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Abstract In statistical space-time modeling, the use of

non-separable covariance functions is often more realistic

than separable models. In the literature, various tests for

separability may justify this choice. However, in case of

rejection of the separability hypothesis, none of these tests

include testing for the type of non-separability of space-

time covariance functions. This is an important and further

significant step for choosing a class of models. In this paper

a method for testing positive and negative non-separability

is given; moreover, an approach for testing some well

known classes of space-time covariance function models

has been proposed. The performance of the tests has been

shown using real and simulated data.

Keywords Space-time random field � Space-time

covariance � Non-separability � Type of non-separability

test � Test on covariance function models

1 Introduction

Separable covariance function models allow for computa-

tionally efficient estimation and inference, hence they have

been used even in situations in which they were not physi-

cally justifiable (Genton 2007; Gneiting et al. 2007; Posa

1993; Stein 1986). Indeed, although this subclass of space-

time processes has several advantages, including rapid fit-

ting and simple extensions of many techniques developed

and successfully used in time series and classical Geo-

statistics, separablemodels are not always realistic, as can be

confirmed by many statistical tests for separability. On the

other hand, non-separable covariance function models

(Cressie and Huang 1999; De Iaco et al. 2002; Gneiting

2002; Hristopulos and Tsantili 2016; Kolovos et al. 2004;

Ma 2003, 2008; Mateu et al. 2007; Porcu et al.

2006, 2007, 2008; Rodrigues and Diggle 2010; Stein 2005,

among others) are more realistic since they are more flexible

to handle empirical covariance functions in applications.

Some of the tests for separability are based on para-

metric models (Shitan and Brockwell 1995; Guo and Bil-

lard 1998; Brown et al. 2000; Genton and Koul 2008);

Mitchell et al. (2005, 2006) used a likelihood ratio test for

separability in the setting of multivariate repeated measures

and suggested its application to space-time data sets that

are rich in the time dimension. Matsuda and Yajima

(2004), Scaccia and Martin (2005) and Fuentes (2006)

presented a test for separability of covariances based on the

spectral representation of the process. The proposed

method consists essentially in studying if the coherence

function of the process is constant across frequencies and

can just be applied to integrable covariance functions. Li

et al. (2007), Li et al. (2008a, b) and Shao and Li (2009)

proposed some nonparametric tests for assessing various

properties of space-time covariance functions, including

separability. These are based on the asymptotic joint nor-

mality of sample space-time covariance estimators or on an

asymptotic distribution of the given test statistic, whose

critical values are tabulated in Lobato (2001).

However, statistical test for separability can only help to

decide on the use of a separable versus a non-separable
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model; thus, in case of rejection of the hypothesis of sepa-

rability, a further step to overcome concerns the selection of

a non-separable class of covariance function models to be

fitted to the space-time empirical covariance surface. For

this reason, first of all it is advisable to apply a statistical test

for evaluating the type of non-separability (i.e., uniformly

positive, uniformly negative or pointwise non-separability).

Note that a detailed analysis on the type of non-separability

has only recently been considered in Rodrigues and Diggle

(2010) and De Iaco and Posa (2013). After analyzing the

type of non-separability and other geometric characteristics

of the experimental covariance surfaces, one should select,

preferably through hypothesis testing, the class of covari-

ance function models, which is consistent with the empirical

features of the covariance surface.

In this paper two original and important aspects are

discussed: (a) a statistical test for the type of non-separa-

bility; (b) a statistical test for some classes of space-time

covariance function models. The testing procedure descri-

bed in the paper is based on a test statistic which is

asymptotically normal, in the former case, and on a test

statistic which is asymptotically Chi-square for the latter,

thanks to the multivariate delta theorem of Mardia et al.

(1979) and the results in Li et al. (2007). The novelty is

related to the types of tests proposed, the way of formu-

lating the null hypothesis and of generating the test

statistics (with the corresponding contrasts used for these

tests) and the practical aspects associated with their

application. In particular, the tests on the classes of

covariance function models are based on some mathemat-

ical characteristics of the selected classes which have been

used to define the fundamental elements of the hypothesis

testing (null hypothesis, contrasts and test statistic).

