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Abstract
Understanding the geological uncertainty of hydrostratigraphic models is important for risk assessment in hydrogeology.

An important feature of sedimentary deposits is the directional ordering of hydrostratigraphic units (HSU). Geostatistical

simulation methods propose efficient algorithm for assessing HSU uncertainty. Among different geostatistical methods to

simulate categorical data, Bayesian maximum entropy method (BME) and its simplified version Markov-type categorical

prediction (MCP) present interesting features. In particular, the zero-forcing property of BME and MCP can provide a

valuable constrain on directional properties. We illustrate the ability of MCP to simulate vertically ordered units. A

regional hydrostratigraphic system with 11 HSU and different abundances is used. The transitional deterministic model of

this system presents lateral variations and vertical ordering. The set of 66 (11 9 12/2) bivariate probability functions is

directly calculated on the deterministic model with fast Fourier transform. Despite the trends present in the deterministic

model, MCP is unbiased for the HSU proportions in the non-conditional case. In the conditional cases, MCP proved robust

to datasets over-representing some HSU. The inter-realizations variability is shown to closely follow the amount and

quality of data provided. Our results with different conditioning datasets show that MCP replicates adequately the

directional units arrangement. Thus, MCP appears to be a practical method for generating stochastic models in a 3D

hydrostratigraphic context.

Keywords Bayesian maximum entropy (BME) � Markov-type categorical prediction (MCP) � Bivariate probabilities �
Hydrostratigraphic units (HSU) � Units ordering � Categorical simulation � Model uncertainty

1 Introduction

The limited sampling available to study complex geologi-

cal systems are not sufficient to properly characterize

critical features, such as the proportions and connectivity of

units, that control groundwater flow simulation responses

(Jakeman et al. 2016; Refsgaard et al. 2012). These

attributes are essential to assess the response of a hydro-

geological system to external stimuli. Hence, adequate

characterization of uncertainty about unit proportions and

connectivity is of paramount importance for hydrogeolog-

ical modeling and prediction of aquifer responses (Molson

and Frind 2012).

Most groundwater flow models are based on determin-

istic models that lack any quantification of uncertainty in

the geometry, connectivity, and relative proportions of the

geological units. Geostatistical simulation methods aim to

propose different hydrogeological models called realiza-

tions (Chilès and Delfiner 2012). Each realization is typi-

cally an input to a flow simulator from which a response to

a specified stimulus is computed. The distribution of

modeled responses describes the uncertainty about the real

system response to a similar physical stimulus (Zhou and

Li 2011). To be useful, the approach requires each

hydrogeological model to be consistent with the relevant

natural features expected to be found in the subsurface.

Moreover, the ensemble of models should provide a fair
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assessment of uncertainty. Hence, the models must include

all the geological knowledge available while preserving the

variability due to incomplete knowledge.

An important common feature in sedimentary deposits is

the directional ordering of stratigraphical geological units.

For example, in undeformed glacial stratigraphies, this is

represented by the law of superposition. This constraint is

difficult to incorporate in traditional categorical geostatis-

tical simulation methods like PluriGaussian Simulation

(PGS).

The PGS method of Armstrong et al. (2011) with

independent Gaussians does not allow asymmetrical

ordering, as all transitions are symmetric by construction.

Some asymmetry can be introduced using correlated and

spatially delayed Gaussians (Le Blévec et al. 2017).

However, this approach does not allow to fully control the

transition probabilities in presence of numerous units.

The multiple-point statistical methods (MPS) have two

main variants: either pixel- (e.g. Strebelle 2002; Mariethoz

et al. 2010) or patch-based (e.g. Rezaee et al. 2015; Arpat

and Caers 2007). Both are based on the use of one or many

training images that synthesize geological knowledge.

Although directionality can be present in a training image,

it might be difficult to strictly enforce transitional features

into realizations, especially for the patch-based variant.

Furthermore, multipoint method used with training image

that have low pattern repeatability like the ones seen in

sedimentary environments with directional trends (Boucher

et al. 2014) may generate realizations lacking variability.

Categorical simulation (units or facies) based on tran-

sition probabilities like Bayesian maximum entropy (BME)

(Bogaert 2002; Bogaert and D’Or 2002; D’Or 2003) can

reproduce complex geological structures that account for

asymmetries in the bivariate probabilities. However, the

computations explode for multiple facies and multiple

points. Computationally simpler approach like Li’s algo-

rithm (Li et al. 2004; Li and Zhang 2007; Li 2007) or

Markov Category Prediction method (MCP) (Allard et al.

2011) also enable to account for asymmetries in bivariate

probabilities. Allard et al. (2011) demonstrated that MCP

constitutes a good approximation to BME. However, MCP

has never been tested on a complex system with more than

3 units and strong directional control.

The main objective of this study is to demonstrate the

ability of MCP to simulate units with directional ordering.

After reviewing the MCP approach and its properties,

effect of conditioning data is discussed and illustrated with

a simple synthetic example. Then, a complex real 3D

deterministic model, representing a sub-domain of the

Simcoe County hydrostratigraphic system in south-central

Ontario, is used as training image for the application of

MCP. Various simulation scenarios using different types

and levels of information are compared and discussed.

2 MCP simulation methodology

The MCP approach was introduced by Allard et al. (2011)

as an efficient substitute for the computationally intensive

Bayesian maximum entropy (BME) method. The BME,

initially developed to estimate continuous variables

(Christakos 1992; Serre and Christakos 1999; Serre et al.

