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Abstract The predictive ability of a hybrid model inte-

grating the Firefly Algorithm (FFA), as a heuristic opti-

mization tool with the Multilayer Perceptron (MLP-FFA)

algorithm for the prediction of water level in Lake Egirdir,

Turkey, is investigated. The accuracy of the hybrid MLP-

FFA model is then evaluated against the standalone MLP-

based model developed with the Levenberg–Marquadt

optimization scheme applied for in the backpropagation-

based learning process. To develop and investigate the

veracity of the proposed hybrid MLP-FFA model, monthly

time scale water level data for 56 years (1961–2016) are

applied to train and test the hybrid model. The input

combinations of the standalone and the hybrid predictive

models are determined in accordance with the Average

Mutual Information computed from the historical water

level (training) data; generating four statistically significant

lagged combinations of historical data to be adopted for the

1-month forecasting of lake water level. The proposed

hybrid MLP-FFA model is evaluated with statistical score

metrics: Nash–Sutcliffe efficiency, root mean square and

mean absolute error, Wilmott’s Index and Taylor diagram

developed in the testing phase. The analysis of the results

showed that the hybrid MLP–FFA4 model (where

4 months of lagged combinations of lake water level data

are utilized) performed more accurately than the standalone

MLP4 model. For the fully optimized hybrid (MLP-FFA4)

model evaluated in the testing phase, the Willmott’s Index

was approximately 0.999 relative to 0.988 (MLP 4) and the

root mean square error was approximately 0.029 m and

compared to 0.102 m. Moreover, the inter-comparison of

the forecasted and the observed data with various other

performance metrics (including the Taylor diagram) veri-

fied the robustness of the proposed hybrid MLP-FFA4

model over the standalone MLP4 model applied in the

problem of forecasting lake water level prediction in the

current semi-arid region in Turkey.

Keywords MLP � Firefly algorithm � Hybrid model � Lake

Egirdir � Water level

1 Introduction

The prediction of lake water level is a fundamental

requirement in water management activities, such as the

tasks relevant to irrigation and drinking water supply

management and decision-making, fishing, tourism, rail

road transportation and many other forms of recreational

and socio-economic activities (Altunkaynak and Şen

2007). Recently, a number of artificial intelligence models

have shown an extensive ability to model the lake, river

system or streamflow water levels without the need for
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experimental apparatus and complex hydro-physical mod-

els based on physical principles and mathematical equa-

tions. A good search of existing literature shows that these

investigations included the applications of the artificial

neural network model (Altunkaynak and Şen 2007; Çimen

and Kisi 2009; Kişi 2009a, b; Yarar et al. 2009; Kakahaji

et al. 2013; Buyukyildiz et al. 2014; Khatibi et al. 2014;

Deo and Şahin 2016; Yaseen et al. 2016; Prasad et al.

2017), gene expression programming and chaos theory

model (Khatibi et al. 2014), triple diagram model (Al-

tunkaynak et al. 2003), support vector machines (Çimen

and Kisi 2009; Hipni et al. 2013; Buyukyildiz et al. 2014),

adaptive neuro fuzzy inference systems (Yarar et al. 2009;

Hipni et al. 2013; Buyukyildiz et al. 2014), local linear

neuro fuzzy model (Kakahaji et al. 2013), neural networks

trained with the particle swarm optimization algorithm

(Buyukyildiz et al. 2014), neuro-wavelet (Kişi 2009b),

feedforward back propagation neural network, generalized

regression neural network (Vaheddoost et al. 2016), radial

basis function neural network (Buyukyildiz et al. 2014;

Vaheddoost et al. 2016) and fuzzy logic model (Al-

tunkaynak and Şen 2007). The validation of non-deci-

mated, maximum overlap discrete wavelet transform

algorithm (i.e., moDWT) integrated with artificial neural

networks (Prasad et al. 2017) and extreme learning

machines compared with an artificial neural network model

(Deo and Şahin 2016) have also been demonstrated for

river water level and river discharge predictions. In spite of

their successful applications, several research works have

shown a very wide range of forecasting accuracies that in

fact, have varied in respect to the geographic features of the

tested sites, as shown in earlier studies (Deo and Şahin

2016; Prasad et al. 2017) where models tested at the study

sites with different climatic and hydrological patterns were

compared. Moreover, the search for a ‘one-size-fit’ it all

forecast model for solving hydrological modelling prob-

lems remains an open contribution to be made to the

existing literature, since no universal model currently exists

for all types of climates and regions (Mishra and Singh

2011; Deo et al. 2017a). Yet, a very motivating question

for hydrological modelers working in the area of water

resources management and lake-hydrology studies is: does

a hybrid intelligent model integrated with an optimization

algorithm boost the predictive performance?

Attempting to seek answers to this question, a significant

challenge faced by the hydrological system modelers is the

proper selection of the input combinations for the model

development process that is known to govern the predictive

accuracy of the objective predictive model (Galelli and

Castelletti 2013; Abbot and Marohasy 2014; Deo and

Şahin 2016; Quilty et al. 2016), but moreover; how the

information from these input data for different and geo-

graphically diverse sites are extracted in terms of the

optimal black-box structure of models to yield the best

model, remains a challenging problem for engineering and

environmental applications. Often, modelers have utilized

all available data incorporated in a standalone model

without applying an optimization scheme for the best fea-

ture extraction process. The inclusion of an optimization

scheme in a predictive model can thus determine the uti-

lization of the most suitable data features (i.e., weights and

biases), whilst acting as a primary tool necessary to

improve the performance of the final model (Sedki and

Ouazar 2010; Long and Meesad 2013; Quilty et al. 2016).