This paper is organized as follows. In Sect. 2, a review

on testing some properties of covariance functions has been

given. In Sect. 3, after introducing the notion of type of

non-separability (Rodrigues and Diggle 2010; De Iaco and

Posa 2013), a test statistic for assessing different forms of

non-separability has been proposed. In space-time geosta-

tistical analysis, this is a further and relevant aspect for

choosing a space-time correlation model for a given data

set. In Sect. 4 a technique for testing some classes of

covariance functions, as well as applications to the classes

of Rodrigues and Diggle models (Rodrigues and Diggle

2010), product-sum models (De Iaco et al. 2001), Gneiting

models (Gneiting 2002), integrated product models (De

Iaco et al. 2002; Ma 2003) and Cressie-Huang models

(Cressie and Huang 1999) have also been provided.

Moreover, a brief discussion on the procedure for choosing

a class of space-time covariance function models has been

given. Some empirical results, obtained by using the R

package covatest (De Iaco et al. 2017), are presented in

Sect. 5.

2 Review on testing covariance functions
properties

Before introducing the new results, it is worth recalling the

theoretical framework given by Li et al. (2007), where the

authors provided a technique for testing some covariance

functions properties, included the separability assumption.

For this aim, let fZðs; tÞ : s 2 Rd; t 2 Rg be a real-valued

space-time random field which is assumed to be strictly

stationary (in the sense that the multivariate distributions are

translation invariant) with Var½Zðs; tÞ�\1 (finite variance),

where s is the spatial location and t the temporal coordinate.

Strict stationarity of a random function is a much stronger

condition than second order stationarity, however, as any

form of the stationarity hypothesis, there is no way to test

whether this assumption is true. It is a model decision, not

some intrinsic property of the actual distribution of the

characteristics (Journel 1989; Christakos 2011). An imme-

diate consequence of the strict stationarity of the random

field Z together with the existence of its variance is that the

expectation EðZðs; tÞÞ is a constant function, which can be

taken to be zero. This assumption reduces notational com-

plexity with no loss of generality (Adler 1981, p. 24), indeed

by assuming that the mean function can be adequately

modelled, one can reasonably focus on the covariance

structure of the residual random field Z (Li et al. 2008b).

A second consequence of the same assumptions is that

the covariance function

Cðh; uÞ ¼ E½Zðsþ h; t þ uÞ � Zðs; tÞ� ð1Þ

depends only on the spatial and temporal lags h and u,

respectively. In other terms, a strictly stationary random

field with finite variance is also second order stationary

(Adler 1981, p. 23–24; Brockwell and Davis 2006, p. 13).

Note that a covariance function C, as in (1), is fully sym-

metric if Cðh; uÞ ¼ Cðh;�uÞ or if Cðh; uÞ ¼ Cð�h; uÞ.
Among the class of fully symmetric covariance functions, a

covariance function C or, equivalently, a space-time cor-

relation function q are separable (Sherman 2011), if and

only if

Cðh; uÞ ¼ Cð0; uÞCðh; 0Þ
Cð0; 0Þ ; qðh; uÞ ¼ qðh; 0Þqð0; uÞ:

ð2Þ

In Li et al. (2007), the authors provided a technique for

testing some covariance properties, included the symmetry

and separability. In particular, they proposed a test statistic

based on the asymptotic joint normality of sample space-

time covariance estimators, as specified hereafter. Differ-

ent sample space-time covariance estimators can be con-

sidered depending on whether the observations are

regularly or irregularly spaced and whether one part or the
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whole domain of interest is fixed or increasing (Li et al.

2008a). In the following, the observations are supposed to

be taken at the same spatial locations over time, which is

very common for environmental applications (Haslett and

Raftery 1989; Gneiting 2002; de Luna and Genton 2005;

Stein 2005), thus the proposed tests are based on this

particular setting.

Given a strictly stationary space-time random field

Z with finite variance, let K be a set of space-time lags with

cardinality equal to m and let

G ¼ fCðh; uÞ : ðh; uÞ 2 Kg be a vector of covariances at

the specified lags in K.