2003; D’Or et al. 2001; Orton and Lark 2007), was later

adapted for the estimation of categorical variables (Bogaert

and D’Or 2002; D’Or and Bogaert 2004). In the BME

approach for categorical variables, the parameters of the

joint discrete distributions are estimated so as to match

simultaneously the bivariate probabilities between all pairs.

By contrast, in the MCP approach only the bivariate

probabilities involving the point to estimate and each data

point are considered. The bivariate probabilities between

pairs of data points are ignored. Allard et al. (2011)

showed this corresponds assuming a conditional indepen-

dence hypothesis: the joint category distributions at loca-

tions xi; i ¼ 1. . .n are considered independent once the

category at estimation location x0 is known.

2.1 MCP definition

The conditional probability to observe the category i0 at

location x0 given the categories i1; . . .in observed at loca-

tions x1; . . .xn is by definition:

pi0ji1;...;in ¼
pi0;i1;...;in
pi1;...;in

¼
pi0pi1;...;inji0

PI
i0¼1 pi0pi1;...;inji0

ð1Þ

where I is the number of categories.

In the BME approach, one seeks to estimate directly the

above joint distributions subject to a series of constraints

aimed at recovering imposed univariate and bivariate dis-

tributions. In practice, BME is limited to use of small

neighborhood due to the difficulty to estimate high-di-

mensional joint distributions.

In the MCP method, one assumes a conditional inde-

pendence hypothesis such that:

pi1;...;inji0 ¼
Yn

k¼1

pik ji0 ð2Þ

which enables to write Eq. 1 as:

pMCP
i0ji1;...;in ¼

pi0
Qn

k¼1 pik ji0
PI

i0¼1 pi0
Qn

k¼1 pik ji0
¼

p1�n
i0

Qn
k¼1 pik ;i0

PI
i0¼1 p

1�n
i0

Qn
k¼1 pik ;i0

ð3Þ

Hence, only the bivariate distributions involving the esti-

mated point x0 are required in the MCP approach. It was

shown by Allard et al. (2011) through a series of examples

that, despite the rather strong conditional independence

1436 Stochastic Environmental Research and Risk Assessment (2018) 32:1435–1455

123



hypothesis, differences observed between the BME and the

MCP results were negligible.

One interesting feature of MCP, called the zero-forcing

property, is the proper integration of 0/1 probabilities. As

soon as pikji0¼j ¼ 0 for any k, one has pMCP
i0¼jji1;...;in ¼ 0.

Similarly, when pik ji0¼j ¼ 1 one has pMCP
i0¼jji1;...;in ¼ 1.

Therefore, directional sequence of categories can be easily

reproduced by MCP as noted by Allard et al. (2011). It

makes the method attractive to simulate stratigraphic

models with naturally ordered units arrangement.

2.2 MCP simulation

We apply the MCP approach for the particular case where a

training image (TI) is available either in the form of a

conceptual model or a deterministic one. In both cases, we

assume the basic grid cell is the same size in the TI and the

simulated field. Moreover, we assume that all hard data are

observed directly at the cell scale or are deemed repre-

sentative of this scale.

2.2.1 Bivariate probabilities

The first step in MCP is to estimate the bivariate proba-

bilities. These are computed directly from the TI for all

separation vectors. For efficient computation, we use the

fast Fourier transform algorithm (FFT) (Marcotte 1996).

The bivariate probabilities are computed simultaneously by

FFT for each variable pair and every separation vector.

During sequential simulation, the separation vectors

between the point to simulate and the known points (data or

previously simulated) in the neighborhood are computed

and used to read directly the corresponding bivariate

probabilities. We stress that because everything is defined

at a cell scale there is no modeling of bivariate probabilities

required nor any smoothing. We simply read directly the

experimental probabilities for the MCP computations.

As an example, suppose 11 HSU are available in a 3D

setting. One wants to simulate the HSU at cell

x0 ¼ ð50; 50; 5Þ. Also assume that HSU 5 and 7 were

observed at cells x1 = (49, 52, 4) and x2 = (55, 46, 7)

respectively. These two informed cells define the neigh-

borhood of x0. Then, the two separation vectors are

ð1;�2; 1Þ and ð�5; 4;�2Þ. To compute Eq. 3, we read

directly the 11 values (for i0 ¼ 1. . .11) of pi0;i1¼5ð1;�2; 1Þ
and the 11 values of pi0;i2¼7ð�5; 4;�1Þ.

The bivariate probability of observing categories i at

location x and j at location xþ h is simply equal to the

non-centered cross-indicator covariance

PðIðxÞ; Jðxþ hÞÞ ¼ E½IðxÞJðxþ hÞ� where IðxÞ is the

indicator variable that takes value one if HSU i is observed

at point x and value zero otherwise. Similarly Jðxþ hÞ

takes value one if HSU j is observed at point xþ h. The

expectation is estimated by 1
NðhÞ

P
x IðxÞJðxþ hÞ over the

NðhÞ pair of points with separation vector h. As described

in Marcotte (1996), for data on a (possibly incomplete)

regular grid, this can be computed by FFT using the fol-

lowing equations:

NðhÞ ¼ F�1 FðKÞFðKÞ
� �h i

ðhÞ ð4Þ
X

x

IðxÞJðxþ hÞ ¼ F�1 FðIÞFðJÞ
� �h i

ðhÞ ð5Þ

where F represents the FFT, F�1 the FFT-inverse, matrix K

takes the value one at all points of the deterministic model

and zero outside, matrices I and J take the value one at

locations where respectively categories i and j are observed

and zero elsewhere. The matrices I and J are extended by

zero-padding to nullify periodic repetitions implicit in FFT.

