction

Joint inversion of physical and geochemical parameters in

groundwater reactive transport models is critical for reli-

able contaminant plume prediction, remediation and man-

agement, but it is still a great challenge due to the intrinsic

heterogeneities of natural porous media and the scarcity of

observation data. The subsurface environment is highly

variable in its physical and chemical composition.

Heterogeneity of physical parameters (e.g., hydraulic

conductivity) has been shown to exert a key control on the

mixing and spreading of conservative solutes (Dagan 1984;

Rubin 1991; Sudicky 1986). For reactive solutes, their

transport and reactions are simultaneously influenced by

geochemical parameters (Atchley et al. 2014; Li et al.

2010; Scheibe et al. 2006). Similar to physical hetero-

geneity, the heterogeneity of geochemical parameters

exists as well, which may be caused, for example, by

spatial variability in the activity of bacteria related to

biodegradation (Fennell et al. 2001; Sandrin et al. 2004).

Therefore, it is important to jointly estimate the spatial

distribution of physical and geochemical parameters in

groundwater reactive transport models.

Inverse methods are often used by conditioning on

observation data to characterize the spatial variation of

parameters, which has been extensively investigated in the

literature (e.g., Carrera et al. 2005; Dagan 1985; Doherty
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2004; Gómez-Hernández et al. 2003; Hendricks Franssen

et al. 2009; Neuman 1973; Oliver et al. 1997; Zhou et al.

2014). The ensemble Kalman filter (EnKF, Evensen

2003, 2009) is one of the most popular inverse methods

over the last decade (Aanonsen et al. 2009; Oliver and

Chen 2011; Zhou et al. 2014), recently used in parameter

estimation and state prediction (Chen and Zhang 2006;

Huang et al. 2009; Tong et al. 2010). It is a variant of the

Kalman Filter (KF, Kalman 1960) based on the Monte

Carlo method. Unlike the KF, the EnKF was developed for

nonlinear problems (Evensen 2003, 2009), its efficiency

and effectiveness in nonlinear problems with high dimen-

sionality have been illustrated (Chen and Zhang 2006;

Hendricks Franssen and Kinzelbach 2008; Moradkhani

et al. 2005; Sorensen et al. 2004). In addition to the EnKF,

the Ensemble Smoother (ES, Van Leeuwen and Evensen

1996) and its iterative variants, like the Ensemble

Smoother with multiple data assimilation (ES-MDA,

Emerick and Reynolds 2013), are popular as well. Unlike

the EnKF, the ES and the ES-MDA perform global update

rather than sequential update during the data assimilation,

avoiding restarting models again and again, so they are of

more simplicity and computational efficiency than the

EnKF.

Much research has focused on developing better meth-

ods based on the EnKF to broaden its implementation scale

and improve its accuracy (Chen and Oliver 2010; Emerick

and Reynolds 2011; Gu and Oliver 2007; Li and Reynolds

2009), with the sampling locations fixed during the data

assimilation (called the conventional strategy in the fol-

lowing discussion). However, it is intuitive that the data

worth of measurements is dramatically influenced by

sampling locations, and the parameter estimation result can

be improved if the measurements are more informative

even though the number of sampling locations is the same.

There has been much research revealed the effect of sam-

pling strategies on the parameter uncertainty and predictive

uncertainty in groundwater models (Carrera and Neuman

1986; Cleveland and Yeh 1990; Knopman and Voss 1987;

Nowak et al. 2010; Sun and Yeh 2007; Ushijima and Yeh

2015; Zhang et al. 2015). In view of these two aspects, Man

et al. (2016) integrated a sequential optimal design and the

information theory into the EnKF framework seamlessly to

provide the most informative measurements for more

accurate parameter estimation, and proposed a sequential

ensemble-based optimal design (SEOD) method. Man et al.

(2016) demonstrated the effectiveness of this method by

estimating only physical parameters in unsaturated flow

models, assimilating only piezometric head data. However,

the SEOD method developed by Man et al. (2016) invokes

the optimization algorithm (the genetic algorithm) at each

assimilation step, so its computational efficiency is not very

satisfying. Furthermore, to the best of our knowledge, few

studies have focused on joint inversion of physical and

geochemical parameters by assimilating multiple kinds of

data.

The objective of this study is to estimate both physical

and geochemical parameters accurately in groundwater

models by using the recent proposed SEOD method, and to

enhance the computational efficiency of the SEOD method

by replacing the EnKF with the ES-MDA. The rest of the

paper is organized as follows. In Sect. 2, the groundwater

reactive transport model and the SEOD method are

described. In Sect. 3, synthetic one-dimensional and two-

dimensional groundwater reactive transport model cases

are constructed to jointly estimate the physical and geo-

chemical parameters by using the SEOD method. In

Sect. 4, the comparison between the sequential optimiza-

tion strategy and the conventional strategy, and the effects

of the ensemble size and the number of optimal sampling

locations are discussed. Furthermore, we improve the

SEOD method by replacing the EnKF with the ES-MDA to

enhance its computational efficiency, and make a com-

parison of the original and the improved SEOD method in

Sect. 4.4. Conclusions are summarized in Sect. 5.

