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Abstract
Stochastic weather generators are widely used in hydrological, environmental, and agricultural applications to simulate

weather time series. However, such stochastic models produce random outputs hence the question on how representative

the generated data are if obtained from only one simulation run (realization) as is common practice. In this study, the

impact of different numbers of realizations (1, 25, 50, and 100) on the suitability of generated weather data was inves-

tigated. Specifically, 50 years of daily precipitation, and maximum and minimum temperatures were generated for three

weather stations in the Western Lake Erie Basin (WLEB), using three widely used weather generators, CLIGEN,

LARSWG and WeaGETS. Generated results were compared with 50 years of observed data. For all three generators, the

analyses showed that one realization of data for 50 years of daily precipitation, and maximum and minimum temperatures

may not be representative enough to capture essential statistical characteristics of the climate. Results from the three

generators captured the essential statistical characteristics of the climate when the number of realizations was increased

from 1 to 25, 50 or 100. Performance did not improve substantially when realizations were increased above 25. Results

suggest the need for more than a single realization when generating weather data and subsequently utilizing in other

models, to obtain suitable representations of climate.

Keywords Stochastic weather generators � Simulation approaches � Climate realizations � Statistical properties �
Statistical analysis

1 Introduction

Stochastic weather generators have been widely used for

environmental, hydrological and agricultural assessment

and applications (Wheater et al. 2005). These computer

programs aim at producing synthetic time series of climate

data—such as precipitation, maximum temperature

(Tmax), minimum temperature (Tmin), solar radiation, and

relative humidity—with statistical characteristics similar to

those of observed climate data (Racsko et al. 1991;

Semenov et al. 1998; Wilks and Wilby 1999). Simulated

weather data is often used as model input, particularly

where observed data may not be consistent or available in

sufficient quantities. For example, existing data might have

missing values, or may not be sufficient to allow applica-

tion or estimation of the probability of extreme events

(Semenov et al. 1998). Furthermore, weather generator

simulations can provide as many realizations of the climate

as needed, which may be necessary for Monte-Carlo

analyses (Semenov et al. 1998; Wilks and Wilby 1999;

Kou et al. 2007). Moreover, generated weather data can be

used in modeling research based on future climate sce-

narios (Eames et al. 2012).

Daily precipitation, Tmax, and Tmin are the most

common outputs from stochastic weather generators, in

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00477-017-1498-5) contains supplementary
material, which is available to authorized users.

& Margaret W. Gitau

mgitau@purdue.edu

1 Department of Agricultural and Biological Engineering,

Purdue University, 225 S. University St, West Lafayette,

IN 47907, USA

2 National Center for Water Quality Research, Heidelberg

University, Tiffin, USA

3 Department of Statistics, Purdue University, West Lafayette,

USA

4 USDA Agricultural Research Service, National Soil Erosion

Research Laboratory, West Lafayette, USA

123

Stochastic Environmental Research and Risk Assessment (2018) 32:2405–2421
https://doi.org/10.1007/s00477-017-1498-5(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-4931-7047
https://doi.org/10.1007/s00477-017-1498-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-017-1498-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-017-1498-5&amp;domain=pdf
https://doi.org/10.1007/s00477-017-1498-5


which Markov chain approaches and the alternative

renewal process are used to determine precipitation

occurrence (Racsko et al. 1991; Chen and Brissette 2014a).

Precipitation occurrence is typically simulated on a daily

basis for Markov chain-based models, while precipitation

occurrence is considered as a sequence of alternating wet

and dry days simulated independently in the alternative

renewal process (Roldán and Woolhiser 1982; Semenov

and Barrow 1997). The most widely used approaches to

simulate precipitation depth are parametric probability

distributions, including single distributions, such as skewed

normal (Nicks et al. 1995), exponential (Roldán and

Woolhiser 1982), gamma distributions (Richardson and

Wright 1984), compound distributions, such as hybrid

exponential and Pareto distribution (Li et al. 2012), and

mixed exponential distributions (Roldán and Woolhiser

1982; Wilks 1999). Daily Tmax and Tmin simulations are

usually based on a normal distribution (Chen et al. 2012b).

Weather generators generally reproduce average char-

acteristics of variables (means and variances) reasonably

well, but neither parametric (Richardson 1981) nor

resampling (Rajagopalan and Lall 1999) in generators

performs particularly well in simulating extreme events

(Wilks and Wilby 1999; Sharif and Burn 2006; Furrer and

Katz 2008) particularly given that extreme values typically

follow their own distributions suggesting the need for

compound distributions. It is, therefore, important to

evaluate performance of weather generators in simulating

extreme weather events, such as wet and dry spells, large

precipitation depths, and high and low temperatures.

Extreme precipitation events (floods and droughts) can

affect simulation of runoff volumes and peak runoff rates

(Harmel et al. 2000). Water and temperature stresses may

decrease crop yields (Semenov 2008; Guo et al. 2015), and

increases in frequency and magnitude of extreme events

may occur under climate change (Solomon et al. 2007).

The stochastic processes in weather generators produce

random outputs and the climate might not be represented

adequately if only one realization is used. Thus, several

realizations may be required to approximate the statistical

characteristics of weather data with acceptable accuracy

(Hansen and Ines 2005; Qian et al. 2005). More commonly,

however, one realization of generated weather data is used

(Semenov and Barrow 1997; Semenov et al. 1998; Wilks

2002; Zhang and Garbrecht 2003; Chen et al. 2011, 2012a;

Eames et al. 2012; Chen and Brissette 2014a, b; Chen et al.

2014). Some exceptions include, 10, 30, and 250 realiza-

tions of generated weather data used to: validate CLIGEN

from sites in Uganda (Elliot and Arnold 2001); evaluate

impacts on hydrologic modeling (Caron et al. 2008); and,

simulate best management practice effects (Chaubey et al.

2010), respectively. Given the potential implications for

hydrologic, agricultural, and environmental applications

(and the implications on computational resources), it is

necessary to determine how many realizations of generated

weather data are needed to capture essential statistical

characteristics of observed data (such as precipitation

occurrence, extremes, and variability). We hypothesized

that one realization of simulated daily weather data is not

adequate to capture essential statistical characteristics of

observed weather data. The purpose of this study was, thus,

to determine the impact of the number of realizations on

the suitability of generated daily precipitation depth, Tmax,

and Tmin. Three commonly used weather generators-

CLImate GENerator, CLIGEN (Nicks and Gander 1994),

Long Ashton Research Station-Weather Generator,

LARSWG (Semenov and Barrow 1997), and Weather

Generator of École de Technologie Supérieure, WeaGETS

(Chen et al. 2012b) were used in this study. These three

weather generators have been used successfully in a

number of climate and climate change impact studies

(Chen and Brissette 2014a; Kou et al. 2007; Semenov et al.