The over-line indicates complex conjugate. Note that the

FFT computes the indicator cross-covariances simultane-

ously for all lag-distances h. The fast computation in Eq. 5

is repeated separately for each pair of categories.

2.2.2 Data and pseudo-data

Conditioning to hard data (HD) is straightforward in MCP

as opposed to some other categorical simulation methods

like object-based, process-based or patch-based variants of

MPS. The HD simply populate the corresponding cells and

are never changed during the simulation. In the absence of

HD, the algorithm starts either by drawing directly from

the marginal distributions or, preferably, by imposing a

pseudo-data (PD). Pseudo-data can be provided, as exam-

ples, by surficial maps or bedrock topography interpreta-

tions. Another possible source of pseudo-data can be a

deterministic model, such as a geologist-interpreted CAD

model. Taking a small proportion of the deterministic

model as pseudo-data helps to reproduce the main char-

acteristics and constraints interpreted by the geologist

whilst keeping variability in the simulated models. How-

ever, one should refrain from taking too much pseudo-data

as this will reduce variability in the realizations.

2.2.3 Simulation algorithm

The simulation proceeds following the sequential simula-

tion framework where the conditional distributions are

computed using Eq. 3. The simulated value at the current

cell is obtained by a random draw from the category con-

ditional probabilities. The use of a multigrid approach

(Tran 1994) helps to better reproduce the long range

structural characteristics described by the TI. The neigh-

borhood search parameters include: extent and anisotropy
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of the search, number of neighbors to use and search by

octant. The effect of these choices can be important (see

Sect. 2.5).

In the particular case of highly ordered arrangement of

units like the ones considered in the next sections, it is

advisable to avoid drawing from the marginal distributions

as nothing guarantees that the desired order of units will be

preserved. A simple modification of the simulation path

alleviates this problem by re-simulating at the end of path

any location that does meet a minimum number of data

found in the neighborhood search.

2.2.4 Assessing quality of realizations

Two statistics are used to measure the quality of the real-

izations: the Kullback-Leibler divergence (C1) from Kull-

back and Leibler (1951) and the average spread of HSU

proportions (C2) where the spread for a given HSU is

measured by the difference between the proportion quan-

tiles 0.95 and 0.05 among the nr realizations. Hence,

C1 ¼
XI

i¼1

pTIi � log pTIi=pMCPi

� �� �
ð6Þ

C2 ¼ 1

I

XI

i¼1

ðq95;i � q5;iÞ ð7Þ

where I is the number of HSU, pTIi represents the HSUi

proportion in the TI, pMCPi is the average proportion of

HSUi in the nr realizations and q5;i and q95;i are the 0.05

and 0.95 quantiles of distribution obtained with the nr
realizations for HSUi proportion. The first criterion mea-

sures similarity of the distribution of HSU proportions in

realizations compared to the TI proportions. Criterion C2

measures the variability of the simulated HSU proportions

among the different realizations.

The above criteria were used to assess the impact of

various choices for the control parameters. We generally

seek to favor small C1 and large C2 values. These two

objectives tend to oppose each other. For example, taking a

larger proportion of pseudo-data from a deterministic

model favors the reproduction of the proportions globally

but also in each individual realization which reduces the

inter-realization variability of HSU proportions.

In addition to the global statistics C1 and C2, we also

computed dissimilarity map between the model used as TI

and the different realizations using:

dðxÞ ¼ 1

nr

Xnr

r¼1

ISr ;TIðxÞ ð8Þ

where nr is the number of realizations, and ISr ;TIðxÞ is an

indicator variable taking value zero when the simulated

unit at location x coincides with unit in TI, and value one

otherwise. The dissimilarity map provides a spatial repre-

sentation of where the uncertainty is large with respect to

the deterministic model.

2.3 Illustration of MCP

A synthetic example based on a simple deterministic model

is used to illustrate typical results obtained by MCP. The

deterministic model used as TI consists of four horizontal

hydrogeological units with increasing proportions from top

to bottom (respectively 15, 20, 30 and 35%).

Figure 1 presents four different realizations obtained

using three initial scenarios: non-conditional simulation

(NCS), conditional simulation with 1% data extracted from

the TI (CS1) and conditional simulation with 20% data

extracted from the TI (CS2). Simulations are performed on

a 2D 25 9 20 grid. The minimum and maximum number

of neighbors are set to 0 and 5. The search is done by

quadrant with a maximum of 2 samples per quadrant.

Based on the 0/1 forcing property of MCP, the sequence

of units present in the TI is respected in each realization.

As expected, the dissimilarity decreases with the addition

of data and the dissimilarity is stronger close to units

interfaces.

Figure 2 shows the boxplots of the units proportions

obtained from 100 realizations of NCS, CS1 and CS2 for

the synthetic model. The TI proportions are well recovered

for each unit, in all cases. For NCS, the mean proportions

obtained from the realizations are not statistically different

from proportions in the TI (test on equality of proportions),

indicating the absence of bias of the method. A similar test

cannot be applied for cases CS1 and CS2 due to the cor-

relation between realizations induced by the conditioning

data. However, the boxplots strongly suggest absence of

bias of the method. As expected, variability of unit pro-

portions in the realizations decreases with the amount of

conditioning data. The expected variability of MCP con-

ditional simulation is studied more in detail in Sect. 2.4.