The Firefly Algorithm (FFA) applied in this paper, can

be adopted as a potential optimization method, since this

tool has been shown to be an ideal utility used to enhance

the performance of the artificial intelligence-based models

in a number of recent studies, particularly in hydrological

modelling (Ghorbani et al. 2017a, b; Raheli et al. 2017;

Yaseen et al. 2017). In its principle form, the conceptual

theory of FFA, as originally proposed by Yang (2010b), is

inspired from the flashing behavior of the fireflies. Other

than the area of hydrological modelling, FFA has been

applied successfully in many other fields: for example, in

electrical load forecasting (Kavousi-Fard et al. 2014), the

optimization of soil water characteristics (Fu et al. 2015),

the prediction of soil moisture (Ghorbani et al. 2017b), the

forecasting of river water quality (Raheli et al. 2017), the

selection of data features to be used as model inputs

(Emary et al. 2015) and other engineering design and

optimization problems (Yang 2010a; Nascimento et al.

2013; Kazemzadeh-Parsi 2014; Talatahari et al. 2014). In

many of these problems, the FFA was seen to lead to a

significant improvement in the considered models used to

solve the respective prediction problem. In a recent study

(Garousi-Nejad et al. 2016), the results of a modified FFA-

based artificial intelligence model was evaluated through a

plethora of models with intelligent optimization algo-

rithms, aimed to tackle multiple reservoir operation prob-

lems. At the conclusion of this study, the modified FFA

model was seen to perform very effectively in comparison

with the other optimization schemes However, to the best

of the authors’ knowledge, there has been no previous

research locatable in the existing literature that has inves-

tigated the capability of the Multilayer Perceptron-based

FFA hybrid model used for lake water level prediction.

In this paper, an integration of the popular ANN-based

model, the Multilayer Perceptron (MLP) with the Firefly

Algorithm (FFA), has been undertaken in order to construct

a hybrid predictive model for lake water level modeling. In

the most general way, the standalone MLP model (where

no ‘add-in’ optimizer is used) is a frequently applied arti-

ficial neural network tool. The present literature shows

many successful applications of the standalone MLP

model. These include the prediction of suspended sediment
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particles (Afan et al. 2015), prediction of significant wave

heights using the geno-multilayer perceptron (Altunkaynak

2013), pan evaporation prediction using the hybrid MLP-

FFA model (Ghorbani et al. 2017a), uncertainty assessment

with the hybrid MLP-FFA model for the prediction of

biochemical oxygen demand and dissolved oxygen con-

centration (Raheli et al. 2017), the prediction of rainfall

patterns using the hybrid data intelligent model that was

designed with the ANFIS-FFA modelling framework

(Yaseen et al. 2017) and the prediction of wind speeds

(Deo et al. 2017b). Different studies also used the stan-

dalone MLP model for solving other environmental prob-

lems such as the estimation of pan evaporation (Kişi

2009a; Tabari et al. 2010), comparison of soil and water

assessment tools for watershed regions (Singh et al. 2012),

prediction of daily outflow with log logistic and tangent

sigmoid activation functions (Zadeh et al. 2010) and the

forecasting of urban water demand with a wavelet-based

MLP model (Adamowski and Karapataki 2010; Tiwari and

Adamowski 2013). In respect to the lake water level pre-

diction problem, the study of Kişi (2009b) developed an

ANN-based model and a wavelet conjunction ANN model

for the prediction of monthly water level fluctuations for a

lake in Turkey, whereas the study of Çimen and Kisi

(2009) compared two data-driven techniques (i.e., SVM

and ANN) for modeling the lake water level in Turkey. The

latter study found greater accuracy of the SVM model over

the ANN model. The study of Güldal and Tongal (2010)

applied the Recurrent Neural Network (RNN) and an

ANFIS model for the prediction of water levels in Lake

Egirdir in Turkey. While these studies and the others have

demonstrated the efficacy of the artificial intelligence-

based models for lake water level prediction, the applica-

tion and validation of an integrated Multilayer Perceptron-

FFA model for the same purpose has not been undertaken.

To fulfill the gaps in current literature, the aim of this

study is to investigate the applicability of the hybrid MLP-

FFA model versus a standalone MLP model used for the

prediction of lake water level time series where the hybrid

predictive model has been constructed by the integration of

the standalone MLP algoirthm with the Firefly Optimizer

algorithm. The overall purpose, of course, is to evaluate the

preciseness of the integrated hybrid model and the pre-

dictive ability of the optimizer (FFA) with particular

attention to the data Lake Egirdir over the study period

1961–2016. The rest of the paper has been structured as

follows. Section 2 outlines the basic theoretical principles

of the predictive model and the optimizer algorithms uti-

lized and a concise description of the research methodol-

ogy, Sect. 3 presents the results and discussion explaining

the application and benefits of the integrated MLP-FFA

model used to predict lake water levels and Sect. 4 con-

cludes the findings and limitations of this research paper.