Let bCnðh; uÞ, with ðh; uÞ 2 K, denote the covariance

estimators based on random variables in the sequence of

the index sets Dn ¼ S� Tn, with a fixed space S � Rd

(closed under addition and subtraction) and regularly

spaced times Tn ¼ f1; . . .; ng, and let bGn ¼ bCnðh; uÞ :
n

ðh; uÞ 2 Kg denote the estimator of G computed over Dn. If

it is assumed that

• the asymptotic variance R of the covariance estimator

exists, i.e.
X

t2Z
jcov½Zð0; 0ÞZðh1; u1Þ; Zðs; tÞZðsþ h2; t þ u2Þj\1;

ð3Þ

8h1; h2 2 S; s 2 Sðh2Þ; 8u1; u2; with Sðh2Þ ¼ fs : s 2 S;

sþ h2 2 Sg, so that R ¼ limn!1 jTnjcovð bGn; bGnÞ
exists. Note that a matrix Mn ¼ ½mn

ij� is convergent to a

matrix M ¼ ½mij� if and only if mn
ij ! mij, for all i, j, as

n ! 1;

• given the mixing coefficient (Ibragimov and Linnik

1971, p. 306)

aðuÞ ¼ sup
A;B

fjPðA [ BÞ � PðAÞPðBÞj; A 2 I0
�1;B 2 I1

u g;

where I0
�1 is the r�algebra generated by the past

time process until t ¼ 0 and I1
u is the r�algebra

generated by the future time process from t ¼ u, the

mixing coefficient aðuÞ satisfies the following strong

mixing condition

aðuÞ ¼ Oðu��Þ for some �[ 0; ð4Þ

• the moments of bCnðh; uÞ are such that

sup
n

Efj
ffiffiffiffiffiffiffiffi

jTnj
p

½bCnðh; uÞ � Cðh; uÞ�j2þdg�Cd ð5Þ

for some d[ 0;Cd\1,

then

ffiffiffiffiffiffiffiffi

jTnj
p

½ bGn �G�!d Nmð0;RÞ; ð6Þ

as n ! 1, where m is the cardinality of K and G. If f ¼
ðf1; . . .; frÞ> is a vector of real-valued functions that are

differentiable at G (Harville 2001, p. 295), using the

asymptotic joint normality of bGn and the multivariate delta

theorem (Mardia et al. 1979), the following asymptotic

distribution is derived

ffiffiffiffiffiffiffiffi

jTnj
p

½fðbGnÞ � fðGÞ�!d Nrð0;B>RBÞ; ð7Þ

where r is the cardinality of f and the generic element of

the matrix B is Bij ¼
ofj

oGi

; i ¼ 1; . . .;m; j ¼ 1; . . .; r, with fj

and Gi the j-th component of f and the i-th component of

G, respectively. Note that there are no assumptions on the

marginal or the joint distribution of observations other than

mild moment and mixing conditions on the random field

(Li et al. 2008a).

As specified in Li et al. (2007), the covariance estimator

at the vector lag ðh; uÞ, for the above mentioned zero-mean

random field, is

bCnðh; uÞ ¼
1

jSðhÞjjTnj
X

s2SðhÞ

X
n�u

t¼1

½Zðsþ h; t þ uÞZðs; tÞ�;

ð8Þ

where jSðhÞj is the cardinality of SðhÞ ¼ s : sþf h0 2 S; s 2
S; with jjh� h0jj\dsg; and ds the spatial tolerance. It is

worth to underline that, in the literature, although some of

the available covariance estimators differ in the denomi-

nator, they can be used all equally in case of long time

series or large number of spatial locations. Moreover, note

that the estimator in (8) is the analog of the simple

empirical variance estimator which is characterized by

wide confidence intervals even for random sampling from a

Gaussian distribution, unless the sample size is quite large.

Regarding the number of pairs of data locations in space-

time, the observations are taken in Dn ¼ S� Tn, where S is

supposed to be a fixed space in the sense that finitely many

observations are located within this space, and

Tn ¼ f1; . . .; ng; in particular the structure of the space-

time observations is the one described in Sherman (1996)

and in Li et al. (2007). On the basis of this structure of data

locations (where the set of time points is exactly the same

for each spatial location and the time points are integers),

the above covariance estimator uses a non-constant incre-

ment tolerance for time (as contrasted with the spatial

tolerance). This assumption is consistent with sample

space-time data available in many applications, as for

example in environmental monitoring. A comparison of

infill and increasing-domain asymptotics and the conse-

quences for maximum likelihood estimators of covariance

parameters can be found in Zhang and Zimmerman (2005).
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Note that the above results in (6) and (7) regard the

asymptotic distribution of bGn, which are important in the

literature for several reasons, such as assessing the

covariance structure of a random field, or testing

some properties of space-time covariance functions (Li

et al. 2007).