Table 1 presents statistics C1 and C2 (see Eq. 7), for the

different scenarios.

The NCS presents the highest values for C1, and C2.

Adding a few data randomly (CS1 vs. NCS) decreases

strongly both statistics values. As expected, adding more

data reduces further C2 (CS2 vs. CS1).

From this synthetic example, we conclude that the MCP

is unbiased. Its 0/1 forcing property is determinant to

enforce directional units sequence. The variability of the

resulting realizations is controlled by the number of data

available. The realizations appear as different versions of

the deterministic model, especially in presence of condi-

tioning data.
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2.4 MCP variability in the Gaussian case

To illustrates expected variability of MCP conditional

simulation in a spatial context, we compare the variability

of its transitional bivariate probability functions with the

multiGaussian case.

We first perform conditional simulation of 100 realiza-

tions of a Gaussian variable using FFTMA algorithm

(Ravalec et al. 2000) on a 2D simulation grid (250 9 250

cells) using a cubic covariance function with an isotropic

range representing 1/4 of the field size. An initial realiza-

tion was sampled at 251 cells (0.4% of the total number of

cells) to provide the conditioning data. Gaussian realiza-

tions are post-conditioned by kriging and then truncated

using thresholds -0.67 and 0.52 to define three units with

theoretical proportions of 0.25, 0.45 and 0.30 respectively.

For each truncated conditional realization we calculated

the experimental non-centered cross-indicator covariance

that estimates E½IðxÞJðxþ hÞ�. At each lag, the 100

experimental non-centered covariances and cross-covari-

ances were sorted and used to define 95% confidence

Fig. 1 From left to right—top row: synthetic TI, 4 NCS realizations, NCS dissimilarity—middle row: 1% TI as data, four CS1 realizations, CS1

dissimilarity—bottom row: 20% TI as data, four CS2 realizations, CS2 dissimilarity. Based on 100 realizations, dissimilarities expressed as %
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Fig. 2 Boxplots of unit proportions (in %) for NCS (left), CS1 (middle) and CS2 (right); TI proportions as asterisk. Based on 100 realizations of

the synthetic model

Table 1 Statistics C1 and C2 (100 realizations)

Simulation Description C1 C2

NCS Unconditional 3.05 58.8

CS1 HD (1% TI) 0.06 15.5

CS2 HD (20% TI) 0.01 5.4
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interval of bivariate probabilities (blue lines in Fig. 3) for

the Gaussian case.

Next, we calculated for each lag distance the theoretical

bivariate probabilities from the biGaussian law using the

same covariance model and unit proportions (Chilès and

Delfiner 2012, p. 104). We used the theoretical bivariate

probabilities for MCP simulation with search radii equal to

field size and using a maximum of 5 neighbors. From MCP

realizations, we calculated the experimental bivariate

probabilities for the MCP case (grey lines in Fig. 3).

Figure 3 shows a rather good agreement of MCP

bivariate probabilities with those obtained in the Gaussian

case. There is no strong bias for probabilities and the

variability of the probabilities match well the confidence

intervals obtained from exact Gaussian simulations. This

example illustrates that MCP is able to reproduce vari-

ability comparable to the one obtained from an exact

Gaussian method in the conditional Gaussian case.

Admittedly, results can vary with the number of condi-

tioning points used.

2.5 Sensitivity to neighborhood selection

To assess the effect of choices related to the main simu-

lation parameters (number of neighbors and search radius),

a sensitivity analysis is performed on the synthetic case

shown in Fig. 1 based on C1 and C2 criterion values. One

hundred conditional realizations with 10 HD were run. In

the first test, the search radius (dmax) covers the full extent

of the domain and maximal number of neighbors (nmax)

varies (Fig. 4-top left). In the second test, nmax is set at 10

with increasing dmax (Fig. 4-top right). In the third test,

nmax is set at 10, dmax covers the full extent of the domain

and number of HD increases (ndata). In the fourth test,

nmax is set at 10, dmax covers the full extent of the

domain, the number of HD is 10 (ndata) and number of

realizations increases. In these four tests no other con-

straints are applied. Hence, multigrid, correction for

inversion, search by quadrant, and minimal number of

neighbor are all deactivated.

Figure 4-top left shows that C1 and C2 decrease to zero

as nmax increases. With numerous neighbors, the data

event becomes so constraining that a single category at

simulation point is observed in the TI (C2 goes to zero). On

the opposite, a lack of neighbors does not bring enough

Fig. 3 Experimental bivariate probability as a function of cell distance for MCP realizations (grey) and 95% confidence interval for

multiGaussian simulation (blue). Units ordered F1, F2 and F3 from left to rightand top to bottom
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constraints to reproduce correctly the TI proportions, so C1

is high. For this particular example, values of nmax

between say 5–20 could be envisaged as they allow ade-

quate reproduction of TI proportions without eliminating

totally the variability.

Figure 4-top right shows globally fluctuations around

the levels observed for C1 and C2 in the Fig. 4-top left for

nmax = 10, except for small dmax where both C1 and C2

are higher. When dmax is small, it is likely that less than

nmax neighbors are found, so the simulation behaves like

with a smaller nmax. This indicates that results are rather

robust to the choice of dmax. As soon as dmax is not set

too small, one can expect a range of values for nmax where

C1 is simultaneously small and C2 not close to zero. This

range is expected to be case dependent, so the selection of

an acceptable nmax may require a few trials.