2 Methodologies

2.1 Groundwater reactive transport model

In this work, transient flow is assumed, as the following

governing equation (Bear 1972),

r � ðKrHÞ þW ¼ ls
oH

ot
ð1Þ

where r� is the divergence operator; r is the gradient

operator; K is the hydraulic conductivity (LT-1); H is the

hydraulic head (L); W is the volumetric injection (pump-

ing) flow rate per unit volume of the aquifer (T-1); ls is the
specific storage of the aquifer (L-1); t is the time (T).

The governing equation for the transport and reactions

of aqueous species is defined as (Zheng 2006; Prommer

and Post 2010):

oCn

ot
¼ r � D � rCnð Þ � r � vCnð Þ þ rreac;n þ

qs

h
Cs
n ð2Þ

where Cn is the aqueous concentration of the nth compo-

nent (ML-3); t is the time (T); D is the diffusion coefficient

(L2T-1); v ¼ ð�KrHÞ=h (LT-1); rreac,n is the concentra-

tion change of the nth component caused by reac-

tions (ML-3); qs is the volumetric flow rate per unit

volume of the aquifer (T-1); h is the effective porosity; and

Cn
s is the concentration of the source or sink flux of the nth

component (ML-3).
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Equation (1) is solved by the numerical code MOD-

FLOW-2000 (Harbaugh et al. 2000), and Eq. (2) is solved

by the numerical code MT3DMS (Zheng 2006).

2.2 Sequential ensemble-based optimal design
(SEOD) method

The sequential ensemble-based optimal design (SEOD)

method is a new recently proposed optimal method based

on the EnKF (Man et al. 2016). At each recursive step, the

SEOD method provides an optimal sampling strategy,

giving the maximum value of information metric. Then, the

analysis equation of the EnKF is used to update estimated

parameters by assimilating the most informative measure-

ments, obtained based on the optimal sampling strategy.

In this work, relative entropy (RE), also known as the

Kullback–Leibler divergence (Kullback 1997), is used to

measure the information content of the posterior proba-

bility density function (pdf) relative to the prior pdf. If

these two distributions are both n-dimensional Gaussian,

RE between these two distributions is defined as:

RE ¼ Jb þ ½ln detðBA�1Þ þ TrðAB�1Þ � n�=2 ð3Þ

where Jb ¼ ða� bÞTB�1ða� bÞ=2 is the signal part of RE;

detð�Þ denotes the determinant; Trð�Þ denotes the trace;

a and A denote the mean and covariance matrix of prior

statistics respectively; b and B denote the mean and

covariance matrix of posterior statistics respectively.

The loop of the SEOD method for parameter estimation

is briefly recalled. More details can be found in Man et al.

(2016). In the EnKF, all the parameters of interest p are

augmented with state variables h into a joint state vector

x¼ ½ph�T. Before the forecast step, an ensemble of Ne

realizations of parameters is generated.

I. Forecast step

Rerun the forward model G from time 0 to time step

j ? 1 with parameters updated at time step j [Eq. (4)].

Xf
i;jþ1 ¼ G xai;j

� �
; i ¼ 1; 2; . . .;Ne ð4Þ

In the above equation, i is the ensemble member index,

j is the time step index, superscripts f and a denote forecast

and analysis, respectively.

II. Optimal design

Given a specific sampling strategy H0, the possible

realizations of measurements can then be expressed as

d0i ¼ H0xfi þ ni. With the realizations of measurements, the

updated ensemble can be obtained from the Eq. (6).

According to the prior and posterior statistics (mean and

covariance), the information metrics RE of each candidate

sampling strategies can be calculated. By comparing the

RE values of different candidate sampling strategies, the

optimal sampling design Hopt can be determined by solving

the following optimization problem [Eq. (5)] with the help

of the genetic algorithm (GA, Whitley 1994).

Hopt ¼ argmaxREðHÞ ð5Þ

III. Analysis step

After obtaining the optimal sampling strategy, the actual

measurements d can be obtained and used in the analysis

step [Eq. (6)].

xai;jþ1 ¼ xfi;jþ1 þ CYDðCDD þ CDÞ�1ðdobsi;jþ1
� di;jþ1Þ;

i ¼ 1; 2; . . .;Ne

ð6Þ

In the above equation, CYD is the cross-covariance

matrix between the forecast state and the predicted data,

CDD is the covariance matrix of the predicted data, CD is

the covariance matrix of the measurements error, dobs is the

perturbed observations with noise of covariance CD, and d

is the predicted data.

After the analysis step, the updated ensemble Xa is

obtained. Then, go back to step (I), the updated ensemble

obtained this step is implemented for the next step.

To evaluate the performance of parameter estimation,

two commonly used indicators, the RMSE and the

Ensemble Spread, are defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm

XNe

i¼1

ðYi � YiÞ2
vuut ð7Þ

Ensemble Spread ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm

XNe

i¼1

varðYiÞ

vuut ð8Þ

where Y and Y are the estimated and the reference field

respectively; varðYÞ is the ensemble variance of the field;

Nm is the total number of nodes in the study domain; Ne is

the ensemble size; i is the node index. The RMSE measures

the accuracy of the estimation, while the Ensemble Spread

measures the uncertainty of the estimation.