2 Methodology

2.1 Multilayer Perceptron Neural Network (MLP)

model

Since its advent in in 1940s, an artificial neural network

(ANN) has been adopted as a popular class of neural net-

work models (McCulloch and Pitts 1943). The ANN con-

sists of parallel information processing system with a set of

neurons arranged in the hidden layers (McClelland and

Rumelhart 1989). The Multilayer Perceptron (denoted as

‘MLP’) which is an explicit form of the conventional ANN

model, consisting of a three-layer neuronal framework with

an input section (where the data are fed into the primary

predictive model), hidden layer (where the data features are

extracted to construct a predictive model) and an output

layer (where the predicted results are generated and eval-

uated). Within the hidden layer, the Levenberg–Marquardt

backpropagation learning algorithm is a popular MLP

architecture that has been adopted for the extraction of the

data features contained within the model’s inputs. Figure 1

shows a schematic view of the MLP modelling framework.

The neurons are connected by appropriate weights in each

of the hidden layers to the neurons in contiguous layers

during the training process. In this study, the sigmoid and

the linear activation functions, which are commonly uti-

lized equations for feature extraction and modeling pur-

poses (Deo and Şahin 2016; Deo et al. 2017c; Fahimi et al.

2017), have been utilized in the hidden and the output

layers, respectively. For more details on the MLP model

structure and components, the readers can consult the study

of Ghorbani et al. (2013).

2.2 Hybrid MLP-FFA model

The prediction of lake water level in this research paper is

based on the hybrid Multilayer Perceptron (MLP) model

integrated with the Firefly Algorithm (FFA) as an add-in

tool utilized to train the standalone MLP model. The

Fig. 1 A configuration of the multi-layer perceptron (MLP) neural

network model (Ghorbani et al. 2013)
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nature-inspired FFA method was originally developed by

Yang (2010a, b) as an extension of the swarm intelligence

optimization techniques based on the movement of the

fireflies. In this optimization approach, the solution of a

problem can be assumed as agent i.e., the firefly which

glows in proportion to its quality. Consequently, each

brighter firefly is able to attract its partners, regardless of

their sex, which makes the exploration of the search space

more efficient (Łukasik and _Zak 2009). As fireflies are

attracted towards the light, the entire swarm moves towards

the brightest firefly, which can be applied conceptually in a

predictive model to solve the optimization problem. In this

method, the attractiveness of the fireflies is directly pro-

portional to their brightness and the brightness, in fact,

depends on the intensity of the agent (Kayarvizhy et al.

2014). A major challenge of the firefly algorithm is

therefore, the construction of the objective function and the

distinction of the light intensity. The primary set-up vari-

ables of the FFA formulation are the light intensity I(r), the

attractiveness bð Þ, and the Cartesian distance between any

two fireflies i and j at xiandxj respectively, that best can

expressed (Yang 2010a, b):

I rð Þ ¼ IO exp �cr2
� �

ð1Þ

b rð Þ ¼ bO exp �cr2
� �

ð2Þ

rij ¼ xi þ xj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xd

K¼1

xi;k � xj;k
� �

vuut ð3Þ

where xi;k is the kth component of the spatial coordinate xi
of the ith firefly, c is the light absorption coefficient, d is the

dimensionality of the given problem, I(r) and IO are the

light intensity at distance r and initial light intensity from a

firefly, b rð Þand bO are the attractiveness b at a distance

r and r = 0.

The next movement of the firefly denoted as i can be

represented as (Yang 2010a, b):

xiþ1
i ¼ xi þ Dxi ð4Þ

Dxi ¼ bOe�cr2

xj � xi
� �

þ a�i ð5Þ

In Eq. (5), the first phase indicates the attraction

whereas the second phase denotes the randomization pro-

cess while the term a controls the randomization values

that are located between 0 and 1 and �i represents the

random number of the Gaussian distribution (Ch et al.

2014).

In this research paper, the optimal values for the weights

determined by the MLP model have been computed by the

FFA algorithm where the final model aimed to optimize the

magnitude of the weights dependent on the features that

were present in the training dataset. Figure 2 shows the

process utilized to obtain the optimal weights of the MLP

model that has been integrated with the FFA. The modeling

process firstly involved the determination of the input

variables based on the Average Mutual Information (AMI)

of two random variables (i.e., the present and the historical

lake water level) as a measure of their mutual dependence,

utilizing the role of memory to aide in the prediction of

lake water level. Here, the AMI was applied quantify the

‘‘amount of information’’ present in the historical water

level training data to be used as a predictor variable for the

future water level value. Secondly, the data were fed in the

Firefly Algorithm after a selection of the best set of input

combinations based on their level of congruence with the

target variable (i.e., lake water level) that was evaluated

through the objective function (i.e., the minimum root

mean square error generated in the training phase). The

selected inputs were thus employed into the integrated

MLP-FFA hybrid model to generate the predicted values of

lake water level in the independent tested dataset.

2.3 Finding the optimum lag time series

for the model

Prior to utilizing the data into the integrated MLP-FFA

model, the historical lake water level data must be analyzed

to determine the optimum lag on the time-scale for the best

predictor-target matrix. This was performed by applying

the Mutual Information (MI) approach, a method applied

widely in linear and nonlinear correlation analysis and

variables selections (Wang et al. 2010; Lee and Kim 2015).