Figure 4-bottom left shows that C1 and C2 results are

robust to the number of HD initially available as soon as

ndata � 10. C1 is close to zero and C2 decreases slowly

with ndata. So the variability obtained is more directly

related to the number of neighbors used in the simulation

(nmax) than the number of initially available HD (ndata).

This result is rather expected as each simulated cell is

added sequentially to the list of available data. As the

initial HD represent only a small portion of cells present in

the simulated field, the neighborhood becomes quickly

composed mostly of previously simulated points.

Figure 4-bottom right shows convergence of C1 to zero

and stabilization of C2 as the number of realizations

increases. Note that in this case for each realization a new

drawing of HD is done so as to eliminate the effect of any

particular drawing.

3 Case study: MCP simulation of a Basin
glacial stratigraphy

We apply the MCP method to a complex deterministic

model comprising 11 HSU with strong vertical ordering.

After introducing the study area and the deterministic

model, five scenarios for simulation by MCP are consid-

ered and their results compared.

3.1 Hydrostratigraphic setting: Simcoe County
area

The 3D TI represents a small portion of a larger deter-

ministic model describing the regional hydrostratigraphy of

South Simcoe County in South-central Ontario, Canada

(Fig. 5). The deterministic model and the accompanying

data were provided by the Ontario Geological Survey.

The 11 HSU show proportions varying from 0.25 to

27.28%. The first two letters of the HSU label refer to sand

and gravel aquifers (AF) or silty and clayey aquitards (AT).

From bottom to top, the hydrostratigraphy comprises:

Ordovician limestone bedrock (23.24%) and pre-Middle

Wisconsin stratified sand and gravel aquifers (AFF1;

0.25%) and aquitards ATE1 (12.19%). The overlying

Thorncliffe Formation consists of interbedded aquifers

(AFD4: 2.00%; AFD1: 2.90%) and aquitards (ATD2:

1.43%, ATD1; 27.28%). Stratified deposits of AFD4
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Fig. 4 Top left C1 and C2 as a

function of nmax using dmax

infinite and ndata = 10; top

right C1 and C2 as a function of

dmax with nmax = 10 and

ndata = 10; bottom left C1 and

C2 as a function of ndata with

nmax = 10 and dmax infinite;

bottom right C1 and C2 as a

function of number of

realizations with nmax = 10

and dmax infinite
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uncomformably overlies ATE1 which in this area occurs as

a fine textured diamicton. Newmarket till (ATC1; 4.00%)

caps the sedimentary sequence and acts as a regional

aquitard. The till is eroded locally and has been traced

down into broad valley systems interpreted to be tunnel

channels. Glaciofluvial sand and gravel aquifers (AFB2;

Fig. 5 Top—location map of the deterministic TI case study in South Simcoe County; Bottom—3D view of the deterministic TI (vertical

exaggeration 159)
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2.45%) occur at the base of the tunnel channels and are

equivalent in age to early Oak Ridges moraine deposits.

AFB2 includes gravelly and sandy sediments at the base

and is capped by a sequence of glaciolacustrine silt, clay

and subordinate sand (aquitard ATB2; 22.27%). Shallow

regressional deposits of sand and gravel (AFB1; 1.99%)

completes the stratigraphic sequence. The HSU thickness is

highly variable (Fig. 6). Each HSU is composed of one or

more successive stratigraphic sub-units (hydrofacies) with

similar hydrogeologic properties determined at reservoir

scale.

3.2 Simulation scenarios and parameters

Five different scenarios are compared. The first scenario is

a non-conditional simulation (NCS). It uses only the TI in

Fig. 5. The four other scenarios (CS1 to CS4) are condi-

tional to information depicted in Fig. 7 and described in

Table 2.

Two types of HD are used. The first one comes from

continuously sampled high quality boreholes. The second

type represents picks (3D points) interpreted by the geol-

ogist from low quality borehole logs from public domain

database. The picks are used to control unit geometry. Each

pick corresponds to the top of a certain HSU. The HSU

immediately above a pick is considered unknown although

it must obviously be a younger unit. In addition to HD,

pseudo-data are used in some of the scenarios. The sources

of pseudo-data are: (i) the hydrostratigraphic units derived

from surficial geology mapping, (ii) the bedrock interpo-

lated surface and (iii) random points selected within the

deterministic model. In the latter case, a new drawing is

done for each realization.

The simulation grid is regular. Each cell is

200 9 200 9 1 m. The deterministic model (TI) and

simulated field are defined over the same grid of

76 9 5 9 193 cells. The bivariate probabilities are calcu-

lated over the entire 3D TI.

One hundred realizations are produced for each sce-

nario. MCP is applied with search radii of 10 9 5 9 25

cells and a maximum of 5 neighbors with at most two

neighbors per octant. A multigrid procedure is activated

comprising 9 levels. All simulation results are compared to

the deterministic model considered as a smoothed inter-

pretation of the ground truth.

3.2.1 Non-conditional simulation (NCS)

The NCS scenario illustrates the capacity of MCP to pre-

serve HSU relationships found in the TI (Fig. 8). The

directional HSU sequence is respected (Fig. 8b) due to the

zero-forcing property. The spatial variability of the HSU is

larger close to HSU contacts (Fig. 8c). The TI HSU pro-

portions are well reproduced (Fig. 8d) by the MCP real-

izations, even for units representing very low proportions.

The proportion variability is large and approximately pro-

portional to the TI proportions as expected for a non-con-

ditional case.