3 Case studies

3.1 Case 1: One-dimensional synthetic case

In this case, a one-dimensional confined aquifer with a

starting head of 100 m is constructed, in which saturated

transient flow is assumed. As shown in Fig. 1a, we choose

the horizontal aquifer to be 5 m 9 150 m and the grid

space to be 5 m both in horizontal x and y direction. Then,

a Trichloroethylene (TCE) leaking area with an initial

concentration of 1000 mg/L is introduced into the aquifer,

and the degradation of TCE is assumed to follow first-order

kinetic reaction. Furthermore, an injection well and a
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pumping well are set upstream and downstream respec-

tively, and all boundaries of the aquifer are assumed to be

impermeable. In this case, the spatial distribution of the

hydraulic conductivity (K) and the first-order rate constant

(kTCE) (Fig. 1b, c) are jointly estimated. At every assimi-

lation step 2 optimal sampling locations are selected from

30 candidate locations to provide the most informative

measurements. More details are given in Tables 1 and 2.

The log saturated hydraulic conductivity Y1 = ln(K) and

the first-order rate constant Y2 = kTCE are assumed to be

Gaussian distributed, with mean lY1 ¼ 1 and lY2 ¼ 0:17

and variance rY1 ¼ 1 and rY2 ¼ 0:47 respectively. Two

arbitrary locations (x1, y1) and (x2, y2) in the random field

are assumed to be correlated in the following form:

CYðx1; x2Þ ¼ CYðx1; y1; x2; y2Þ

¼ r2 exp � jx1 � x2j
kx

� jy1 � y2j
ky

� �
ð9Þ

where the horizontal correlation length kx = 5 m, and the

vertical correlation length ky = 30 m. Here we use the

Karhunen–Loeve (K–L) expansion (Zhang and Lu 2004) to

parameterize the random field so as to achieve the reference

fields and initial ensemble members. The measurement

errors of the head and concentration data are assumed to

follow the standard normal distribution with the standard

deviation of 0.01 m and 10-6 mg/L respectively. Since the

SEODmethod is sequential, the uncertainty changes as real-

time measurements are assimilated, which leads to the

optimal sampling locations changing with time. The optimal

sampling locations at 10 assimilation steps are shown in

Fig. 2. It shows that the optimal sampling locations change

with the flow and concentration fields so as to obtain themost

informative measurements. It is interesting to note that the

most optimal sampling locations are located at the front of

Fig. 1 The conceptual model

(a), the reference fields of the

hydraulic conductivity (b) and
the first-order rate constant

(c) for Case 1

Table 1 Flow and transport parameters used in Case 1

Flow simulation Transient state

Total simulation time (days) 10

Stress period 1

Time steps 100

Grid spacing (m) 5 9 5 9 5

Model length (m) 150

Model width (m) 5

Model height (m) 5

Starting head (m) 100

Porosity 0.3

Specific storage (m-1) 0.0001

Longitudinal dispersivity (m) 10

Injection rate per well (m3/day) 50

Pumping rate per well (m3/day) 45
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the contaminant plume, whichmeans that these locations can

provide the most informative measurements.

In Fig. 3, we plot the curves of the ensemble mean and

the standard deviation at different assimilation steps. It

shows that, for both Y1 and Y2, the ensemble mean at the

final assimilation step is very close to the reference field.

Furthermore, the ensemble standard deviation is high at the

early steps; however, it reduces dramatically after assimi-

lating the most informative measurements from the optimal

sampling locations. As shown in Fig. 4, the RMSE and the

Ensemble Spread of Y1 and Y2 decrease as the assimilation

step increases, which also suggests that estimated fields are

close to their reference fields and of low uncertainty.

To further illustrate the accuracy and uncertainty of the

estimation, we also evaluate the performance of data match

and model prediction. Considering the limitation of space,

two wells (marked with black circles in Fig. 1a) are

selected randomly to show the following evaluation results.

The initial and final ensembles of Y1 and Y2 are taken into

the synthetic model respectively to calculate the head and

Table 2 Data assimilation related parameters used in different cases

Case name Dimension Number of ensemble

(Ne)

Number of assimilation step

(Ns)

Optimize or

not

Number of optimal

sampling locations

Case 1 1 300 10 Y 2

Case 2 2 100 10 Y 2

Case 3 2 50 10 Y 2

Case 4 2 300 10 Y 2

Case 5 2 500 10 Y 2

Case 6 2 1000 10 Y 2

Case 7 2 100 10 Y 1

Case 8 2 100 10 Y 5

Case 9 2 100 10 Y 10

Case 10 2 100 10 Y 20

Case 11 2 100 10 N (2 fixed)

Case 12 2 100 10 N (10 fixed)

Case 13 2 100 10 N (20 fixed)

Case 14 2 100 8 (50, 50)a Y 2

Case 15 2 100 8 (50, 50) Y 5

Case 16 2 100 12 (20, 30, 50) Y 5

Case 17 2 100 12 (50, 30, 20) Y 5

aThe numbers in the parentheses are the group division of observation time, and the number in front of the parentheses is the number of

assimilation steps. For example, 8(50, 50) represents that there are 8 steps in the assimilation and the observation time is divided into two groups

with each group having an observation time of 50 days

Fig. 2 The calculated flow field

(a) and concentration field (b) in
Case 1. The circles denote the

optimal sampling locations

proposed by the SEOD method
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concentration data, which are then compared with the real

observations. After data assimilation, the data calculated by

the final ensemble become closer to the real observations, as

shown in Figs. 5 and 6. Overall, model uncertainty is sig-

nificantly reduced after assimilating the most informative

measurements from the optimal sampling locations.