The general form of hypotheses applied to check full

symmetry and separability of a space-time covariance

function is formulated as follows:

H0 : AfðGÞ ¼ 0; ð9Þ

where A is a contrast matrix of row rank q. Note that, in

case of symmetry, fðGÞ ¼ G; thus the null hypothesis is

usually written as H0 : AG ¼ 0.

Consequently, the proposed test statistics for checking

symmetry and separability are respectively

TS1 ¼ Tnj j AbGn

h i>
ðARA>Þ�1 A bGn

h i

ð10Þ

TS2 ¼ Tnj j Afð bGnÞ
h i>

ðAB>RBA>Þ�1 Afð bGnÞ
h i

ð11Þ

and, under H0, they converge in distribution to a Chi-

square with q degrees of freedom.

For the sake of simplicity it is assumed in the following

that the expectation of Z is known and equal to zero;

however if this assumption is removed, it is enough to

denote with bC�
nðh; uÞ and bG�

n the mean-corrected estima-

tors of Cðh; uÞ and G, since G�
n and Gn have the same

asymptotic properties (see Lemma A.6 in Li et al. 2008a

and Sherman (2011, p. 135)). Note that, even the data used

in the case studies are consistent with this assumption since

we have worked with PM10 residuals and zero-mean sim-

ulated data.

If the model is non-separable then the type of non-sep-

arability should be determined.

3 Testing for positive and negative non-
separability

As pointed out in the introduction, the first step in choosing

a class of space-time covariance function models is to

assess whether a separable or a non-separable model might

be used for describing the correlation structure of a given

space-time data set. If the second option is chosen, it is

important to investigate the type of non-separability. At

last, a test for the selected class of models can be applied.

The first two steps of the above described procedure will be

treated in this Section, while the last step will be discussed

in the next Section.

3.1 Non-separability indexes

Rodrigues and Diggle (2010) proposed simple definitions

of pointwise positive and negative non-separability, with-

out pointing out that a covariance function model usually

depends on a vector of parameters H. Hence, a general-

ization of the above pointwise definition of non-separa-

bility is given below.

Definition 1 Given a covariance function model

Cðh; u;HÞ and the corresponding space-time correlation

function qðh; u;HÞ, where H is a vector of parameters, let

rðh; u;HÞ ¼ qðh; u;HÞ
qðh; 0;HÞqð0; u;HÞ ; ð12Þ

where qðh; u;HÞ[ 0; qðh; 0;HÞ[ 0 and qð0; u;HÞ[ 0.

Thus, if rðh; u;HÞ[ 1; for some ðh; u;HÞ, the covariance

function model is pointwise positive non-separable at

ðh; u;HÞ; alternatively, it is pointwise negative non-sepa-

rable at ðh; u;HÞ; if rðh; u;HÞ\1; for some ðh; u;HÞ:
Moreover, the covariance function model C is uniformly

positive (negative) non-separable, if rðh; u;HÞ[ 1

(rðh; u;HÞ\1), for any spatio-temporal lag ðh; uÞ and any

value of the parameters specified in H.

An alternative non-separability index can also be

defined in terms of the difference d0ðh; u;HÞ between

qðh; u;HÞ and the product qðh; 0;HÞqð0; u;HÞ, that is
d0ðh; u;HÞ ¼ qðh; u;HÞ � qðh; 0;HÞqð0; u;HÞ; ð13Þ

or in terms of the following difference

dðh; u;HÞ ¼ Cðh; u;HÞCð0; 0;HÞ � Cðh; 0;HÞCð0; u;HÞ:
ð14Þ

The sign of (13) and (14) will give information about the

type of non-separability. Moreover, note that the difference

in (13) is zero if and only if the difference in (14) is zero,

but the two differences are not equal.