Assuming that there was a sequence of time series records

denoted as: x1; x2; . . .; xt; . . .; xnf g; the mutual information

computed for this series is likely to indicate the amount of

information that are contained about the incremental state

xtþs if the state of xt is known. Consequently, the AMI can

be defined by its coefficient I (s):

I sð Þ ¼
XN�s

t¼1

P xt; xtþsð Þ: log
P xt; xtþsð Þ

P xtÞ:Pðxtþsð Þ

� �
ð6Þ

In Eq. (6), P xtð Þ is the probability density of the series xt,

and the P xt; xtþsð Þ is the joint probability density of the

original series xt and the time-incremental xtþs. In accor-

dance with Eq. (6), the first local minimum of I sð Þ is then

used to estimate the selection for the lagged time-series

that are required for the input selection in the objective

model (De Domenico et al. 2013).

2.4 Study area, data and performance evaluation

criteria

In this research paper, historical changes in monthly lake

water level for Lake Egirdir, Turkey has been selected as a

case study to implement the proposed hybrid MLP-FFA
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model. Lake Egirdir is located in south-western end of

Turkey. This lake has long been used as primary source of

water for agriculture and drinking resources (Fig. 3). It has

an average depth of 9 m, an average surface area of

470 km2, located 916 m above sea level, and extended to

about 50 km in width to the northern part of the Egirdir

County region. In this study, a total of 658 monthly records

of the lake’s water level time series data between the

period 1962 and 2016 years have been used to construct

the predictive models.

Figure 3 displays the basic statistical characteristics of

these data, within the training phase, testing phase and the

whole dataset for Lake Egirdir. Included in this figure is

also the variation in the water level time series for the

period between October 1961 and July 2016. Except for the

standard deviations, skewness and flatness factors, the

other statistical values were found to be nearly identical for

the training and testing datasets, which also matched the

values within the full dataset. It is noteworthy that the

measured data from the month of October 1961 to the

month January 2000 (i.e., a total of 460 records or 70% of

the full dataset) were used in the training phase and the

data from February 2000 to July 2016 (i.e., a total of 198

records or 30% of the full dataset) were allocated to the

testing phase while constructing the designated predictive

models.

To evaluate the performance of the hybrid and the

standalone modeling approaches, the following statistical

score metrics have been used:

1. Nash–Sutcliffe efficiency coefficient (NSE) (Nash and

Sutcliffe 1970) expressed as:

NSE ¼ 1 �
PN

i¼1 QWLobs;i � QWLpred;i

� �2

PN
i¼1 QWLobs;i � Q

WLobs

� �2

2

6664

3

7775
;

0�NSE� 1

ð7Þ

Nash–Sutcliffe efficiency coefficient (NSE), used for

the evaluation of hydrological models, is widely

known to represent an improvement over the correla-

tion coefficient since it is sensitive to the differences in

the observed and the predicted means and variances in

the testing phase. The range of NSE lies between 1.0

(perfect fit) and - ?. A lower than zero efficiency

indicates that the mean value of the observed time

series would have been a better predictor than the

model that is being tested (ASCE 1993; Krause et al.

2005).

2. Root mean square error (RMSE) expressed as (Chai

and Draxler 2014):

Fig. 2 A flowchart of the hybrid multi-layer perceptron-Firefly algorithm (MLP-FFA) model structure
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Pi � Qið Þ2

vuut ð8Þ

RMSE can provide a more balanced evaluation of the

goodness of fit of the models as it is more sensitive to

the larger relative errors caused by the low value.

Expressed in the original units of the modelled data

without any normalizations, a perfect predictive model

is likely to have a value close to zero.

3. Mean absolute error (MAE) expressed as (Chai and

Draxler 2014):

MAE ¼ 1

N

XN

i¼1

Pi � Qið Þj j ð9Þ

MAE represents the average of the absolute error that

indicates the discrepancy between the observed and

predicted data in the testing phase. This metric is a

non-negative number that has no upper bound and for a

perfect model, the result is likely to be zero (ASCE

1993; Krause et al. 2005).

In regards to the use of both the RMSE and the MAE

in model evaluation, it is reasonable to consider that

both of these metrics should be utilized together, as

recommended by Chai and Draxler (2014). In partic-

ular, the RMSE, a quadratic scoring rule (that satisfies

Fig. 3 The location of Lake Egirdir and the characteristics of data modelled in this study
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the triangle inequality for a distanced metric) is rec-

ommended when the model error distribution in the

tested dataset is expected to be approximately normal,

whereas the MAE, the average error magnitude in a set

of predictions (without considering their direction),

must be used when the model error distribution is

almost uniform. The use of both model evaluation

metrics considers the fact that the RMSE provides the

benefit of penalizing large errors with more emphasis

on them whereas the MAE is more suitable if the

magnitude of the error within the testing dataset is not

so important but the overall error needs to be consid-

ered. In agreement with the extensive analysis and

application of both of these error metrics in earlier

study (Chai and Draxler 2014), this research paper has

analysed both of these errors to provide complemen-

tary insights into the hybrid MLP-FFA model’s per-

formance in the testing phase.

4. Willmott’s Index of agreement (WI) (Willmott

1981, 1982) expressed as:

WI ¼ 1 �
PN

i¼1 Qi � Pið Þ2

PN
i¼1 Pi � Q

���
���þ Qi � Q

���
���

� 	2

2

64

3

75;

0�WI� 1

ð10Þ

The mathematical basis of the WI is its further

improvement in respect to the NSE where its value is

expected to vary from 0 to 1, in which the higher value

is indicative of better agreement between the modelled

and the observed data in the testing phase. However,

Willmott (1981) points that relatively high WI values

may be obtained even for poorly fitted model and as

such, the outliers in tested data can adversely affect

this performance measures.