1998). A comparative assessment of the three generators is

presented in Mehan et al. (2017), thus, this study is focused

on the number of realizations.

CLIGEN uses a first-order, two-state Markov Chain and

skewed normal distribution, to generate precipitation

occurrence and amount, respectively (Chen and Brissette

2014b). A normal distribution is used to generate Tmax and

Tmin. Parameters in CLIGEN are computed at the monthly

scale. The standard deviation (SD) of Tmax and Tmin is

reproduced based on two random numbers, the second one

of which for one day is considered as the first random

number for the next day. Tmax and Tmin depend on each

other (Nicks and Gander 1994; Chen and Brissette 2014a).

LARSWG uses a semi-empirical distribution to simulate

precipitation amounts and lengths of alternating wet and

dry spells. A normal distribution is used to generate Tmax

and Tmin. A new residual series is generated based on the

residuals of observed data using a first-order linear

autoregressive model (Chen et al. 2014). A finite Fourier

series is used to represent the seasonal cycles for the mean

and SD of Tmax and Tmin which are conditioned on

precipitation status, but they are not conditioned on each

other (Chen and Brissette 2014a). Parameters in LARSWG

are computed at the monthly scale (Semenov and Barrow

1997; Semenov et al. 1998). For WeaGETS, first-, second-,

and third-order Markov chain-based models are incorpo-

rated to determine precipitation occurrence. Gamma,

exponential, mixed exponential, and skewed normal dis-

tributions are included to calculate precipitation depths

(Chen et al. 2011, 2012a; Chen and Brissette 2014a). Users

are allowed to choose options for their specific needs (Chen

et al. 2011). Parameters in WeaGETS are computed at the

bi-weekly scale.
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This study was based on the Fort Wayne, Adrian and

Norwalk weather stations in the Western Lake Erie Basin

(WLEB), each of which has a long record of consistent

observed weather data. Statistical characteristics of gener-

ated precipitation occurrence, daily precipitation depths,

Tmax and Tmin for 1, 25, 50, and 100 realizations of

50-year synthetic series were analyzed and compared to

those of observed data. The impacts of the number of

realizations on the suitability of generated data were then

evaluated based on analysis results. Finally, the number of

realizations needed to adequately capture statistical char-

acteristics of the observed data was determined.

2 Methodology

2.1 Preliminary analysis of observed weather
data

The Fort Wayne station (GHCND: USW00014827, Lati-

tude: ? 41.17, Longitude: - 85.13, Elevation: 241.1 m) in

Indiana, Adrian station (GHCND: USC00200032, Lati-

tude: ? 41.92, Longitude: - 84.02, Elevation: 231.6 m) in

Michigan, and Norwalk station (GHCND: USC00336118,

Latitude: ? 41.27, Longitude: - 82.62, Elevation:

204.2 m) in Ohio were selected for this study (Fig. 1).

These stations were selected based on data availability and

consistency, and considering the need for spatial coverage

across the entire basin including Indiana, Ohio, and

Michigan, consistent with Mehan et al. (2017). Daily pre-

cipitation, Tmax, and Tmin data from 01/01/1966 to 12/31/

2015 at these stations were obtained from the National

Climatic Data Center (NCDC) and used to create parameter

sets specifically for all three generators. Annual precipita-

tion at these stations during the study period ranged from

879 mm at Adrian to 957 mm at Norwalk. Mean maximum

temperatures (summer) ranged from 27.1 �C at Norwalk to

28 �C at Fort Wayne, while mean minimum temperatures

(winter) ranged from - 6.9 �C at Fort Wayne to - 7.9 �C
at Adrian. Data availability was 100% for precipitation,

Tmax and Tmin at Fort Wayne, 99.2% for precipitation,

98.3% for Tmax and 98.9% for Tmin at Adrian, and 99.7%

for precipitation, and 99.0% for Tmax and Tmin at

Norwalk.

For daily Tmax and Tmin from NCDC stations, biases

related to changes in measurement techniques, station

relocations and instrumentation had already been corrected

in the downloaded data (NCDC 2017). Daily precipitation

data were evaluated for observer biases, underreporting of

amounts of less than 1.27 mm (0.05 in), and overreporting

of amounts divisible by 5 and/or 10 (Schneider 2001; Daly

et al. 2007). Observed daily precipitation from the three

stations did not show observer biases. The Augmented

Dickey–Fuller (ADF) test was used to check for station-

arity in annual total precipitation amounts, and average

Tmax and Tmin of the observed data (Cheung and Lai

1995). To test the null hypothesis that a unit root is present

in the annual observed data, the general linear regression

equation with a constant and a linear trend was used, and

the t-statistic for a first order autoregressive coefficient

equals one was computed in the ADF test (Said and Dickey

1984; Banerjee et al. 1993; Fuller 2009). The lag order was

selected as 1 based on Akaike’s information criterion

(AIC), which has been widely used to determine the lag

order for small sample sizes (annual observed data as 50 in

this case) (Ng and Perron 2001; Liew 2004). The Dickey–

Fuller statistics were computed for annual total precipita-

tion amounts, and average Tmax and Tmin of the observed

data at the three stations (ranged from to - 6.2 to - 4.2).

Serial autocorrelations of residuals of the general regres-

sion model of the observed data were also checked (p value

\ 0.05), and Dickey–Fuller statistics ranged from - 6.4 to

- 4.2. Observed annual precipitation, Tmax and Tmin

from the three stations were found to be stationary, based

on the Autocorrelation Function (ACF) and Partial Auto-

correlation Function (PACF) plots, results from which

were consistent with ADF test results (p value\ 0.05). The

ACF and PACF plots are provided in supplemental mate-

rials (Fig. S1).