Then, a covariance function which is uniformly positive

(negative) non-separable, is also pointwise positively

(negatively) non-separable, but the converse is not true.

Thus, the index of non-separability depends on the specific

lag and on the model parameters. Concerning these aspects,

a detailed analysis and some examples were provided in De

Iaco and Posa (2013).

Some classes of models for covariance functions can be

classified according to the type of non-separability, as

summarized below:

• uniformly non-separable models: the Gneiting class of

models (Gneiting 2002), as well as the class of space-
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time covariance functions generated by positive power

mixtures (Ma 2002), are uniformly positive non-

separable, otherwise the product-sum class (De Iaco

et al. 2001) is uniformly negative non-separable;

• models with different non-separability indexes: wide

classes of non-separable stationary covariance func-

tions, which can be uniformly positive or negative non-

separable, or pointwise positive or negative non-

separable, for some choices of ðh; u;HÞ, belong to this

family. In particular, the classes generated by a linear

combination of product-sum models, integrated pro-

duct-sum models, one of the examples given by Cressie

and Huang (1999), the convolution-based models

proposed by Rodrigues and Diggle (2010), the more

general positive power mixture model proposed by Ma

(2002), and the metric model (Dimitrakopoulos and

Luo 1994) could be either uniformly positive and

negative non-separable, or pointwise non-separable.

Although in the literature the above mentioned classes of

models are known to be non-separable, the class of sepa-

rable models can be often obtained as a special case. For

example, the Rodrigues and Diggle model, the product-

sum model, the Gneiting covariance function model as well

as the metric model are separable for specific choices of the

functions involved and their parameters.

In the following, the dependence of the covariance

function model C from the vector of parameters H will be

omitted in order to simplify the notation.

3.2 Statistical test for the type of non-separability

The tests proposed in the literature are commonly applied

to check symmetry and separability and, in general, the

corresponding test statistics are used to decide whether or

not the null hypothesis is rejected (in favor of the alter-

native). Moreover, if separability is rejected, then the type

of non-separability (i.e. uniformly positive, uniformly

negative or pointwise positive or negative) has to be ana-

lyzed. Taking into account the results in Mardia et al.

(1979) and Li et al. (2007), a statistical test for assessing

the type of non-separability of a covariance function is

provided below.

Let Z be a strictly stationary space-time random field

with finite variance.

Let K ¼ ð0; 0Þ; ðhi; uiÞ; ðhi; 0Þ; ð0; uiÞ; i ¼ 1; . . .; lf g be a

set of space-time lags and jKj ¼ m ¼ 3lþ 1 its cardinality,

with l 2 N; l	 1.

Given the vector G of the covariances of Z at the lags

ðh; uÞ 2 K, the corresponding vector bGn of the covariance

estimators (bCnðh; uÞ, with ðh; uÞ 2 K), evaluated over the

set Dn ¼ S� Tn, and the vector of functions

fðGÞ ¼ Cðh1; u1Þ
Cðh1; 0Þ

Cð0; u1Þ
Cð0; 0Þ . . .

Cðhi; uiÞ
Cðhi; 0Þ

Cð0; uiÞ
Cð0; 0Þ . . .

Cðhl; ulÞ
Cðhl; 0Þ

Cð0; ulÞ
Cð0; 0Þ

� �>
;

ð15Þ

with 2l elements, let A be the general form of the contrast

matrix with l rows and 2l columns

A ¼

1 � 1 0 0 . . . 0 0

0 0 1 � 1 . . . 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 0 0 0 . . . 1 � 1

2

6

6

6

6

4

3

7

7

7

7

5

:

ð16Þ

Under the assumptions (3), (4) and (5) on the strictly sta-

tionary random field, the test statistic for the type of non-

separability is based on the following function

ffiffiffiffiffiffiffiffi

jTnj
p

½1>l Afð bGnÞ � 1>l AfðGÞ�!d Nð0; 1>l AB>RBA>1lÞ;
ð17Þ

and the hypotheses on the type of non-separability are

defined as follows:

H
ð�Þ
0 : 1>l AfðGÞ� 0; against H

ðþÞ
1 : 1>l AfðGÞ[ 0;

ð18Þ

or alternatively

H
ðþÞ
0 : 1>l AfðGÞ	 0; against H

ð�Þ
1 : 1>l AfðGÞ\0:

ð19Þ

This statistical test is based on the asymptotic distribution

in (17) which is a consequence of results in (6) and (7). In

particular, the key point is based on the asymptotic nor-

mality of the statistic
ffiffiffiffiffiffiffiffi

jTnj
p �

bCnðh; uÞ � Cðh; uÞ
�

, which is

proved by applying a blocking technique (Li et al. 2007).