3.2 Case 2: Two-dimensional synthetic case

In this case, saturated transient flow is assumed in a two-

dimensional confined aquifer with a starting head of 50 m.

As shown in Fig. 7, we choose the horizontal aquifer to be

105 m 9 65 m and the grid space to be 5 m both in hor-

izontal x and y direction. Three TCE leaking sources with

the constant injection flow of 80 m3/day and the constant

concentration of 50 mg/L per well are set upstream in the

aquifer. Furthermore, the liner sorption reaction of the TCE

is considered in this case. Besides three injection wells, two

pumping wells with the constant pumping flow of

120 m3/day per well are set downstream (Fig. 7). In addi-

tion, all boundaries of the aquifer are assumed to be

impermeable. In this case, the hydraulic conductivity

Fig. 3 The ensemble mean and the standard deviation of field Y1 and Y2 in Case 1. (a) and (b) are the ensemble mean and the standard deviation

of field Y1 respectively, while (c) and (d) are the ensemble mean and the standard deviation of field Y2 respectively

1924 Stochastic Environmental Research and Risk Assessment (2018) 32:1919–1937
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(K) and the liner sorption constant (kd) are assumed to be

spatially heterogeneous (Fig. 9). At every assimilation

step, 2 optimal sampling locations are selected from 77

candidate locations (Fig. 7) to provide the most informa-

tive measurements. More details are given in Tables 2 and

3.

The log saturated hydraulic conductivity Y1 = ln(K) is

assumed to be Gaussian distributed with mean lY1 ¼ 1 and

variance rY1 ¼ 1. The horizontal and vertical correlation

lengths of Y1 are 40 and 20 m respectively. With these

statistics, the reference field and initial ensemble members

of Y1 can be generated by the K–L decomposition based on

Eq. (9). For field Y2, it is assumed that there is a positive

correlation between Y2 = ln(kd) and Y1, i.e.

Y2 = 0.5 9 Y1 - 15.95, on which the generation of ref-

erence field Y2 and its initial ensemble members are based.

In addition, the measurement errors of the head and con-

centration data are assumed to follow the standard normal

distribution with the standard deviation of 0.01 m and

10-6 mg/L respectively.

Fig. 4 The performance

indicators (the RMSE and the

Ensemble Spread) at each

assimilation step for field Y1 and

Y2 in Case 1

Fig. 5 The performance of data match. (a), (c) show the data match of the head of two selected wells respectively, while (b), (d) show the data

match of the TCE concentration data of two selected wells respectively
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In Fig. 8, we plot the optimal sampling locations at each

assimilation step. It shows the tendency that locations of

large gradient are more likely to be selected as the optimal

sampling locations. Overall, it shows that the choice of the

optimal sampling locations at each assimilation step

changes with the flow and concentration fields to obtain the

most informative measurements.

The contour maps of the ensemble mean and the stan-

dard deviation at different assimilation steps are plotted in

Fig. 9. It shows that, for both Y1 and Y2, the contour maps

of the ensemble mean exhibit a pattern very similar to the

reference fields. Even just after 4 assimilation steps, the

contour maps of the ensemble mean recover the major

features of the reference fields of Y1 and Y2. Furthermore,

the ensemble standard deviations reduce dramatically after

assimilating the most informative measurements from the

optimal sampling locations, indicating that the optimal

sampling strategy does play a crucial role in the model

inversion though only 2 sampling locations are selected at

every assimilation step.

The RMSE and the Ensemble Spread of Y1 and Y2 are

plotted in Fig. 10. It shows that, these two indicators

gradually decrease as assimilation step increases and

finally reach a low value, suggesting that the estimations of

Fig. 6 The performance of model prediction. (a), (c) show the prediction of the head of two selected wells respectively, while (b), (d) show the

prediction of the TCE concentration data of two selected wells respectively

Fig. 7 The schematic of the

two-dimensional conceptual

model
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Y1 and Y2 in this case are accurate and effective. Mean-

while, the difference between the RMSE and the Ensemble

Spread is small, indicating that the SEOD method esti-

mates the uncertainty properly.

To evaluate the performance of data match and model

prediction, the initial and final ensembles of Y1 and Y2 are

taken into the synthetic model respectively to calculate the

head and concentration data, which are then compared with

the real observations. It should be noted that only three

wells (black circles in Fig. 7) are selected randomly from

the study domain to show the evaluation results due to the

space limitation. As shown in Figs. 11 and 12, the data

calculated by the final ensemble are very close to the real

observations, performing much better than those calculated

by the initial ensemble. It indicates that the estimated fields

of Y1 and Y2 are both of low uncertainty after assimilating

the most informative measurements from the optimal

sampling locations.