In Eqs. (7–10), the terms Qi, Pi and �Q are the monthly

values of the observed, predicted and average of

observed water level whereas n is the number of

observed data in the training or the testing set.

5. Taylor Diagrams (Taylor 2001)

Since there is no universal metric to evaluate the

model’s preciseness, which is likely to depend on the

tested data, the estimation problem and the models that

are being considered (Legates and McCabe 1999;

Krause et al. 2005; Dawson et al. 2007), we have also

considered the Taylor Diagram that was introduced by

Taylor (2001) to evaluate the hybrid MLP-FFA and the

standalone MLP model used for lake water level

prediction. Taylor Diagram can be used to examine

concurrently the relative importance of multiple

aspects such as the correlation coefficient (R) between

the observed and the forecasted lake water level, root

mean square centered difference and the standard

deviation. Importantly, the Taylor diagram can be

adopted to highlight the goodness of different models

within the same comparative framework relative to a

common observation point and thus, is likely to

complement the validity of the statistical metrics that

have been outlined in Eqs. (7)–(10). Taylor Dia-

gram also aims to visualize as a series of points on a

polar plot where the azimuth angle refers to the

coefficient between the predicted and observed data

and the radial distance from the origin represents the

ratio of the normalized standard deviation (SD) of the

simulation to that of the observation dataset.

3 Results and discussion

The selection of the input variables is one of the most important

issues in developing a robust forecasting model. This is due to

the influence of the correlated lag time that is present in the

historical data, which must be utilized to predict and assess the

model’s accuracy. As with the case of the other hydrological

data (e.g., streamflow) (Deo and Şahin 2016; Yaseen et al.

2016), the lake water level is also expected to display a high

degree of serial correlation (or hydrological persistence) that

arises from evaporation, transpiration, recharge and other

hydro-physical processes. This can provide the lake water data

a memory of several months; therefore, the state of the initial

catchment hydrology can act as a source of future prediction

(Chiew et al. 1998). Thus, the mutual information function has

been applied to the training data in order to determine the

numbers of statistically significant lagged series that can be

used for the prediction purpose, as advocated in earlier studies

(Khatibi et al. 2011; Wen et al. 2016).

Figure 4 shows that the Average Mutual Information

(AMI) exhibits a well-defined first minima at a time lag of

4 months. This indicates that the information embedded

into the trends within the training data from the past

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

A
M

I

Lag (month)

Fig. 4 The average mutual information (AMI) function for lake

water level time series
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4 months can be employed to predict the future value of the

lake water level (i.e., utilizes the role of memory to predict

the future value). Considering this, a set of four different

input combinations were designed that incorporated t-lag-

ged combination of up to 4 months of historical lake water

level data applied for the 1-month lead time forecasting of

the lake water level.

The auto-correlation function (ACF) and the partial auto-

correlation function (PACF) of the monthly water level data

are displayed in Fig. 5. As it is evident from this plot, the

ACF reveals a somewhat exponential decay in its self-cor-

relation value up to a lag time of about 36 month (i.e.,

approximately 3 years). This finite memory indicates the

presence of significance persistence in the lake water level

time series data (Vitanov et al. 2008). It is thus evident from

the PACF plot confirms a strong persistence behaviour

associated with a 1–3 month lagged timescale, and also a

lags of 1–14 months that are likely to have a significant

impact on the future value of the lake water level series. In

this paper, the 14 months of lag is unlikely to be the optimum

value for the lake water level prediction in this problem.

In general, the Average Mutual Information can be

considered as a nonlinear counterpart of the autocorrelation

function (ACF). While the mutual information character-

izes both the linear and the non-linear features within the

system that is being considered, the autocorrelation func-

tion refers only to the underlying linear components (Vi-

tanov et al. 2008). In the present study, the AMI method

has thus been adopted for further calculation and modelling

of the lake water level due to its greater ability to measure

the nonlinear associations between the target variable and

its historical behaviour (e.g., Jayawardena 2014). Prior to

the design of the hybrid MLP-FFA and standalone MLP-

based predictive model, the data were normalized to be

bounded by [0, 1] in order to enable the algorithms to

consider the attributes and patterns more rationally and

equally, as represented by both the extremely low and the

extremely high values relevant to the feature space

regardless of their magnitudes.

Table 1 shows the list of the standalone or the non-

optimized (MLP) and the optimized hybrid (MLP-FFA)

models that were developed for the lake water level pre-

diction where a total of four different predictive models

with various input combinations have been shown.

It is important to note that for both MLP-based predic-

tive models, the Levenberg–Marquardt (LM) backpropa-

gation learning algorithm considered as a fast and efficient

tool compared to the other training algorithm (e.g., Ada-

mowski et al. 2012; Deo and Şahin 2015b, 2016; Deo et al.

2017b) has been adopted. The benefits of the LM algorithm
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b partial auto-correlation

coefficients for lake water level

time series

1690 Stoch Environ Res Risk Assess (2018) 32:1683–1697

123



is off course, the more accurate curve fitting process that is

applied to the input-target data and its basic features as a

second-order algorithm with a better training speed since it

does not require the computation of the Hessian matrix. In

this paper, the MLP network has been trained for a total of

1000 epochs with a learning rate set to 0.0013 and a

momentum coefficient of 0.84. The optimal number of

neurons in the hidden layer were identified using a trial and

error procedure to screen the most accurate model with the

lowest root mean square error, following earlier studies

(Deo and Şahin 2015a, b; Deo et al. 2017c; Raheli et al.