If the test statistic in (17) is standardized, it converges in

distribution, under the null hypothesis, to a standard normal

distribution. In the following, this statistic will be denoted

as TS3.

At the significance level a, if Hð�Þ
0 is set against H

ðþÞ
1 , as

in (18), the test is conducted on the right tail �za;þ1½ of
the standard normal distribution, or alternatively if H

ðþÞ
0 is

set against H
ð�Þ
1 , as in (19), the test is conducted on the left

tail � �1;�za½ of the standard normal distribution.

Failing to reject H
ð�Þ
0 formulated against H

ðþÞ
1 , given in

(18), means that there is no statistical evidence that the

space-time covariance function is positive non-separable

for the specified lags; on the other hand, failing to reject

H
ðþÞ
0 formulated against H

ð�Þ
1 , given in (19), means that

there is no statistical evidence that the space-time covari-

ance function is negative non-separable for the

specified lags.

Stoch Environ Res Risk Assess (2018) 32:17–35 21

123



Remarks

• The type of pointwise non-separability can be tested for

l ¼ 1.

• The test statistic is always computed for lags charac-

terized by the same type of non-separability, in such a

way that compensations among terms of the test

statistic with different signs are avoided.

• A simple way to fix the direction of the one-tailed test

on the type of non-separability and the set of lags to be

tested is to analyze as a first step the box-plots of the

sample non-separability ratios (i.e. from definition (12),

the ratio computed between the empirical space-time

correlation and the product of the corresponding sample

spatial and temporal marginals), classified by spatial

and temporal lags. Indeed, it is advisable to use a right

tailed test for a given space-time lag, if the box-plots of

the sample non-separability ratios support the assump-

tion of negative non-separability (sample ratios less

than one in average); analogously, for the left tailed

test. However, in order to test the type of non-

separability, it is reasonable to choose space-time lags

with sample non-separability ratios much less/greater

than one. The basic steps of the testing procedure

are given in ‘‘Appendix 1’’.

4 Testing some classes of space-time models

In this Section, a non-parametric test procedure for the

choice of some peculiar classes of space-time covariance

function models, well-known in the literature, has been

provided. In particular, the classes of models proposed by

Rodrigues and Diggle (2010), De Iaco et al. (2001),

Gneiting (2002), Cressie and Huang (1999), De Iaco et al.

(2002), have been considered and a generalization for a

given construction of space-time covariance function

models has been also furnished. The original and inter-

esting aspects of the following tests are based on the

analysis of some mathematical features of the selected

classes of models, which have been used to specialize the

null hypotheses in the various cases. The idea is to

appropriately define the set of lags K, consequently the

covariances involved in the vector G, the vector of func-

tions f and the corresponding contrast matrix A, such that

the null hypothesis AfðGÞ ¼ 0 is true under the selected

class of models. In the following, some properties for some

classes of models are detected by fixing a spatial lag and

then looking at the behavior of the covariance model (or

function of it) for different temporal lags, or vice versa by

fixing a temporal lag and then looking at the behavior of

the same function for different spatial lags.

4.1 Testing the Rodrigues and Diggle model

The class of models proposed by Rodrigues and Diggle

(2010) is given below

Cðh; uÞ ¼ r2

2
qs;1ðhÞqt;1ðuÞ þ qs;2ðhÞqt;2ðuÞ
� �

; ð20Þ

where qs;1ðhÞ; qs;2ðhÞ; qt;1ðuÞ; qt;2ðuÞ are non-negative and

integrable spatial and temporal correlation functions.

As stated in the following proposition, this class of

covariance function models satisfies some specific

properties.