Table 3 Flow and transport parameters used in Case 2

Flow simulation Transient state

Total simulation time (days) 100

Stress period 1

Time steps 200

Grid spacing (m) 5 9 5 9 5

Model length (m) 105

Model width (m) 65

Model height (m) 5

Starting head (m) 50

Porosity 0.3

Specific storage (m-1) 0.0001

Longitudinal dispersivity (m) 10

horizontal transverse dispersivity (m) 1

Injection rate per well (m3/day) 80

Pumping rate per well (m3/day) 120

TCE injection concentration per well (mg/L) 50

Fig. 8 The optimal sampling locations (red stars) at every assimilation step of Case 2. (a) and (b) are the contour maps of the flow field and the

concentration field, respectively
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Fig. 9 The ensemble mean and the standard deviation of field Y1 and Y2 in Case 2. I for Field Y1, II for Field Y2

Fig. 10 The performance

indicators (the RMSE and the

Ensemble Spread) at each

assimilation step for field Y1 and

Y2 in Case 2
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Fig. 11 The performance of data match. (a), (c), (e) show the data match of the head of three selected wells respectively, while (b), (d), (f) show
the data match of the TCE concentration data of three selected wells respectively

Fig. 12 The performance of model prediction. (a), (b), (c), (e) show the prediction of the head of three selected wells respectively, while (b), (d),
(f) show the prediction of the TCE concentration data of three selected wells respectively
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4 Discussion

4.1 Comparison of sequential optimization
strategy and conventional strategy

In order to illustrate and demonstrate the effectiveness and

efficiency of the SEOD method for jointly estimating

physical and geochemical parameters, the sequential opti-

mization strategy is compared with the conventional

strategy in this subsection. For the convenience of com-

parison, several synthetic cases (Case 11, 12 13) are con-

structed based on Case 2 by replacing the sequential

optimization strategy with the conventional strategy (dif-

ferent fixed sampling locations numbers for different

cases). Except this, the other model parameters of cases

constructed here are the same as those of Case 2. More

details are given in Table 2.

Figure 13 shows the RMSE and the Ensemble Spread for

different cases. It illustrates that the sequential optimiza-

tion strategy obtains better performance of the parameter

estimation when the number of sampling locations is the

same. Even more, the sequential optimization strategy with

2 optimal sampling locations (Case 2) performs better than

the conventional strategy with 10 fixed sampling locations

(Case 12). Besides, the conventional strategy with a large

number of fixed sampling locations could result in the

Ensemble Spread becoming very small at the first few

assimilation steps, which could prevent assimilating further

measurements.

4.2 Effect of ensemble size

All results shown so far of Case 2 are based on an ensemble

of 100 realizations. To evaluate the impact of the ensemble

size on the parameter estimation, an analysis with an

ensemble of 50, 300, 500, 1000 realizations (Table 2) is

performed here.

The RMSE and the Ensemble Spread of different cases

are shown in Fig. 14 below. It shows that an appropriate

ensemble size is important for the parameter estimation. If

the ensemble size is too small (Case 3), ensemble collapse,

a phenomenon in which the Ensemble Spread is artificially

small relative to its RMSE, could happen. If the ensemble

size is too large (Case 5, 6), it could lead to more com-

putational burden and introduce more observation errors

into the model as the SEOD method is based on the Monte

Carlo method. It shows that the RMSE and the Ensemble

Spread of Y1 and Y2 are small and close to each other when

the ensemble size is 100, suggesting that the estimations of

Y1 and Y2 are accurate and the model uncertainty is esti-

mated properly. Accordingly, the ensemble size is set to

100 in the cases discussed below.

4.3 Effect of the number of optimal sampling
locations

Optimizing too many sampling locations could bring a

heavy computational burden. Here, to explore the impact of

the number of optimal sampling locations on the parameter

estimation, several synthetic cases with different numbers

of optimal sampling locations are constructed. More details

are given in Table 2.

As shown in Fig. 15 below, the RMSE is no longer

sensitive to the number of optimal sampling locations when

the number of optimal sampling locations is large enough,

suggesting that there could be a threshold value of the

number of optimal sampling locations in this synthetic

model. On the one hand, if the number of optimal sampling

locations is too large, the Ensemble Spread becomes

extremely small at the first few assimilation steps, which

could prevent assimilating further measurements into the

model. On the other hand, too many optimal sampling

locations could lead to high economic cost and heavy

computational burden. Therefore, 2–5 optimal sampling

locations are enough and appropriate in this model.

4.4 Improvement of the SEOD method

In the original SEOD method, since the EnKF is a

sequential history matching method, the optimization

algorithm part (GA) needs to be invoked Ns times to obtain

the optimal sampling design at each assimilation step,

which is time-consuming. To enhance its computational

efficiency, we improve the original SEOD method by

replacing the EnKF with the ES-MDA. The loop of the

improved SEOD method is shown in Fig. 16.

Figure 16 shows that the loop of the improved SEOD

method is divided into outer loop and inner loop. The outer

loop is similar to the original SEOD method, which con-

sists of a forecast step, an optimal design step and an

analysis step. The inner loop of the improved SEOD

method is part of the ES-MDA. Unlike the EnKF, the ES-

MDA performs Na times global update so as to assimilate

the same data (all available data) multiple times without

restarting the forward model, which helps enhance the

computational efficiency. In the improved SEOD method,

we divide all Ns assimilation steps in the original SEOD

method into Ng groups, the following loop is performed for

each group in chronological order (from 1 to Ng). Note that

Na of all cases in this subsection (Case 14, 15, 16, 17) is set

to 4 (Emerick and Reynolds 2013). More details are given

in Table 2.
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1. Forecast step

Run the forward model G from beginning time step of

the group j ? 1 to the end time step of the group j ? 1 with

updated parameters from the group j [Eq. (10)].

x
f
i;jþ1 ¼ G xai;j

� �
; i ¼ 1; 2; . . .;Ne ð10Þ

Fig. 13 The performance indicators (the RMSE and the Ensemble Spread) at each assimilation step for different sampling strategies
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In the above equation, i is the ensemble member index,

j is the group index (from 1 to Ng), superscripts f and

a denote forecast and analysis, respectively.