2.2 Generating realizations of weather data

Three commonly used stochastic weather generators,

CLIGEN 5.3, LARSWG 5 and WeaGETS 1.6 were

selected to determine their performance with different

numbers of realizations in simulating 50-year time series of

precipitation occurrence, daily precipitation depth, Tmax,

and Tmin. Different random seed numbers were specified

to generate 1, 25, 50 and 100 realizations in CLIGEN and

LARSWG while in WeaGETS the random seed changed

automatically for each simulation run/realization. The

selection of the input parameters was based on previous

studies on the three generators. For CLIGEN and

LARSWG, the default setup in the generators was used for

input parameters. This setup has successfully been used to

reproduce the essential statistical characteristics of

observed weather data in previous studies (Chen and

Brissette 2014a; Kou et al. 2007; Mehan et al. 2017;

Semenov et al. 1998). The Fourier series interpolation

scheme was used in CLIGEN to generate continuous daily

results. For WeaGETS, a common combination of a third-

order Markov chain and a mixed exponential distribution

was used to simulate precipitation occurrence and depth

based on Chen et al. (2014). A conditional scheme was

used to simulate Tmax and Tmin. The conditional

scheme used to generate Tmax and Tmin is similar to the
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normal distribution used in CLIGEN and the residual series

of Tmax and Tmin conditioned on the wet and dry states

are generated by a first-order linear autoregressive model

(Chen et al. 2011; Chen and Brissette 2014a). Daily pre-

cipitation depths greater than 0.1 mm in CLIGEN or

greater than 0.0 mm in LARSWG were used to define a

wet day and, hence, to determine precipitation occurrence.

A wet-day threshold of 0.1 mm is most commonly used for

WeaGETS and was thus used in this study. Fifty years of

daily precipitation, Tmax, and Tmin were generated for 1,

25, 50 and 100 realizations from each of the generators.

2.3 Statistical analysis

A rainfall amount of 0.1 mm per day was used as the

threshold for wet and dry days since this value is usually

used for precision of rain gauges (Dieterichs 1956; Moon

et al. 1994), which is consistent with the threshold for wet

and dry days in CLIGEN and WeaGETS. A wet spell was

identified as a period with at least four wet days provided a

dry day did not occur within the first three days (Bai et al.

2007). A dry spell was identified as a period of at least 15

consecutive dry days (daily precipitation depth less than

0.1 mm) (Douguedroit 1987). Detailed analysis of tem-

perature values was conducted considering 0 and 32 �C as

extremes; corn (Zea mays), the primary crop grown in the

study area, usually begins to be stressed when air temper-

ature exceeds 32 �C during the tasseling-silking and

grainfill stages under rainfed conditions, and cannot sur-

vive when air temperature is below freezing (0 �C) (Neild
and Newman 1987). Table 1 provides a summary of sta-

tistical characteristics calculated for the observed and

simulated data for 1, 25, 50 and 100 realizations.

Fig. 1 Western Lake Erie Basin (WLEB) location showing the three selected National Climatic Data Center (NCDC) weather stations used in

this study
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Boxplots of the aforementioned variables for 25, 50 and

100 realizations from the three generators were used to

illustrate the spread of these variables for different real-

izations. Additionally, 95% confidence intervals (CI) were

constructed for bias between the variables of the observed

and simulated data, to indicate how biased/good the sim-

ulated results were and give an indication of the chance

that the model captured the characteristics of the observed

data.

Probability density plots were used to check for differ-

ences in distributions of daily Tmax and Tmin for 1, 25, 50

and 100 realizations and the observed data from the three

generators. The Cohen’s Effect Size (Cohen’s d) was used

to test the equality of means for the observed and simulated

daily precipitation, Tmax, and Tmin. This statistic is suit-

able for large datasets (Cohen 1977, 1992; Bradley 1980;

Royall 1986; Denis 2003) and has been used successfully

in evaluating weather generator effectiveness (Mehan et al.

2017). A nonparametric Kolmogorov–Smirnov (K–S) test

was used to test for equality of the distributions of observed

and simulated daily precipitation, Tmax, and Tmin. All

tests were two-tailed with a significance level of p = 0.05

consistent with Semenov et al. (1998) and Wilks (1999)’s

studies. To investigate the reliability of the simulated data,

cumulative probability plots for percent error between the

statistical characteristics of the simulated data for 25, 50

and 100 realizations from three weather generators at three

stations and those of the observed data were plotted. The

probability of percent error between the essential statistical

characteristics of the simulated data for 25, 50 and 100

realizations from the three generators and those of the

observed data between - 5 and 5% were then calculated

(Bright et al. 2015).

3 Results

3.1 Precipitation occurrence

3.1.1 Wet and dry spells

The number of wet spells for 1, 25, 50 and 100 realizations

as generated by CLIGEN were overestimated and had

systematic bias compared to the observed data at the three

stations (Tables 2 and 3). The number of wet spells were

reproduced reasonably well for 25, 50 and 100 realizations

from LARSWG and WeaGETS at the Fort Wayne and

Norwalk stations, but underestimated at Adrian (Tables 2,

3). Generally, the number of dry spells was overestimated

in all realizations from all three generators at Fort Wayne

and Norwalk, except that the number of dry spells was

slightly underestimated for 25, 50 and 100 realizations

from LARSWG at Norwalk (Tables 2, 3). The number of

dry spells was overestimated for any realization from

CLIGEN at Fort Wayne and Norwalk, but underestimated

at Adrian. The number of dry spells was overestimated for

25, 50 and 100 realizations from LARSWG and WeaGETS

at Fort Wayne and Norwalk, but reproduced well at Adrian

(Tables 2, 3). Based on the results, the chance to capture

the number of wet spells of the observed data in LARSWG

and WeaGETS, and to capture the number of dry spells of

the observed data in LARSWG improved when the number

of realizations was increased from 1 to 25, 50 or 100.

Details of each realization are as shown in Figures S2 and

S3 included with supplemental materials. Overall,

LARSWG showed the best performance in simulating the

number of wet and dry spells, followed by WeaGETS

irrespective of the number of the realizations (Tables 2, 3).

CIs of bias between the number of wet and dry spells of the

simulated data and those of the observed data for 25 real-

izations were similar to those for 50 and 100 realizations

from each generator, respectively (Table 2).