2017).

In accordance with Table 2, the best neuronal architec-

ture according to the highest values of NSE and WI, and

the lowest values of RMSE and MAE was attained with 4

input neurons, 3 hidden neurons, and 1 output neuron (i.e.,

the best model denoted as 4-3-1). In accordance with the

results obtained for the standalone MLP model, as stated in

Table 2, the MLP-4 model is the optimum model, as ver-

ified by a value of NSE = 0.993, RMSE = 0.083 m,

MAE = 0.064 m, and WI = 0.994 computed for the

training data set. For the testing dataset evaluated with the

standalone MLP model, the results reflected a value of

NSE = 0.954, RMSE = 0.102 m, MAE = 0.081 m, and

WI = 0.988, which also exceeded the performance level of

the other standalone MLP models that were constructed

with different input combinations. It is noteworthy that the

application of the four set of lagged input data representing

historical water level series (i.e., Lt-1, Lt-2, Lt-3 and Lt-4) led

to a significant improvement in the MLP model’s perfor-

mance within the training as well as the testing phases.

This shows clearly that the utilization of the time-lagged

input series based on the Average Mutual Information

approach (i.e., Fig. 4) was appropriate to attain a very good

level of the predictive accuracy.

Next we investigate the model’s preciseness in respect

to the application of the Firefly optimizer aimed to improve

the performance of the standalone MLP model. Table 2

shows this result. It is evident that the predictive perfor-

mance of the MLP-FFA-based model for different input

combinations are better in terms of values of the NSE,

RMSE, MAE, and WI metrics for both the training and the

testing phases compared to the standalone MLP model

discussed above. Among all models that utilized the Firefly

Algorithm, the hybrid MLP-FFA4 model is seen to exhibit

the smallest value of RMSE (& 0.029 m) and MAE

(& 0.024 m) and the highest value of NSE (& 0.996) and

WI (& 0.999) in the testing phase. In respect to the

physical interpretation of using both metrics in the testing

phase, it is important to mention that the lowest values

attained by hybrid MLP-FFA4 model clearly show that the

optimized model exhibits a remarkable accuracy in respect

to large errors that may be penalized in a more stringent

and a heavily weighted manner (i.e., as measured by the

overall RMSE). However, when the net prediction errors

measured equally irrespective of its magnitude are

Table 1 The input combinations used for constructing the hybrid

MLP-FFA model for the lake water level prediction

No. Input combinations Model designation

MLP MLP-FFA

1 Lt-1 MLP1 MLP-FFA1

2 Lt-1, Lt-2 MLP2 MLP-FFA2

3 Lt-1, Lt-2, Lt-3 MLP3 MLP-FFA3

4 Lt-1, Lt-2, Lt-3, Lt-4 MLP4 MLP-FFA4

The inputs were determined in accordance with average mutual

information plot constructed to reflect statistically significant lagged

lake water level data

Table 2 The neuronal architecture and the comparative performance of the standalone and hybrid models in the training and testing phases

where the optimal predictive model has been boldfaced

Models Model structure Training Testing

NSE RMSE (m) MAE (m) WI NSE RMSE (m) MAE (m) WI

MLP 1 (1-4-1) 0.977 0.133 0.111 0.980 0.896 0.148 0.123 0.974

MLP 2 (2-2-1) 0.981 0.088 0.068 0.982 0.951 0.108 0.086 0.981

MLP 3 (3-6-1) 0.992 0.086 0.067 0.989 0.948 0.110 0.086 0.986

MLP 4 (4-3-1) 0.993 0.083 0.064 0.994 0.954 0.102 0.081 0.988

MLP -FFA1 (1-4-1) 0.984 0.039 0.036 0.990 0.980 0.041 0.047 0.984

MLP -FFA2 (2-2-1) 0.989 0.031 0.027 0.986 0.986 0.037 0.038 0.989

MLP -FFA3 (3-6-1) 0.993 0.028 0.020 0.993 0.991 0.030 0.031 0.991

MLP -FFA4 (4-3-1) 0.999 0.024 0.019 0.999 0.996 0.029 0.024 0.999

NSE Nash–Sutcliffe coefficient, RMSE root mean square error, MAE mean absolute error, WI Willmott’s index
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considered, the lowest value of MAE supports the superior

accuracy of the hybrid MLP-FFA model. Since the MAE is

able to assign equal weights to all prediction errors in the

tested dataset while the RMSE assigns extra weights

mostly to the large errors (Chai and Draxler 2014), the use

of both scoring metrics (that indeed provides complemen-

tary evaluation) unambiguously confirms the superiority of

the hybrid MLP-FFA-4 over standalone MLP-4 models

used for lake water level prediction.

While the standalone MLP and the hybrid MLP-FFA

model both have offered relatively good performance in

both the training and testing phases since the NSE and WI

were all greater than 0.90 and the RMSE and MAE were

relatively small, the hybrid MLP-FFA model executed with

all input combinations outperformed the standalone MLP

model utilized for the prediction of lake water level. This

indicates that the integration of the Firefly Algorithm as an

add-in tool for the MLP model led to better weights and

biases being identified in the trained model; leading to an

improved performance.