The differences between the TI proportions and the

mean proportions over the realizations are statistically non-

significant for 9 of the 11 HSU (we have

pMCPi � pTIi
�
�

�
�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pTIið1� pTIiÞ=n

p
\z0:05=2 ¼ 1:96),

including the four most abundant HSU. The only two HSU

showing significant differences, AFD4 and AFF1, are

among the least abundant ones.

Figures 9 shows boxplots of HSU thicknesses measured

over all vertical scan lines for the 100 realizations. The

thickness distributions compares well to the mean and

maximum thicknesses observed in the 3D TI for the dif-

ferent HSU.

3.2.2 Conditional simulation with HD: CS1

Data used for CS1 scenarios are 176 picks (CS1a) or 176

double picks (i.e. in all 352 picks obtained by adding a pick

just above the 176 original picks) (CS1b) and HSU

extracted from two high quality continuous drilling (Bajc

et al. 2015). A single pick represents the top of a HSU

while a double pick represents the top of a HSU and the

bottom of the overlying HSU as identified from the TI.

Data locations are illustrated in Fig. 7-top.

Figures 10 and 11 show the strong effect of conditioning

data on MCP realizations. Compared to NCS, adding a few

data helps reproduce the main TI structures. Uncertainty is

larger close to HSU contacts (Fig. 10c). HSU proportions

variability is greatly reduced (Fig. 10d) compared to NCS.

The differences between scenarios CS1a and CS1b are

subtle, mainly visible in the leftmost part of the sections
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and on the dissimilarity maps where CS1a shows more

variability with respect to the TI. Moreover the abundance

of AFD4 is slightly better reproduced with CS1b than with

CS1a and the HSU units appear laterally a bit more

continuous.

We note that many HSU have mean proportions in the

realizations different from the TI. For the three most

abundant HSU (ATB2, ATD1 and bedrock) the mean

proportions are less in CS1 realizations than in TI.

Considering only the picks (i.e. excluding borehole data),

the ATB2, ATD1 and bedrock HSU were also less abun-

dant than in the TI (respectively 17.1–22.5, 23.5–27.1,

0.5–24% for ATB2, ATD1 and bedrock picks—TI). Hence,

in the initial steps of MCP a simulated point remote from

the boreholes will find fewer ATB2, ATD1 and bedrock

data in its neighborhood than present in the TI. This could

explain the observed disparity between MCP and TI HSU

proportions.

Fig. 7 Data for the four conditional simulations, from top to bottom:—CS1: 176 picks and 2 boreholes—CS2: 44 pseudo-data (random sampling

of TI)—CS3: CS1 data?pseudo-data (10% of bedrock top and all surficial HSU)—CS4: CS1 data ? pseudo-data (0.3% of cells from TI)
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Figure 12 shows four realizations obtained with CS1b of

AFD4, ATE1, AFF1 and Bedrock HSU sub-ensemble.

Notice variations in thickness of ATE1 and AFF1 HSU

across the realizations. ATE1 has many direct contacts with

the bedrock in the fourth realization but almost none in the

second one. This could illustrate erosional events or local

discontinuities. The 0/1 forcing capability of MCP pre-

serves nevertheless the upward depositional sequence.

3.2.3 Conditional simulation with pseudo-data: CS2

In this scenario we do not use the available HD. Instead, 44

pseudo-data are extracted from the deterministic model by

random sampling. Hence, the HSU proportions in pseudo-

data and TI are similar. The comparison of results for the

‘‘balanced’’ case CS2 with the ‘‘unbalanced’’ case CS1a

aims to assess the influence of differences between data

and TI HSU proportions on global HSU proportions

obtained in realizations.

Figure 13 shows the results for CS2. One can still

observe differences between HSU proportions in the sim-

ulation and TI for AFB2, ATD1, AFD4, AFF1 and Bed-

rock, but the differences are globally reduced compared to

CS1. Having conditioning data more evenly spread in the

TI helps reduce the observed discrepancies in HSU pro-

portions. However, it is not clear whether or not the

observed proportion differences are statistically significant

for both CS1 and CS2 when compared to proportions in TI.

3.2.4 Conditional simulation with data and pseudo-data:
CS3

One source of commonly available geological information

is the surficial geology for which reliable maps exist. A

second source is the bedrock topography which can be

interpolated reliably given the availability of all the bore-

holes archived in databases. These two sources can be used

to provide pseudo-data that help constrain the simulated

models.

Figure 14 presents the results of conditional simulation

using pseudo-data from surficial geology (all 324 cells) and

bedrock (37 cells) in addition to the HD set (see Fig. 7c).

The most striking effect of the added pseudo-data is the

reduction of variability observed on the boxplots compared

to NCS and CS2.

3.2.5 Conditional simulation with HD and pseudo-data
from TI: CS4

As indicated before and as used in CS2, the deterministic

model can itself be a source of pseudo-data. The added

pseudo-data from the TI helps to control the HSU pro-

portions in the simulated models. However, their number

must be kept small to preserve variability of the

realizations.

Figure 15 presents an example using a small proportion

of the TI (0.3%) obtained from a random sampling that

adds 143 pseudo-data to the available HD. As with CS3,

the main effect of added pseudo-data is to diminish

strongly the variability of proportions among realizations.

3.3 Statistics of the different scenarios

The criteria C1 and C2 are shown in Table 2 for the five

different scenarios. The NCS scenario has the most vari-

ability, it presents the largest C2 values. Adding data (CS1)

or pseudo-data (CS3) unevenly distributed in the simula-

tion field affects slightly the reproduction of HSU pro-

portions compared to a more balanced sampling as shown

by the higher C1 values for CS1 and CS3 compared to

NCS, CS2 and CS4. Adding more data reduces the vari-

ability as indicated by statistic C2 lower for CS4 compared

to S2 and CS1, and lower for CS3 than for CS1.