Table 1 Summary of statistical characteristics calculated for the observed and simulated data for 1, 25, 50 and 100 realizations

Description/association Statistical characteristic

Precipitation occurrence Number of wet and dry spells

Number of wet and dry days per year

Percentage of no rainfall days (daily precipitation depth of 0.0 mm)

Precipitation depth variable 99th percentile of daily precipitation

Extreme temperature events variables Number of days with Tmax greater than 32 �C
Number of days with Tmin less than 0 �C

Lower frequency behavior Interannual and decadal variability for yearly precipitation

Interannual and decadal variability for average Tmax and Tmin during winter and summer
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Table 2 The 95% confidence intervals (lower limit, upper limit) of bias� between statistical characteristics of the simulated data and those of the

observed data. All characteristics are aggregated over the 50-year simulation period for each realization

G* R Wet

spell

Dry

spell

Number of wet

days per month

Number of dry

days per month

Percentage of no

rainfall days (%)

99th percentile

precipitation

Number of days

Tmax[ 32 �C
Number of days

Tmin\ 0 �C

Fort Wayne

C 25 58, 64 6, 8 - 2, - 0.1 0.1, 2 - 0.04, 0.1 - 1.61,

- 1.20

8, 22 48, 77

50 62, 66 4, 6 - 2, - 0.6 0.6, 2 - 0.003, 0.1 - 1.32,

- 1.02

8, 19 62, 79

100 62, 65 5, 7 - 2.0, - 1.0 1, 2 0.02, 0.1 - 1.28,

- 1.08

10, 17 61, 74

L 25 - 11,

- 0.3

8, 12 - 35, - 31 22, 27 1.4, 1.8 - 0.05, 0.86 - 373, - 352 221, 256

50 - 8,

- 0.4

14, 18 - 33, - 30 21, 24 1.4, 1.6 0.16, 0.71 - 372, - 359 316, 339

100 - 7,

- 2

11, 13 - 33, - 31 23, 25 1.5, 1.7 0.32, 0.70 - 364, - 355 226, 245

W 25 - 11,

- 3

7, 15 - 23, - 16 15, 22 - 0.1, 0.3 - 0.86,

- 0.11

275, 328 - 36, 26

50 - 9,

- 3

9, 13 - 21, - 18 17, 20 0.01, 0.3 - 0.63,

- 0.13

277, 315 - 27, 15

100 - 9,

- 4

10, 13 - 20, - 18 17, 19 0.01, 0.2 - 0.54,

- 0.21

281, 304 - 19, 15

Adrian

C 25 28, 33 - 11,

- 7

- 3, - 2 2, 3 3.6, 3.7 - 1.72,

- 1.32

22, 37 - 87, - 57

50 29, 32 - 11,

- 9

- 3, - 2 2, 3 3.7, 3.8 - 1.83,

- 1.55

28, 39 - 80, - 61

100 30, 32 - 11,

- 9

- 3, - 2 2, 3 3.7, 3.7 - 1.69,

- 1.48

30, 37 - 81, - 69

L 25 - 24,

- 12

- 4, 1 - 9, - 5 - 1, 3 0.2, 0.5 0.45, 1.05 - 203, - 186 198, 237

50 - 20,

- 12

- 5,

- 1

- 8, - 5 - 1, 2 0.2, 0.4 0.65, 1.11 - 199, - 186 205, 232

100 - 20,

- 15

- 4,

- 1

- 7, - 5 0, 2 0.3, 0.4 0.78, 1.10 - 197, - 187 208, 227

W 25 - 14,

- 3

- 6, 0 - 11, - 5 5, 11 - 0.1, 0.3 - 0.34, 0.52 199, 238 - 248, - 176

50 - 11,

- 3

- 4, 2 - 11, - 7 7, 11 0.0, 0.3 - 0.06, 0.45 233, 261 - 267, - 223

100 - 11,

- 6

- 4,

- 1

- 9, - 6 6, 9 0.0, 0.2 - 0.03, 0.32 220, 240 - 234, - 208

Norwalk

C 25 43, 49 9, 13 - 3, - 1 1, 3 0.3, 0.5 - 2.40,

- 1.87

3, 15 - 178, - 151

50 46, 50 8, 10 - 3, - 2 2, 3 0.4, 0.4 - 1.91,

- 1.60

4, 15 - 167, - 151

100 47, 49 8, 10 - 3, - 2 2, 3 0.4, 0.4 - 1.97,

- 1.73

6, 13 - 168, - 158

L 25 - 9, 3 1, 5 - 31, - 27 9, 13 0.7, 1.0 0.25, 0.85 - 240, - 222 158, 187

50 - 8,

- 1

1, 3 - 30, - 27 9, 12 0.7, 0.9 0.17, 0.69 - 234, - 222 163, 183

100 - 10,

- 4

2, 4 - 30, - 28 10, 12 0.8, 0.9 0.29, 0.64 - 230, - 222 168, 183
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3.1.2 Number of wet and dry days

One, 25, 50 and 100 realizations from CLIGEN reproduced

the number of wet and dry days per year reasonably well at

Fort Wayne (Figs. 2a, 3a), while slightly underestimating

the number of wet days per year (Fig. 2b, c) and overes-

timating dry days per year (Fig. 3b, c) at Adrian and

Norwalk. For all realizations, LARSWG and WeaGETS

underestimated the number of wet days per year (Fig. 2),

and overestimated the number of dry days per year at the

three stations (Fig. 3), with all having systematic bias

compared to the observed data (Table 2). However,

LARSWG reproduced the number of dry days per year

well at Adrian (Fig. 3b). Overall, CLIGEN had a greater

chance to capture the number of wet and dry days per year

observed, when the number of realizations was increased

from 1 to 25, 50, or 100, whereas the number of realiza-

tions was immaterial for LARSWG and WeaGETS at Fort

Table 2 continued

G* R Wet

spell

Dry

spell

Number of wet

days per month

Number of dry

days per month

Percentage of no

rainfall days (%)

99th percentile

precipitation

Number of days

Tmax[ 32 �C
Number of days

Tmin\ 0 �C

W 25 - 11,

1

11, 17 - 12, - 7 7, 12 0.0, 0.3 0.25, 0.97 287, 338 - 198, - 134

50 - 11,

4

12, 14 - 13, - 9 9, 13 0.1, 0.3 0.18, 0.75 308, 337 - 202, - 161

100 - 11,

- 5

13, 16 - 14, - 10 10, 14 0.2, 0.4 0.40, 0.72 310, 328 - 206, - 172

*G generator, R realizations, C CLIGEN, L LARSWG, W WeaGETS
�Bias, statistical characteristic of the simulated data- corresponding statistical characteristic of the observed data. Bias between statistical

characteristics of generated daily values have a 95% chance of falling in the CI represented in the table