II. Optimal design

This step is similar with the original SEOD method, using

the GA to solve an optimization problem to obtain the most

informative measurements from the optimal sampling design.

Fig. 14 The performance indicators (the RMSE and the Ensemble Spread) at each assimilation step for different ensemble sizes
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III. Analysis step

The following update equation [Eq. (11)] of the ES-

MDA is different from that of the EnKF.

xai;jþ1 ¼ xfi;jþ1 þ CYDðCDD þ alCDÞ�1ðdobsi;jþ1
� di;jþ1Þ;

i ¼ 1; 2; . . .;Ne

ð11Þ

Fig. 15 The performance indicators (the RMSE and the Ensemble Spread) at each assimilation step for different numbers of optimal sampling

locations
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In the above equation, l is the times index of the ES-

MDA, l ¼ 1; 2; . . .;Na; dobs is the perturbed observations

with noise of covariance alCD (a1 = 9.333, a2 = 7.0,

a3 = 4.0 and a4 = 2.0, Emerick and Reynolds 2013).

Other letters in this equation have the same meaning as

those in Eq. (6).

After Na times global update, the updated ensemble Xa

of the group j ? 1 is obtained here. Then, go back to step

(I), the updated ensemble is implemented for the next

group. Through this improvement, the times of invoking

the GA decrease from Ns to Ng, which helps enhance the

computational efficiency.

To compare the improved SEOD method with the

original one and discuss the influence factors of the

improved one, several cases are constructed with all model

parameters the same as those in Case 2. More details can be

found in Table 2. The results of these cases are shown in

Fig. 17.

Figure 17 shows that the number of optimal sampling

locations dominantly affects the results of the improved

SEOD method. In Case 2, two optimal sampling locations

are chosen at each assimilation step. During the whole data

assimilation, total 20 sampling locations are used to obtain

measurements at most (2 9 10, if the optimal sampling

locations are different at each step). Therefore, if the

number of optimal sampling locations in the improved

SEOD method is too small, the improved SEOD method

can’t estimate the parameters of the entire study domain

well just through a few sampling locations (e.g., Case 14

with total 4 optimal sampling locations at most). When the

number of sampling locations is enough, the result of the

improved SEOD method is acceptable (e.g., Case 15 with

total 10 optimal sampling locations at most). The result of

Case 15 is comparable with the result of Case 2, but the

computer cost of Case 15 is much less than that of Case 2

because that Case 15 just invokes the GA only twice while

Case 2 invokes the GA 10 times. Therefore, if the number

of optimal sampling locations is not set to a very small

value, the computational efficiency will be enhanced by

using the improved SEOD method (Table 4).

Furthermore, the way of dividing the observation time

(assimilation steps in the original SEOD method) into

several groups (called the group division strategy in the

following context) affects the results of the improved

method as well. From the comparison of Cases 15, 16 and

17, it is obvious that Case 16, whose observation time in

each divided groups is progressively increasing, has a

better data assimilation result than the other two cases,

whose observation time in each divided groups is equiva-

lent or progressively decreasing. It is an interesting phe-

nomenon, which is worth further research. For now, we

think it is probably because more and more precise mea-

surements in the early stage of the data assimilation would

lead to excessive update of estimated parameters (Burgers

et al. 1998; Evensen 2009). Therefore, future studies

should focus on optimizing the group division strategy to

obtain a more accurate estimation of model parameters.

5 Conclusions

In this study, we make use of a sequential ensemble-based

optimal design (SEOD) method to jointly estimate physical

and geochemical parameters of groundwater models.

Both physical and geochemical parameters are estimated

accurately in the one-dimensional and two-dimensional

synthetic cases by using the SEOD method. Uncertainties

of both physical and geochemical parameters decrease after

assimilating the most informative measurements at the

optimal sampling locations, and the accuracy of model

prediction increases meanwhile. Furthermore, several

comparison cases are tested and analyzed, results illustrate

and demonstrate the effectiveness and efficiency of the

SEOD method on jointly estimating high-dimensional

physical and geochemical parameters in groundwater

models.

The ensemble size and the number of optimal sampling

locations have impacts on the parameter estimation based

on the SEOD method. A too small ensemble size would

lead to the ensemble collapse. Furthermore, when the

number of optimal sampling locations is too large, heavier

computational burden and more observation errors would

be caused, and the RMSE is no longer sensitive to the

number of optimal sampling locations. How to determine

the optimal ensemble size and sampling locations number

for different scenarios is worth further investigation.

The original SEOD method has a heavy computational

burden because it invokes the GA too many times. To

enhance its computational efficiency, we proposed an

improved SEOD method in this study by replacing the

EnKF with the ES-MDA. The results of comparison cases

Fig. 16 The loop diagram of the improved SEOD method

1934 Stochastic Environmental Research and Risk Assessment (2018) 32:1919–1937

123



show that the improved SEOD method is advantageous

than the original one, which makes the SEOD framework

more promising for the parameter estimation and the

optimal sampling strategy design. The number of optimal

sampling locations and the strategy of dividing groups

would affect the results of the improved SEOD method.