Table 2 Statistics of 100

realizations for each scenario
Simulation Description C1 C2

NCS Unconditional 5.8 25.3

CS1a HD (2 boreholes ? 176 picks) 7.9 3.1

CS1b HD (2 boreholes ? 176 double picks) 5.1 2.4

CS2 PD (44 cellsa) 5.8 4.7

CS3 HD (CS1) ? PD (37 bedrocka ? all 324 surficial cells) 7.5 2.3

CS4 HD (CS1) ? PD (143 cellsa) 4.9 1.8

See Eq. 7 for definition of C1 and C2 (arandom sampling of TI)
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3.4 Illustration of local proportions variability

Maps of local proportions are computed over the TI and the

realizations to help visualizing the reproduction of local

trends (Fig. 16). Maps of average and standard deviations

of the local proportions over the 100 realizations are also

included. The maps represent the three most abundant

units: ATB2, ATD1 and ATE1 for scenario CS1a. The

results show that TI local proportions are well reproduced

by MCP realizations and variability occurs close to HSU

locations identified in the deterministic model.
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Fig. 8 NCS: non-conditional simulation scenario; cross-section (y = 3) of two realizations (a, b); dissimilarity (c); boxplots of HSU proportions,

100 realizations (d)
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4 Discussion

MCP has been proposed recently as an efficient alternative

to the computationally intensive BME for the simulation of

fields showing complex unit arrangements and non-sym-

metric transition probabilities as are often found in sedi-

mentary environments. It is based on the rather strong

conditional independence hypothesis that assumes the unit

at data points are independent once the unit at the esti-

mation point is known. This assumption is more likely to

be valid when working with small neighborhoods and

conditioning data points evenly dispersed around the esti-

mation point. Hence, we selected a localized octant search

with a maximum of two points per octant and a maximum

of 5 points over all octants.

Results by Allard et al. (2011) on a series of small

datasets show no significant differences between BME and

MCP. The same authors provide theoretical justifications

for the use of MCP. However, to our knowledge, the

method has never been tested on a complex model based on

real geological data such as Simcoe hydrostratigraphic

system which comprises 11 different HSU having quite

different proportions and a clear directional control.

The 0/1 forcing property of MCP is determinant in

reproducing the directional trends. This property can deal

with transitional cases, like those presented in the synthetic

and Simcoe County examples, without the need to impose

directional trend with auxiliary fields as with PGS. Also, it

is not necessary to segment the studied field into homo-

geneous subdomains. The field can be handled globally at

once by MCP, which greatly facilitates the analysis.

The most practical and influential aspect in the appli-

cation of MCP is the definition of the neighborhood. We

obtained better results visually and as measured by the

statistics C1 and C2 when using octant search and a

multigrid approach. The number of neighbors and extent of

the search should be large enough to avoid unit inversions

in the simulated field, but small enough to favor variability

between realizations. Good compromises between propor-

tional reproduction and variability were obtained with five

neighbors for both the synthetic and the Simcoe County

test cases. Using more neighbors generally decreased too

much C2. D’Or et al. (2001) reported that five neighbors

was enough in BME to stabilize the C1 criterion. Our

findings in this 3D case confirm those of Allard et al.

(2011) that the number of neighbors need not to be large

provided the neighbors are well spread around the simu-

lated point.

Despite the care employed in the definition of the

neighborhood, unit inversions can still seldom occur due to

the peculiarities of the available HD and previously sim-

ulated points found in the neighborhood. Inversions can be

corrected on the fly in the sequential simulation. The pro-

cedure consists to verify whether the candidate HSU at a

simulated cell satisfies the vertical hydrostratigraphy

depicted by the deterministic model. It compares the sim-

ulated cell with conditioning data and previously simulated

cells in the same column. When in conflict with the

hydrostratigraphy, the candidate HSU is discarded and the

cell returned at the end of the list of remaining cells to

simulate. In the Simcoe County test case, less than 0.3% of

the points presented unit inversions, a small number con-

sidering that 11 units are present.

When the assumption of conditional independence is

valid, MCP is unbiased by construction as one is then

drawing sequentially from the true conditional distribu-

tions. When the conditional independence assumption does

not hold completely then one is not drawing from the exact

conditional distributions and nothing firm about the bias

can be stated. However, our experimental results for the

synthetic case (Fig. 2) clearly show absence of any sub-

stantial bias in both conditional and unconditional situa-

tions. In the more complex Simcoe test case example,

Figs. 6d, 8d, 9d, 11d, 12d, and 13d indicate that the bias is

less for the unconditional case (Fig. 6d) and for the random

sampling of conditioning data (Figs. 11d, 13d), then for

cases where a preferential sampling of HD is present

(Figs. 8d, 9d, 12d). However, even in the cases of prefer-

ential sampling the bias between TI proportions and sim-

ulated proportions remains smaller (Fig. 8d) or even much

smaller (Fig. 9d, 12d) than the bias observed in the pref-

erential sampling (see Fig. 12d). The over-representation

of bedrock and surficial HSU in CS3 compared to CS1 had

no significant impact on the average simulated proportions.

The additional data did reduce variability as expected (C2
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smaller) without further distorting the average proportions

(C1 comparable). Admittedly, whether these good results

about bias and robustness to preferential sampling can be

extrapolated to other different complex cases remains to be

verified.