Table 3 The second and third quartiles (25th, 75th) of extreme

precipitation events for the simulated data from 25, 50 and 100

realizations and corresponding value of extreme events for the

observed data and the simulated data from 1 realization. Values are

aggregated over the 50-year simulation period

Realizations Wet spell Dry spell 99th percentile precipitation (mm)

C* L W C L W C L W

Fort Wayne

Observed 213 213 213 18 18 18 33.7 33.7 33.7

1 277 199 222 24 40 32 32.3 34.6 32.9

25 267, 279 196, 219 198, 212 23, 26 25, 32 24, 32 32.0, 32.6 33.8, 34.5 32.5, 34.0

50 271, 281 198, 216 198, 212 21, 25 25, 32 22, 32 32.3, 32.9 33.8, 34.5 32.8, 33.9

100 271, 281 199, 217 198, 215 22, 26 27, 33 24, 33 32.2, 32.9 33.7, 34.8 32.9, 33.9

Adrian

Observed 194 194 194 48 48 48 32.6 32.6 32.6

1 231 162 189 35 56 40 31.3 32.9 32.7

25 222, 227 166, 187 178, 192 37, 41 43, 50 40, 50 30.8, 31.3 32.9, 34.0 32.0, 33.4

50 222, 228 168, 188 179, 199 34, 40 39, 50 40, 51 30.6, 31.2 32.9, 34.1 32.2, 33.6

100 222, 229 170, 184 175, 195 36, 41 42, 50 40, 49 30.7, 31.4 33.0, 34.2 32.2, 33.4

Norwalk

Observed 235 235 235 17 17 17 32.5 32.5 32.5

1 285 234 219 24 14 27 29.8 33.7 33.4

25 278, 284 224, 241 219, 241 24, 29 17, 25 26, 35 30.0, 30.8 32.6, 33.4 32.4, 33.8

50 279, 288 222, 234 216, 235 24, 28 16, 23 27, 34 30.3, 31.2 32.4, 33.7 32.3, 33.7

100 279, 287 219, 237 215, 238 24, 28 17, 23 27, 33 30.2, 31.3 32.5, 33.6 32.5, 33.6

*C CLIGEN, L LARSWG, W WeaGETS. The observed data used as input in CLIGEN included leap days whereas those used in LARSWG and

WeaGETS did not
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Wayne station as, in general, these generators could not

capture the number of wet and dry days per year observed

at Fort Wayne station regardless of the number of real-

izations. CIs of bias between the number of wet and dry

days per month of the simulated data and those of the

observed data for 25 realizations were similar to those for

50 and 100 realizations from each generator, respectively

(Table 2).

3.1.3 Percentage of no rainfall days

One, 25, 50 and 100 realizations from WeaGETS repro-

duced the percentage of no rainfall days reasonably well at

three stations (Fig. 4), while those from CLIGEN and

LARSWG were slightly overestimated or underestimated

at the three stations, and had a systematic bias with the

observed data (Fig. 4 and Table 2). All three generators

had a greater chance to capture the percentage of no

rainfall days as obtained from the observed data, with the

chances being improved when the number of realizations

was increased from 1 to 25, 50 or 100 at the three stations.

Generally, 25, 50, and 100 realizations from the three

generators could capture the percentage of no rainfall days

fairly well at the three stations (Table 2). However,

LARSWG could not capture the percentage of no rainfall

days of the observed data regardless of the number of

realizations at Fort Wayne (as detailed in Figure S4). CIs of

bias between the percentage of no rainfall days of the

simulated data and those of the observed data for 25 real-

izations were similar to those for 50 and 100 realizations

from each generator (Table 2).

Fig. 2 Number of wet days per year calculated from generated precipitation showing the results for 1 realization (dots) and boxplots for 25, 50

and 100 realizations compared to the number calculated from observed data (straight lines) in the period 1966–2015 at the three selected stations
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3.2 Precipitation depth

3.2.1 99th percentile of daily precipitation depth

For all realizations, the 99th percentile of daily precipita-

tion depth was underestimated by CLIGEN at the three

stations (Table 3 and as detailed in Figure S5). The 99th

percentile daily precipitation depths for 1, 25, 50 and 100

realizations from WeaGETS were reproduced reasonably

well at Fort Wayne and Adrian (Table 3), but slightly

overestimated at Norwalk (Table 3). The 99th percentile

daily precipitation depths for 1, 25, 50 and 100 realizations

from LARSWG were slightly overestimated at Fort

Wayne, Adrian and Norwalk (Table 3). WeaGETS and

LARSWG had a chance to capture the 99th percentile of

the daily precipitation depth of the observed data when the

number of realizations was increased from 1 to 25, 50 or

100. CIs of bias between the 99th percentile of daily pre-

cipitation depth of the simulated data and those of the

observed data for 25 realizations were similar to those for

50 and 100 realizations from each generator (Table 2). The

25th and 75th quartile of the 99th percentile of daily pre-

cipitation depth from 25 realizations were similar to those

from 50 and 100 realizations, and the spread for the 99th

percentile of daily precipitation depth did not change a lot

when the realization number increased from 25 to 50 and

100 (Table 3).

The null hypothesis that there were no differences in

distributions between generated daily precipitation and

observed data was rejected by K–S tests for all three

generators (p value\ 0.05). However, the K–S test may be

biased as it tends to be excessively stringent for very large

Fig. 3 Number of dry days per year calculated from generated precipitation showing the results for 1 realization (dots) and boxplots for 25, 50

and 100 realizations compared to the number calculated from observed data (straight lines) in the period 1966–2015 at the three selected stations
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sample sizes (Zhang and Garbrecht 2003; Zhang 2013;

Chen and Brissette 2014a), as was the case in this study.

Cohen’s d values provide a more robust measure than K–S

tests for large datasets (Cohen 1977; Bradley 1980; Royall

1986; Denis 2003). In this study, Cohen’s d values for daily

precipitation at all three stations were small (\ 0.2), indi-

cating small differences between means of the simulated

and observed daily precipitation (Cohen 1977, 1992).