Fig. 17 The performance indicators (the RMSE and the Ensemble Spread) at each assimilation step for different cases using the improved SEOD

method
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It is noted that only two kinds of measurements (head

and concentration) are assimilated in this work. More kinds

of measurements (e.g., hydraulic conductivity, porosity,

temperatures and hydrogeophysical data) can be assimi-

lated simultaneously so as to make use of more hard and

soft data to improve the accuracy of parameter estimation

in further study.

Acknowledgements The authors would like to thank the anonymous

referees for their insightful comments and suggestions that have

helped improve the paper. This work was financially supported by the

National Nature Science Foundation of China grants (Nos. U1503282,

41672229 and 41172206). We would like to thank Mr. Jun Man from

Zhejiang University for providing the SEOD code.

References

Aanonsen SI, Nævdal G, Oliver DS, Reynolds AC, Vallès B (2009)

The ensemble Kalman filter in reservoir engineering—a review.

SPE J 14:393–412

Atchley AL, Navarre-Sitchler AK, Maxwell RM (2014) The effects of

physical and geochemical heterogeneities on hydro-geochemical

transport and effective reaction rates. J Contam Hydrol

165:53–64. https://doi.org/10.1016/j.jconhyd.2014.07.008

Bear J (1972) Dynamics of fluids in porous materials. Dover, New

York

Burgers G, Leeuwen P, Evensen G (1998) Analysis scheme in the

ensemble Kalman filter. Month Weather Rev 126:1719–1724

Carrera J, Neuman SP (1986) Estimation of aquifer parameters under

transient and steady state conditions: 3. Application to synthetic

and field data. Water Resour Res 22:228–242

Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ (2005) Inverse

problem in hydrogeology. Hydrogeol J 13(1):206–222

Chen Y, Oliver DS (2010) Cross-covariances and localization for

EnKF in multiphase flow data assimilation. Comput Geosci

14:579–601

Chen Y, Zhang D (2006) Data assimilation for transient flow in

geologic formations via ensemble Kalman filter. Adv Water

Resour 29:1107–1122. https://doi.org/10.1016/j.advwatres.2005.

09.007

Cleveland TG, Yeh WWG (1990) Sampling network design for

transport parameter identification. J Water Resour Plan Manag

116:764–783

Dagan G (1984) Solute transport in heterogeneous porous formations.

J Fluid Mech 145:151. https://doi.org/10.1017/

s0022112084002858

Dagan G (1985) Stochasti modeling of groundwater flow by

unconditional and conditional probabilities: the inverse problem.

Water Resour Res 21(1):65–72

Doherty J (2004) PEST: model-independent parameter estimation,

user’s manual, 5th edn. Watermark Numerical Computing,

Oxley

Emerick AA, Reynolds AC (2011) Combining sensitivities and prior

information for covariance localization in the ensemble Kalman

filter for petroleum reservoir applications. Comput Geosci

15:251–269

Emerick AA, Reynolds AC (2013) Ensemble smoother with multiple

data assimilation. Comput Geosci Uk 55:3–15. https://doi.org/

10.1016/j.cageo.2012.03.011

Evensen G (2003) The ensemble Kalman filter: theoretical formula-

tion and practical implementation. Ocean Dyn 53:343–367

Evensen G (2009) Data assimilation: the ensemble Kalman filter.

Springer, Berlin

Fennell DE, Carroll AB, Gossett JM, Zinder SH (2001) Assessment of

indigenous reductive dechlorinating potential at a TCE-contam-

inated site using microcosms, polymerase chain reaction anal-

ysis, and site data. Environ Sci Technol 35:1830–1839

Gómez-Hernández JJ, Hendricks Franssen HJ, Sahuquillo A (2003)

Stochastic conditional inverse modeling of subsurface mass

transport: a brief review and the self-calibrating method. Stoch

Environ Res Risk Assess 17(5):319–328

Gu Y, Oliver DS (2007) An iterative ensemble Kalman filter for

multiphase fluid flow data assimilation. SPE J 12:1990–1995

Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MOD-

FLOW-2000, The US geological survey modular ground-water

model—User guide to modularization concepts and the ground-

water flow process. US Geological Survey Open-File Report

00–92, 121 p

Hendricks Franssen HJ, Kinzelbach W (2008) Real-time groundwater

flow modeling with the ensemble Kalman filter: joint estimation

of states and parameters and the filter inbreeding problem. Water

Resour Res 44:354–358

Hendricks Franssen HJ, Alcolea A, Riva M, Bakr M, van der Wiel N,

Stauffer F, Guadagnini A (2009) A comparison of seven methods

for the inverse modelling of groundwater flow. Application to

the characterisation of well catchments. Adv Water Resour

32(6):851–872

Huang C, Hu BX, Li X, Ye M (2009) Using data assimilation method

to calibrate a heterogeneous conductivity field and improve

solute transport prediction with an unknown contamination

source. Stoch Env Res Risk Assess 23(8):1155

Kalman RE (1960) A new approach to linear filtering and prediction

problems. Trans ASME J Basic Eng 82(D):35–45

Knopman DS, Voss CI (1987) Behavior of sensitivities in the one-

dimensional advection-dispersion equation: implications for

parameter estimation and sampling design. Water Resour Res

23:253–272

Kullback S (1997) Information theory and statistics. Courier Corpo-

ration, North Chelmsford

Li G, Reynolds AC (2009) Iterative ensemble Kalman filters for data

assimilation. SPE J 14:496–505

Table 4 Computational costs

Case name Times of model invoking Times of GA invoking computing time (using the same computer)