In the Simcoe County test case, the bivariate probabil-

ities required for MCP were obtained by direct

computation on the deterministic model. This model

summarizes all the geological knowledge and available

data in the area. This justified the use of TI as a source of

pseudo-data to increase control of the unit proportions.

Proportions of the different HSU in the deterministic model

were assumed representative of the ground truth. In other

applications or in earlier stages of application, the
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Fig. 10 CS1a: scenario with HD (2 boreholes and 176 picks); Cross-section (y = 3) of two realizations (a, b); dissimilarity (c); Boxplots of HSU
proportions, 100 realizations (d)
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deterministic model could be unavailable. In these cases, a

simpler conceptual model can be used as TI to provide the

bivariate probabilities. However, no pseudo-data should be

sampled directly from the conceptual model as the unit

proportions and locations in the conceptual model are only

loosely known. Pseudo-data from surficial geology or

bedrock can still be used however, but one would be pru-

dent to verify the robustness of simulated unit proportions

relative to the quantity of pseudo-data added.

One reviewer, quoting the usual practice in MPS studies

to borrow the TI from an external source to represent

texture/structure, raised an important concern about the

idea of using a deterministic model as the source for the TI.

Most published MPS studies were done in the petroleum

domain where the TI represents essentially borrowed

analogous textures from external sources (e.g. satellite

images, object-based simulation or process-based simula-

tions). The textures are then conditioned to HD and

(a) -
AFB1
ATB2
AFB2
ATC1
AFD1
ATD1
ATD2
AFD4
ATE1
AFF1
Bedrock

(b) -
AFB1
ATB2
AFB2
ATC1
AFD1
ATD1
ATD2
AFD4
ATE1
AFF1
Bedrock

(c)

0

50

100

A
F

B
1

A
T

B
2

A
F

B
2

A
T

C
1

A
F

D
1

A
T

D
1

A
T

D
2

A
F

D
4

A
T

E
1

A
F

F
1

B
ed

ro
ck

0

0.05

0.1

0.15

0.2

0.25

TI
data

Legend

(d)

Fig. 11 CS1b: scenario with HD (2 boreholes and 176 double picks); cross-section (y = 3) of two realizations (a, b); dissimilarity (c); boxplots
of HSU proportions, 100 realizations (d)
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modulated in space by combining with soft data coming

from seismic survey. In other fields of study, such external

sources and soft data do not exist. In mining for example

each deposit is unique and complex and seismic data are

usually not available or simply cannot identify mineralized

zones. Possible sources for TIs could be in open pits the

blast holes on a few benches located close to the area to

simulate. The TI is then expected to be also close to the

‘‘target field’’ (Ortiz 2003). Another source in mining is a

deterministic (geological) model (Boucher et al. 2014;

Rezaee et al. 2014). In regional hydrogeology, the quasi-

universal practice is to elaborate a deterministic model

integrating all available information: sedimentary envi-

ronment and geological context, known stratigraphy, water

ages, geomorphology, surficial geology, few sampled

’’quality’’ boreholes, the low quality boreholes registered in

governmental data bases, pumping and tracer tests, bore-

hole permeability tests and sample size grading, and few

geophysical data sometimes available in part of the area.

These soft informations are not of the same nature as

seismic data in petroleum studies. They are complex, elu-

sive, often rare and with very partial coverage, and repre-

sent a variety of supports, so they cannot be combined

directly with a TI representing merely the texture, as in the

petroleum case with seismic data. The available informa-

tion have to be incorporated in the deterministic model

thanks to the geologist’s knowledge. Despite all the

expertise involved in the design of the deterministic model,

Fig. 12 CS1b: four realizations of the stratigraphically lowest HSU: bedrock, AFF1, ATE1, AFD4
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it nevertheless remains a quite idealized and smoothed

interpretation of the real field. If the stratigraphy and global

proportions of each HSU may be well represented in the

deterministic model, the HSU vertical thicknesses are

likely much more variable than assumed. Similarly, lateral

continuity of HSU is probably exaggerated in the deter-

ministic model. As these thickness and lateral variations

might influence significantly the flow response of the
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Fig. 13 CS2: 44 pseudo-data (random sampling of TI). Cross-section (y = 3) of two realizations (a, b); dissimilarity (c); boxplots of HSU

proportions, 100 realizations (d)
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model, it is important to consider alternate models around

the deterministic one to be able to assess flow uncertainty.

This was the goal pursued in this paper.

5 Conclusion

This study has applied the MCP simulation method to both

a synthetic and to the complex stratigraphic succession

within a glacial sedimentary basin. The MCP simulation
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Fig. 14 CS3: scenario with HD (as CS1) and pseudo-data (37 bedrock cells and 324 surficial cells). Cross-section (y = 3) of two realizations (a,
b); dissimilarity (c); boxplots of HSU proportions, 100 realizations (d)
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method has succeeded at simulating the complex deposi-

tional system involving many units and a clear directional

trend inducing asymmetry between units transition

probabilities. The method was shown to be unbiased in the

non-conditional case. The different realizations obtained by

MCP propose different field models around the overly
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Fig. 15 CS4: scenario with HD (as CS1) and 143 cells obtained from random sampling of TI. Cross-section (y = 3) of two realizations (a, b);
dissimilarity (c); boxplots of HSU proportions, 100 realizations (d)
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smoothed deterministic model. The alternative models are

essential inputs to assess uncertainty on groundwater flow

and transport problems.
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