In general, based on the obtained results, the hybrid

MLP-FFA model has been shown as a very successful

predictive tool for forecasting 1-monthly lake water level

in context of the considered semi-arid region. The efficacy

of the hybrid MLP-FFA against the MLP-based model

indicated that the proposed hybrid approach was superior

for all of the prescribed input combinations (i.e., lagged

data series). In this respect, it is worth mentioning the

overall percentage value representing the improvement in

predictive accuracy of the hybrid MLP-FFA model. When

this factor was considered, the absolute value of the error

metrics including the RMSE and MAE were appear to have

been reduced by approximately 71 and 70%, respectively,

for the optimal lagged combinations of model inputs when

the data for the testing phase were assessed. These results

therefore, exhibit a large degree of harmony with the latest

results attained for lake water level prediction using a

radial basis function-based predictive model integrated

with the Firefly Algorithm (Soleymani et al. 2016).

To check visually the level of statistical agreements

attained between the observed and the predicted lake water

level data, the scatter plots for the optimal Multilayer

Perceptron (MLP4) and the optimal hybrid Multilayer

Perceptron-Firefly Algorithm (MLP-FFA4) model evalu-

ated in the testing phase has been shown in Fig. 6. It is

clear that the hybrid MLP-FFA4 results are much closer to

the observed lake level values in the testing phase with the

larger coefficient of determination (R2 = 0.997 vs. 0.955)

reflecting a better correlation and a higher degree of sta-

tistical agreement between the observed and predicted data

series relative to the MLP4 model. The larger R2 value

attained by the hybrid MLP-FFA4 model verifies that the

estimated amount of covariance between in the predicted

and the measured data was relatively smaller than those in

the standalone MLP4 model. Importantly, this result

appears to concur with the overall prediction metrics that

are stated in Table 2 where the Firefly Algorithm was seen

to improve the performance of the standalone MLP model.

Additionally, the degree of diversion from the ideal 1:1 line

(i.e., a perfect model) for the case of the hybrid MLP-FFA4

model is considerably less than that of the standalone MLP

model (Fig. 6).

Based on the data presented in the testing phase, Fig. 7

plots the observed and the predicted lake water level

together with the prediction error for every tested datum

point. While the level of agreement between the two

datasets is very similar for both the standalone MLP4 and

the hybrid MLP-FFA4 model, the actual prediction errors

for these two modelling scenarios are quite distinct. As

evident from Fig. 7, the MLP-FFA4 model has a lower

error than the MLP4 model, and so, it offers a much better

performance in terms of estimating of the high and the low

values of the lake level data. This result, which accedes

with those attained in earlier studies (e.g., Kavousi-Fard

et al. 2014; Fu et al. 2015; Olatomiwa et al. 2015) clearly

indicate that the integration of the standalone MLP model

with the FFA as an optimizer tool can lead to a more

accurate prediction of the lake water level.

A histogram showing the ratio of the predicted and the

observed lake level data in the testing phase for the stan-

dalone MLP4 and the hybrid MLP-FFA4 model have been

prepared in order to assess the frequency of the datum

points in a number of designated error bins. Here, the total

number of months binned in each error ratio on x-axis has

been analyzed where the probability of occurrence for any

given time series in any definite interval has been checked.

Figure 8a, b shows the resulting histogram. It is imperative

to note that a wider bin representing a larger deviation of

these data from the ideal ratio of 1 is exhibited for the case

of the standalone MLP4 model compared to the hybrid

MLP-FFA4 model. It is thus clear that the probability

distribution of the hybridized MLP-FFA4 predictions is

very close to those of the observed data for most of the

intervals within the testing phase.

Figure 9 displays a graphical presentation of the Taylor

diagram (Taylor 2001), utilizing a combined method for

graphically condensing how intently a predicted example

dataset from several models (i.e., a group of models)

matches the observation dataset. The similarity between

the predictive models and the corresponding observation

records has been quantified in term of their correlation

coefficient (R) and the standard deviation (SD). In accor-

dance with the results in Fig. 9, the hybrid model (i.e.,

MLP-FFA) is compared with standalone MLP in term of

the mentioned indictors to assess the prediction score skill.

The distance from the reference point (i.e., observation) is
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a measure of the centered RMSE difference (Taylor 2001).

A perfect predictive model (being in full concurrence with

the observation data) is set apart by the reference point with

the correlation coefficient equivalent to 1, and a similar

abundancy of varieties contrasted with the observations

(Heo et al. 2013). According to the visualization of the

model results, the hybrid MLP-FFA results appear to be

closer to the observation data point compared to the stan-

dalone MLP results. It is noteworthy that both the standard

deviation and the correlation coefficient for hybrid MLP

FFA-4 are in parity with the statistical score metrics

deduced from the observed dataset. Importantly, the cor-

relation coefficients for all of the standalone prediction

models (denoted as MLP-1, MLP-2, MLP-3 and MLP-4)

where the Firefly Algorithm has not been incorporated, are

significantly low (& 0.95) compared to a value greater

than 0.99 for their FFA-based counterpart models. Like-

wise, the SD values are also quite different, especially for

the case of standalone MLP-1 model. Taken together, these

result reaffirms the better accuracy of the optimized MLP-

FFA model where the Firefly Algorithm has been inte-

grated into a standalone MLP-based in the problem of lake

water level prediction.