3.2.2 Interannual and decadal variability of total
precipitation amounts

One, 25, 50 and 100 realizations from three generators

underestimated interannual and decadal SD of total pre-

cipitation amounts at Fort Wayne and decadal SD of

precipitation amounts at Norwalk, while somewhat over-

estimating interannual SD of total precipitation amounts at

Adrian (Fig. 5). CLIGEN somewhat underestimated dec-

adal SD of total precipitation amounts at Adrian, and

annual SD of total precipitation amounts at Norwalk

(Fig. 5). LARSWG and WeaGETS reproduced decadal SD

of total precipitation amounts reasonably well at Adrian,

and interannual SD of total precipitation amounts reason-

ably well at Norwalk (Fig. 5). All three generators had a

chance to capture interannual and decadal SD of total

precipitation amounts of the observed data when the

number of realizations was increased from 1 to 25, 50 or

100 at the three stations, except that CLIGEN underesti-

mated decadal SD of total precipitation amounts of the

observed data regardless of the number of realizations

Fig. 4 Percentage of no rainfall calculated from generated precipitation showing the results for 1 realization (dots) and boxplots for 25, 50 and

100 realizations compared to the percentage calculated from observed data (straight lines) in the period 1966–2015 at the three selected stations
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(Fig. 5). CIs of bias between interannual and decadal SD of

the total precipitation amounts of the simulated data and

those of the observed data for 25 realizations were similar

to those for 50 and 100 realizations from each generator

(Fig. 5).

3.3 Tmax and Tmin

3.3.1 Distributions of Tmax and Tmin

Generally, the distributions of daily Tmax and Tmin for 1,

25, 50 and 100 realizations from the three generators were

similar to those of the observed data at three stations, The

distributions of daily Tmax and Tmin for 50 realizations

and for the observed data at three stations have been pre-

sented in a previou study (Mehan et al. 2017) The trend of

the distribution of daily Tmax (Tmin) was similar for all

three generators (Mehan et al. 2017). LARSWG performed

best in simulating distribution of daily Tmax and Tmin for

1, 25, 50 and 100 realizations at three stations; the proba-

bility density of Tmax between 0 and 5 �C, and Tmin

between - 5 and 0 �C for 1, 25, 50 and 100 realizations for

LARSWG matched well with those of the observed data,

while CLIGEN and WeaGETS did not capture these well

consistent with Mehan et al. (2017)’s study. The K–S tests

for daily Tmax and Tmin for all realizations from the three

generators all rejected the null hypothesis that there was no

significant difference between the distribution of generated

daily Tmax and Tmin and those of the observed data

(p\ 0.05). Cohen’s d values for daily Tmax (Tmin) at all

three stations were small (\ 0.2), indicating small differ-

ences between means of the simulated and observed daily

Tmax (Tmin).

3.3.2 Extreme temperature events

One, 25, 50 and 100 realizations from CLIGEN and

WeaGETS somewhat overestimated the number of days

with Tmax greater than 32 �C (Tables 2, 4), while those

from LARSWG were underestimated at three stations

(Table 4). CLIGEN had a chance to capture the number of

days with Tmax greater than 32 �C of the observed data,

when the number of realizations was increased from 1 to

25, 50 or 100 whereas LARSWG and WeaGETS could not

for any of the realizations at three stations. Details of each

realization are shown in Figure S6.

The number of days with Tmin less than 0 �C for 1, 25,

50 and 100 realizations from LARSWG were

Fig. 5 The 95% confidence intervals (CIs) of bias between standard

deviation of interannual and decadal total precipitation amounts of the

simulated data and those of the observed data. The lines with dots

represent confidence intervals. C25, C50, and C100 represent 25, 50,

and 100 realizations from CLIGEN and similarly for LARS-WG

(L) and WeaGETS (W). SD and Prcp represent standard deviation and

total precipitation, respectively
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overestimated at all three stations (Tables 2, 4). This

number of days was overestimated for the 1, 25, 50 and 100

realizations from CLIGEN at Fort Wayne, but underesti-

mated at Adrian and Norwalk. The number of days was

reproduced reasonably well for the ensemble of 25, 50 and

100 realizations from WeaGETS at Fort Wayne, but

underestimated at Adrian and Norwalk (Tables 2, 4). CIs of

bias between the number of days with Tmax greater than

32 �C and Tmin less than 0 �C of the simulated data and

those of the observed data for 25 realizations were similar

to those for 50 and 100 realizations from each generator,

respectively (Table 2). Details are as shown in Figure S7.

The 25th and 75th quartile of Tmax greater than 32 �C and

Tmin less than 0 �C from 25 realizations were similar to

those from 50 and 100 realizations, and the spread for

Tmax greater than 32 �C and Tmin less than 0 �C did not

change much when the realization number increased from

25 to 50 and 100 (Table 4).

3.3.3 Interannual and decadal variability of Tmax and Tmin

One, 25, 50 and 100 realizations from CLIGEN and

LARSWG underestimated interannual and decadal SD of

average Tmax and Tmin during winter and summer at three

stations. CIs of bias between interannual SD of average

Tmax during winter simulated from CLIGEN and

LARSWG for 25, 50 and 100 realizations and those from

the observed data all ranged between - 1.3 and - 1.2 �C.
However, 25, 50 and 100 realizations from WeaGETS

somewhat overestimated interannual SD of average Tmin

during summer at Fort Wayne (CIs of bias from 0.1 to

0.2 �C), and decadal SD of average Tmax during summer

at Adrian (CIs of bias from 0.0 to 0.1 �C). WeaGETs

realizations were able to reproduce decadal SD of average

Tmax (CIs of bias from - 0.1 to 0.0 �C), Tmin (CIs of bias

from 0.0 to 0.1 �C) during summer at Fort Wayne, inter-

annual SD of average Tmin during summer at Adrian (CIs

of bias from - 0.1 to 0.0 �C), interannual SD of average

Tmin during summer (CIs of bias from - 0.1 to 0.0 �C),
and decadal Tmax during summer (CIs of bias from - 0.1

to 0.0 �C) at Norwalk reasonably well. WeaGETS had a

chance to capture interannual and decadal SD of average

Tmax and Tmin during winter and summer of the observed

data when the number of realizations was increased from 1

to 25, 50 or 100 at the three stations, except for interannual

SD of average Tmax during winter (CIs of bias from - 0.5

to - 0.3 �C), decadal SD of average Tmin during winter at

Adrian (CIs of bias from - 0.7 to - 0.6 �C), and decadal

SD of average Tmin during summer at Norwalk (CIs of

bias from - 0.6 to - 0.5 �C). CLIGEN and LARSWG

could not capture interannual and decadal SD of average

Tmax and Tmin during winter and summer at three stations

regardless of the number of realizations.