Proposition 4.1 Let C be a finite covariance function of a

strictly stationary space-time random field. If the class of

covariance function models in (20) is considered, then for

any set of spatial lags hi and temporal lags ui, i ¼ 1; 2, the

differences dðhi; ujÞ, i; j ¼ 1; 2, defined in (14), are such

that

dðh1; u1Þ ¼
dðh1; u2Þdðh2; u1Þ

dðh2; u2Þ
: ð21Þ

The proof is given in ‘‘Appendix 2’’.

The properties of this class of covariance function

models can be used to formulate the statistical hypotheses

on the same class, as described below.

Given a strictly stationary space-time random field

Z with finite variance, suppose that

• Cðh; uÞ is the non-separable covariance function of Z;

• K ¼ fð0; 0Þ; ðhi; ujÞ; ðhi; 0Þ; ð0; ujÞ; i ¼ 1; . . .; ls; j ¼
1; . . .; lt; ls 	 2; lt [ 2g; is a set of space-time lags and

jKj ¼ m ¼ ðls þ 1Þðlt þ 1Þ þ 1 its cardinality;

• G is the vector of the non-separable covariances at the

lags ðh; uÞ 2 K, and bGn be the vector of the corre-

sponding covariance estimators (bCnðh; uÞ, with

ðh; uÞ 2 K) defined over the domain Dn ¼ S� Tn;

• fRD is the vector of functions, whose generic couple of

consecutive elements (used for the contrast) for a pair

of spatial lags hi1 ; hi2 and a pair of temporal lags uj1 ; uj2 ,

i1; i2 2 f1; . . .; lsg, j1; j2 2 f1; . . .; ltg, i1 6¼ i2, j1 6¼ j2, is

the following

Cðhi1 ; uj1ÞCð0; 0Þ � Cðhi1 ; 0ÞCð0; uj1Þ
Cðhi2 ; uj1ÞCð0; 0Þ � Cðhi2 ; 0ÞCð0; uj1Þ
Cðhi1 ; uj2ÞCð0; 0Þ � Cðhi1 ; 0ÞCð0; uj2Þ
Cðhi2 ; uj2ÞCð0; 0Þ � Cðhi2 ; 0ÞCð0; uj2Þ

:

ð22Þ

Then, given the general form of the contrast matrix A, as in

(16), with at most
ls
2

� �

lt
2

� �

rows and 2
ls
2

� �

lt
2

� �
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columns, the null hypothesis for the class of models in (20)

is written as H0 : Af
RDðGÞ ¼ 0, against the alternative

hypothesis H1 : Af
RDðGÞ 6¼ 0.

Under the asymptotic probability distributions in (6) and

(7), the test statistic (11), which can be used in this case to

assess the above hypotheses, converges in distribution to a

Chi-square with degrees of freedom equal to the row rank

of the contrast matrix A. In particular, the test statistic (11)

can be used to decide whether to reject the null hypothesis

(in favor of the alternative hypothesis) or non-reject the

null hypothesis in case of a lack of evidence against it.

For example, given the following set of space-time lags:

K ¼ fð0; 0Þ; ðh1; u1Þ; ðh2; u1Þ; ðh1; u2Þ; ðh2; u2Þ;

ðh1; u3Þ; ðh2; u3Þ; ðh1; 0Þ; ðh2; 0Þ;

ð0; u1Þ; ð0; u2Þ; ð0; u3Þg;

ð23Þ

and the corresponding G, let us define

Note that the vector fRD includes all the couples associated

to the possible pairs of spatial lags and temporal lags

specified in the set K.

A ¼
1 � 1 0 0 0 0

0 0 1 � 1 0 0

0 0 0 0 1 � 1

2

6

4

3

7

5: ð25Þ

Then AfRDðGÞ ¼ 0 is the null hypothesis for the Rodrigues

and Diggle model defined in (20), since for i; j ¼ 1; 2

Cðhi; ujÞCð0; 0Þ � Cðhi; 0ÞCð0; ujÞ

¼ r4

4
½qs;1ðhiÞ � qs;2ðhiÞ�½qt;1ðujÞ � qt;2ðujÞ�:

ð26Þ

The test statistic (11), which converges in distribution to a

Chi-square with q ¼ 3 degrees of freedom, can be used to

decide whether to reject the null hypothesis (in favor of the

alternative H1 : Af
RDðGÞ 6¼ 0) or non-reject the null

hypothesis in case of no significant empirical evidence

against it.