In accordance with the results presented so far, the

integrated MLP-FFA model has retained its superiority

over the standalone MLP model when applied for 1-month

lead time prediction of water level of Lake Egirdir in

Turkey. Although the 1-month lead time prediction can be

considered important for several facets of real applications

(e.g., irrigation and lake water resource management over

moderate time-scale), it must be acknowledged that a

longer forecast horizon, such as 3-, 6- or 12-month lead

time prediction could also be more desirable for long-term

applications (e.g., seasonal farming, short-term crop man-

agement, irrigation systems, etc.). Having stated that, an

increment in the forecast horizon is like to lead to greater

inaccuracy of the MLP-FFA hybrid and the standalone

MLP model, as stipulated in earlier studies. For instance, in

Kisi (2009a, b), it was demonstrated that for 1-month lead

time lake level forecasting, the neuro-wavelet conjunction

model reduced the RMSE and MAE by 87–34% and

86–31% for the Van and Egirdir lakes, respectively, but for

6-month lead time horizon, the reduction was only by

34–48 and 30–46% for the Van and Egirdir lakes, respec-

tively. Furthermore, their ANN model prediction was much

worse at 6-month lead time horizon compared to the

1-month lead time horizon. In another study focusing on

wavelet analysis–artificial neural network (WA-ANN)

conjunction model for multi-scale monthly groundwater

level forecasting, Wen et al. (2016) showed that their 2-

and 3-month ahead forecasting results were worse than

1-month ahead forecasting results. In a rather different

application (i.e., urban water demand forecasting) at a

range of shorter forecast horizons, the study of Tiwari and

Adamowski (2013) predicted 1-, 3- and 5-day ahead water

demand using a wavelet-bootstrap-ANN model; showing

that the model simulated data correlation with the observed

data deteriorated with an increase in the forecasting lead

time, whereas the model’s error in the testing period con-

tinued to increase. In that study, it was deduced that there

was less information available for longer lead time hori-

zons, and that the deteriorating performance of the ANN

model specifically for higher values at longer lead times

potentially showed the weakness of the model structure to

forecast the higher water demand values. Based on the

analysis of literature, it is construed that the present

1-monthly model forecast accuracies are likely deteriorate

with an increase in the forecasting horizon to longer-terms

(e.g., 3-, 6- or 12 month horizons), although a follow-up

study could investigate the range of different inputs that

could specifically provide predictive features to accurately

model lake water level at longer forecast horizon.
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Fig. 6 The scatterplot of the

predicted and the observed lake

level time series in the testing

period using: a standalone

MLP4; and b hybrid MLP-

FFA4 model. In each panel, the

coefficient of determination

(R2) and the linearly fitted

equation y = mx ? c is

included (m = slope; c = y-

intercept)
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4 Conclusions

In this paper, a Multilayer Perceptron (MLP) based forecast

model integrated with the Firefly Algorithm (FFA) as an

optimizer tool has been adopted for the forecasting of the

hydrological time series data: i.e., lake water level. The

case study has been performed on a semi-arid region

located at Lake Egirdir, in Turkey. By applying Average

Mutual Information on the historical time-series of the lake

water level data, a set of four input combinations of lake

water level with lagged data series were considered to be

most appropriate for the prediction of the 1-month lead

time lake water level series. Several forecasting models

have been developed, including the standalone MLP and

the integrated MLP-FFA model using historical data for the

period 1961–2016. The results have been evaluated with

several statistical score metrics and visual displays;

showing the better efficiency of the hybrid MLP-FFA
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model in terms of the correlation between the forecasted

and observed water level data, Nash–Sutcliffe’s coefficient,

root mean square error and the mean absolute error.

In accordance with the results, it was evident that the

hybrid MLP-FFA4 model with four lagged input

combinations of the historical data in training period was

more accurate than the other counterparts, thus indicating

the importance of the Firefly Algorithm as an optimizer for

better accuracy of standalone models. The results of this

study suggest that the Firefly Algorithm is a useful add-on

tool for enhancing the forecasting accuracy of forecasting

models applied for lake water level prediction. Also, this

research provided evidence for the effectiveness of the

hybrid model that can be utilized and investigated for

engineering applications where historical data can provide

features for developing a predictive model. In spite of the

very good performance of MLP-FFA model attained in this

study, it should be acknowledged that there are limitations

to be investigated. For example, it is envisaged that further

improvement in the performance accuracy is possible by

inclusion of more significant information in the learning

process of the predictive model.

In this paper, we are limited by utilizing only the ante-

cedent lagged combinations of lake water level data where

the memory of water fluctuations in the historical period

within the objective variable (i.e., lake water) can be uti-

lised to formulate the forecasting model. Hence, for further

enhancement of results in this paper, it is important to

include other significant hydro-meteorological variables,

such as rainfall, evaporation, temperature and humidity that

may contain a larger set of predictive features to assist in

more accurate prediction the future value of lake water

levels. In this case the, the non-univariate predictive

modeling framework, is expected to yield better and more

informative prediction with greater level of accuracy. A

future research work could also apply the model for short-

term prediction of lake water levels (e.g. daily or hourly

discharge), which is likely to generate a more robust

model.
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Deo RC, Şahin M (2015a) Application of the artificial neural network

model for prediction of monthly standardized precipitation and

evapotranspiration index using hydrometeorological parameters

and climate indices in eastern Australia. Atmos Res

161–162:65–81
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Kişi Ö (2009b) Neural network and wavelet conjunction model for

modelling monthly level fluctuations in Turkey. Hydrol Process

23:2081–2092
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