Table 4 The second and third

quartiles (25th, 75th) of extreme

temperature events for the

simulated data from 25, 50 and

100 realizations and

corresponding value of extreme

events for the observed data and

the simulated data from 1

realization. Values are

aggregated over the 50-year

simulation period

Realizations Number of days with Tmax[ 32 �C Number of days with Tmin\ 0 �C

C L W C L W

Fort Wayne

Observed 752 752 752 5940 5930 5930

1 782 393 949 6039 6104 6185

25 757, 779 371, 403 1003, 1081 5972, 6020 6136, 6196 5889, 5969

50 753, 780 374, 405 1004, 1081 5992, 6024 6144, 6196 5889, 5971

100 752, 778 381, 405 1007, 1083 5990, 6023 6131, 6197 5875, 5997

Adrian

Observed 613 613 613 6975 6964 6964

1 663 439 947 6923 7146 6772

25 635, 637 409, 434 805, 859 6875, 6928 7146, 7213 6697, 6792

50 637, 658 407, 439 825, 898 6877, 6934 7148, 7215 6671, 6759

100 634, 658 408, 436 812, 871 6881, 6922 7150, 7213 6695, 6786

Norwalk

Observed 625 625 625 6320 6309 6309

1 662 404 990 6174 6461 6080

25 625, 644 381, 405 878, 976 6132, 6184 6461, 6512 6116, 6200

50 624, 648 383, 413 915, 987 6142, 6182 6460, 6512 6082, 6169

100 625, 647 387, 413 907, 975 6141, 6175 6459, 6511 6074, 6172

*C CLIGEN, L LARSWG, W WeaGETS. The observed data used as input in CLIGEN included leap days

whereas those used in LARSWG and WeaGETS did not
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3.3.4 Assessment of 10 realizations

Based on the results as discussed, performance of 25

realizations did not seem appreciably different than that of

50 or 100 realizations. Thus, there did not seem to be an

advantage of generating more than 25 realizations. To

determine whether there was an advantage to generating 25

realizations, ten realizations of generated daily results for

CLIGEN, LARSWG and WeaGETS were analyzed

(Fig. 6). This was done to determine whether the essential

statistical characteristics of the observed data could be

captured just as well with ten realizations. The aforemen-

tioned statistical characteristics that could not be captured

by any realization were not taken into consideration. For

the ten realizations: CLIGEN could not capture days with

Tmax higher than 32 �C of the observed data at three

station, the 99th percentile of daily precipitation depth of

the observed data at Fort Wayne, the number of dry days

per month of the observed data at Adrian, or the number of

wet days per month of the observed data at Norwalk;

WeaGETS could not capture the 99th percentile of the

daily precipitation depth of the observed data at Fort

Wayne, the number of dry spells at Adrian, or the number

of wet days per month of the observed data at Norwalk

(Fig. 6). However, these characteristics were captured

when the number of realizations was increased to 25, 50 or

100, as previously discussed.

4 Discussion

Generally, when the number of realizations was increased

from 1 to 25, 50 or 100: all three generators had a higher

chance to capture the percentage of no rainfall days and

Fig. 6 Statistics of the generated daily precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) results for 10 realizations

from the three generators compared to that of the observed data from 1966 to 2015 at the three selected stations
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had a chance to capture interannual and decadal SD of total

precipitation amounts of the observed data; CLIGEN had a

higher chance to capture the average number of wet and

dry days per month, and the number of days with Tmax

greater than 32 �C; LARSWG and WeaGETS had a chance

to capture the number of wet spells of the observed data;

and, WeaGETS had a higher a chance to capture the 99th

percentile of the daily precipitation depth and the interan-

nual and decadal SD of average Tmax and Tmin during

winter and summer months. The probability of percent

error between the essential statistical characteristics of the

simulated data for 25 realizations from the three generators

and those of the observed data between - 5 and 5% were

similar to those for 50 and 100 realizations (Table S1). For

example, the probability of percent error between the

number of days with Tmax greater than 32 �C of the

simulated data for 25, 50, 100 realizations from CLIGEN at

Fort Wayne and those of the observed data were 0.96, 0.96

and 0.95, respectively (Table S1). The probability of per-

cent error between the number of dry spells of the simu-

lated data for 25, 50, 100 realizations from LARSWG at

Adrian and those of the observed data were 0.36, 0.26 and

0.21, respectively (Table S1). These were consistent with

the cumulative probability plots for percent error between

the essential statistical characteristics of the simulated data

for 25, 50 and 100 realizations from three generators and

those of the observed data at the three stations (Figure S8).

Distributions of daily Tmax and Tmin for 1, 25, 50 and 100

realizations from the three generators were similar to those

of the observed data. The trend of the distribution of daily

Tmax (Tmin) did not change substantially when the num-

ber of realizations was increased from 1 to 25, 50 and 100

for all generators at the three stations.

In some cases, discrepancies between statistical char-

acteristics of the simulated and observed data were mainly

caused by the generator itself rather than the number of

realizations. Every generator has its pros and cons. By

incorporating a semi-empirical distribution to account for

and quantify precipitation depths, and a first order linear

auto regressive model to preserve auto- and cross- corre-

lations (Srikanthan and McMahon 2001; Figueiredo Filho

et al. 2013), LARSWG showed the best performance in

simulating the number of wet and dry sequences and dis-

tribution of daily Tmax and Tmin. This generator could

not, however, reasonably reproduce the average number of

wet and dry days per month, nor the number of days with

Tmax greater than 32 �C or Tmin less than 0 �C. CLIGEN
uses two random variables to preserve the auto- and cross-

correlations for and between Tmax and Tmin, which might

result in discrepancies causing it to reproduce numbers of

wet and dry sequences that are overestimated (Kout-

soyiannis and Manetas 1996; Mehan et al. 2017). The

third-order Markov chain-based model in WeaGETS

resulted in better estimates of wet and dry sequences than

the first-order Markov chain-based model in CLIGEN,

consistent with Chen and Brissette (2014a). Simulated

precipitation occurrences from second- and third-order

Markov chain-based models are slightly better than those

simulated by the first-order Markov chain-based model,

especially for long wet and dry spells Additionally, Markov

chain-based models have been found to underestimate

extreme dry spells (Chen and Brissette 2014a). The mixed

exponential distribution represents extreme precipitation

events relatively well whereas the gamma distribution

underestimates these extremes (Wilks 1999). Both distri-

butions are built into WeaGETS. The choice of a distri-

bution function should, therefore, depend to the

characteristics of observed precipitation which are loca-

tion- and even season-specific.