Case 2 10 10 2 h

Case 14 8 2 26 min

Case 15 8 2 26 min

Case 16 12 3 25 min

Case 17 12 3 25 min

1936 Stochastic Environmental Research and Risk Assessment (2018) 32:1919–1937

123

https://doi.org/10.1016/j.jconhyd.2014.07.008
https://doi.org/10.1016/j.advwatres.2005.09.007
https://doi.org/10.1016/j.advwatres.2005.09.007
https://doi.org/10.1017/s0022112084002858
https://doi.org/10.1017/s0022112084002858
https://doi.org/10.1016/j.cageo.2012.03.011
https://doi.org/10.1016/j.cageo.2012.03.011


Li L, Steefel CI, Kowalsky MB, Englert A, Hubbard SS (2010)

Effects of physical and geochemical heterogeneities on mineral

transformation and biomass accumulation during biostimulation

experiments at Rifle, Colorado. J Contam Hydrol 112:45–63.

https://doi.org/10.1016/j.jconhyd.2009.10.006

Man J, Zhang J, Li W, Zeng L, Wu L (2016) Sequential ensemble-

based optimal design for parameter estimation. Water Resour

Res 52:7577–7592. https://doi.org/10.1002/2016wr018736

Moradkhani H, Sorooshian S, Gupta HV, Houser PR (2005) Dual

state–parameter estimation of hydrological models using ensem-

ble Kalman filter. Adv Water Resour 28:135–147

Neuman SP (1973) Calibration of distributed parameter groundwater

flow models viewed as a multiple objective decision process

under uncertainty. Water Resour Res 9(4):1006–1021

Nowak W, De Barros FPJ, Rubin Y (2010) Bayesian geostatistical

design: task-driven optimal site investigation when the geosta-

tistical model is uncertain. Water Resour Res 46(3):374–381.

https://doi.org/10.1029/2009WR008312

Oliver DS, Chen Y (2011) Recent progress on reservoir history

matching: a review. Comput Geosci 15(1):185–221

Oliver DS, Cunha LB, Reynolds AC (1997) Markov chain Monte

Carlo methods for conditioning a permeability field to pressure

data. Math Geol 29(1):61–91

Prommer CH, Post V (2010) A reactive multicomponent transport

model for saturated porous media. Groundwater 48(5):627–632

Rubin Y (1991) Transport in heterogeneous porous media: prediction

and uncertainty. Water Resour Res 27:1723–1738

Sandrin SK, Brusseau ML, Piatt JJ, Bodour AA, Blanford WJ, Nelson

NT (2004) Spatial variability of in situ microbial activity:

biotracer tests. Groundwater 42:374–383

Scheibe TD, Fang Y, Murray CJ, Roden EE, Chen J, Chien YJ,

Brooks SC, Hubbard SS (2006) Transport and biogeochemical

reaction of metals in a physically and chemically heterogeneous

aquifer. Geosphere 2(4):220–235. https://doi.org/10.1130/

Ges00029.1

Sorensen JVT, Madsen H, Madsen H (2004) Data assimilation in

hydrodynamic modelling: on the treatment of non-linearity and

bias. Stoch Environ Res Risk Assess 18(7):228–244

Sudicky EA (1986) A natural gradient experiment on solute transport

in a sand aquifer: spatial variability of hydraulic conductivity

and its role in the dispersion process. Water Resour Res

22:2069–2082. https://doi.org/10.1029/WR022i013p02069

Sun NZ, Yeh WWG (2007) Development of objective-oriented

groundwater models: 2. Robust experimental design. Water

Resour Res. https://doi.org/10.1029/2006wr004888

Tong J, Hu BX, Yang J (2010) Using data assimilation method to

calibrate a heterogeneous conductivity field conditioning on

transient flow test data. Stoch Environ Res Risk Assess

24(8):1211–1223

Ushijima TT, Yeh WWG (2015) Experimental design for estimating

unknown hydraulic conductivity in an aquifer using a genetic

algorithm and reduced order model. Adv Water Resour

86:193–208

Van Leeuwen PJ, Evensen G (1996) Data assimilation and inverse

methods in terms of a probabilistic formulation. Mon Weather

Rev 124:2898–2913

Whitley D (1994) A genetic algorithm tutorial. Stat Comput

4(2):65–85

Zhang D, Lu Z (2004) An efficient, high-order perturbation approach

for flow in random porous media via Karhunen–Loève and

polynomial expansions. J Comput Phys 194:773–794

Zhang J, Zeng L, Chen C, Chen D, Wu L (2015) Efficient Bayesian

experimental design for contaminant source identification. Water

Resour Res 51(1):576–598

Zheng C (2006) MT3DMS v5.2 supplemental user’s guide: technical

report to the US Army Engineer Research and Development

Center, Department of Geological Sciences, University of

Alabama, p 24
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