Without consideration of the low-frequency component

of climate data variability, CLIGEN and LARSWG both

underestimated interannual and decadal variances of pre-

cipitation, Tmax, and Tmin. In contrast, WeaGETS pre-

serves the autocorrelation and uses a spectral correction

approach to correct the underestimated frequency vari-

ability of climate data at monthly and interannual levels

(Chen et al. 2010); this generator, thus, showed the best

performance in simulating interannual and decadal SD of

average Tmax and Tmin during winter and summer at all

three stations. Additionally, the mixed exponential distri-

bution in WeaGETS was better at representing extreme

precipitation events than the skewed normal distribution in

CLIGEN and the semi-empirical distribution in LARSWG.

An alternative approch to significance testing, Cohen’s

Effect Size, provides a robust measure for large datasets

(Cohen 1977; Bradley 1980; Royall 1986; Denis 2003).

Moreover, a 95% CI can illustrate how biased/good the

generated values are and the chance that the model will

capture the characteristics of the observed data. As the true

value may be more readily captured within a CI, it is often

better to examine the CI of bias between the simulated and

observed value for various realizations than base the

evaluation on a single number. In this study, the 95% CIs

of bias between the aforementioned statistical characteris-

tics of generated data from the three generators and those

of the observed data did not change appreciably when the

realization number was increased from 25 to 50 or 100.

Overall, results showed that one realization from CLI-

GEN, LARSWG and WeaGETS might not be representa-

tive enough to capture characteristics of the observed data,

since these climate generators are stochastic. In order to

reduce sampling error caused by randomness of the

weather generator process, only one realization with results

generated for a much longer synthetic series than the

observed data have been widely used in previous studies

(Wilks 2002; Zhang and Garbrecht 2003; Chen et al.
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2010, 2011, 2012a, b; Eames et al. 2012; Chen and Bris-

sette 2014a, b). However, generating time series that are

longer than the observed data could result in bias by

insufficient sampling of distribution and cause inflated

probability and distorted distribution (Mithen and Black

2011). In contrast, generating time series with the same

length or shorter than the observed data could avoid biases

caused by fitting a theoretical distribution to the observed

data (Semenov and Barrow 1997; Mithen and Black 2011).

An ensemble of multiple realizations could incorporate

varying parameter sets for different realizations, rather than

carry forward one single parameter set as included in one

realization. For example, WeaGETS incorporates various

sub-models of first-, second-, and third-order of Markov

chain-based models for determination of precipitation

occurrence, gamma, exponential, mixed exponential, and

skewed normal distributions for precipitation depth calcu-

lation, an option for smoothing precipitation parameters

and low frequency correction, and conditional and uncon-

ditional schemes to simulate temperature—different com-

binations of which could be considered to generate weather

data for multiple realizations. An ensemble of multiple

realizations would represent model randomness and quan-

tify a sampling variability in simulated results consistent

with Kalnay et al. (2006).

A wide range of probability intervals can be reproduced

using multiple realizations. Where a pairwise relationship

exists or is assumed to exist between simulated and

observed data, simulations can be evaluated using accuracy

plots and other probability assessments as detailed in Jol-

liffe and Stephenson (2012). Such a relationship was not

assumed in this study, given that time series produced by

weather generators are not necessarily matched in a pair-

wise fashion with the base input data (Gitau et al. 2017).

The probability of percent error between the statistical

characteristics of the simulated and observed data between

- 5 and 5%, and the cumulative probability plots of per-

cent error between the statistical characteristics of the

simulated and observed data for 50 and 100 realizations

from three generators at three stations were similar to those

for 25 realizations (Table S1, Figure S8).

Generally, the advantage of generating more than 25

realizations of weather data was not obvious from the

analysis; while improvements were observed when the

number of realizations was increased to 25, statistical

characteristics did not improve appreciably when the

number of realizations was increased from 25 to 50 or 100.

Instead, generated values for 50 and 100 realizations only

became more condensed around the values for 25 realiza-

tions from each generator. Twenty-five realizations were,

however, found to have distinct advantages over 10 real-

izations, suggesting that 25 could be an optimal number for

the realizations. Generating too many realizations is time-

consuming and computationally expensive, especially if

these realizations are to be applied in hydrological and

environmental models.

Biases between statistical characteristics of simulated

daily precipitation and temperature data and those of

observed data affect hydrologic, water quality, and crop

growth model simulations (Hansen and Jones 2000), due to

their impacts on soil water balance dynamics, plant water

and temperature stresses and soil erosion (Hansen and Ines

2005; Gitau 2016). Thus, regardless of the number of

realizations, any weather generator should be tested to

ensure that generated data have statistical characteristics

similar to those of observed data (Semenov et al. 1998;

Wilks and Wilby 1999; Soltani and Hoogenboom 2003).

5 Conclusions

In this study, 1, 25, 50, and 100 realizations of 50 years of

daily precipitation, and Tmax and Tmin for the Fort

Wayne, Adrian, and Norwalk weather stations in the

WLEB were generated from CLIGEN, LARSWG and

WeaGETS. The generated results were compared with the

observed data and analyzed to investigate how many

realizations of generated weather data are needed to cap-

ture the statistical characteristics of the climate. Our results

supported the hypothesis that one realization of simulated

daily precipitation, Tmax and Tmin from stochastic

weather generators may not be representative enough to

capture essential statistical characteristics of observed

weather data. Weather generators produce random results

and an ensemble of multiple realizations are required to

present the range of variability of statistical characteristics

of climate data. Generally, all three generators had a better

chance to capture essential statistical characteristics when

the number of realizations was increased to 25, 50 or 100.

Generally, there was no obvious advantage of generating

more than 25 realizations, as results did not improve

appreciably beyond that number. Furthermore, increasing

the number of realizations did not improve performance if

the generator either tended to overestimate or underesti-

mate a particular weather variable by a large margin, as this

likely meant that the generator was not able to capture the

variable at all. Results provide guidance for selecting the

number of realizations to enable more accurate and effi-

cient weather data simulation for use with hydrologic,

agricultural, and environmental applications. Results of

this study are based on three data-rich weather stations in

the WLEB, and might not be directly applicable in data

sparse regions or those with arid or semi-arid climates.

Likewise, the potential to vary parameters for each real-

ization would be of benefit and, thus, warrants further
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study. Statistical methodologies presented herein are,

however, widely applicable.
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