4.2 Testing the product-sum model

The product-sum model is defined as

Cðh; uÞ ¼ k1CsðhÞCtðuÞ þ k2CsðhÞ þ k3CtðuÞ;
k1 [ 0; k2 	 0; k3 	 0;

ð27Þ

where Cs is a spatial covariance function in Rd and Ct is a

temporal covariance function in R; analogously it can be

expressed in terms of the generalized product-sum vari-

ogram model as

cðh; uÞ ¼ cðh; 0Þ þ cð0; uÞ � kcðh; 0Þcð0; uÞ; ð28Þ

where cðh; 0Þ and cð0; uÞ are valid spatial and temporal

bounded variogram functions, and k is the only model

parameter. See De Iaco et al. (2001) for details on the

admissibility condition. This model has been widely used

in the literature (Cichota et al. 2006; Gething et al. 2007;

Jost et al. 2005; Lee et al. 2012; Liang and Kumar 2013;

Pebesma 2012; Zeng et al. 2014); moreover, model (27) is

strictly positive definite if and only if the spatial and

temporal covariance functions are strictly positive definite

(De Iaco et al. 2011; De Iaco and Posa 2017). As shown in

the following proposition, this class of models satisfies

some specific properties.

Proposition 4.2 Let C be a finite continuous covariance

function model of a strictly stationary space-time random

field. For any set of spatial lags hi, i ¼ 1; 2; 3, and tem-

poral lag u, the increments Cðhi; uÞ � Cðhj; uÞ and

Cðhi; 0Þ � Cðhj; 0Þ, i; j ¼ 1; 2; 3; are such

Cðh3; uÞ � Cðh2; uÞ
Cðh3; 0Þ � Cðh2; 0Þ

¼ Cðh2; uÞ � Cðh1; uÞ
Cðh2; 0Þ � Cðh1; 0Þ

; ð29Þ

with Cðhi; 0Þ 6¼ Cðhj; 0Þ, and hi 6¼ hj, if and only if the

class of covariance function models in (27), is considered.

A similar condition is satisfied for any spatial lag h and

any set of temporal lags u1, u2, and u3:

Cðh; u3Þ � Cðh; u2Þ
Cð0; u3Þ � Cð0; u2Þ

� Cðh; u2Þ � Cðh; u1Þ
Cð0; u2Þ � Cð0; u1Þ

¼ 0; ð30Þ

fRDðGÞ

¼ Cðh1; u1ÞCð0; 0Þ � Cðh1; 0ÞCð0; u1Þ
Cðh2; u1ÞCð0; 0Þ � Cðh2; 0ÞCð0; u1Þ

Cðh1; u2ÞCð0; 0Þ � Cðh1; 0ÞCð0; u2Þ
Cðh2; u2ÞCð0; 0Þ � Cðh2; 0ÞCð0; u2Þ

�

Cðh1; u1ÞCð0; 0Þ � Cðh1; 0ÞCð0; u1Þ
Cðh2; u1ÞCð0; 0Þ � Cðh2; 0ÞCð0; u1Þ

Cðh1; u3ÞCð0; 0Þ � Cðh1; 0ÞCð0; u3Þ
Cðh2; u3ÞCð0; 0Þ � Cðh2; 0ÞCð0; u3Þ

Cðh1; u2ÞCð0; 0Þ � Cðh1; 0ÞCð0; u2Þ
Cðh2; u2ÞCð0; 0Þ � Cðh2; 0ÞCð0; u2Þ

Cðh1; u3ÞCð0; 0Þ � Cðh1; 0ÞCð0; u3Þ
Cðh2; u3ÞCð0; 0Þ � Cðh2; 0ÞCð0; u3Þ

�>
:

ð24Þ
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with Cð0; uiÞ 6¼ Cð0; ujÞ, and ui 6¼ uj.

The proof is given in ‘‘Appendix 3’’.

In the following, the statistical test on this class of

covariance function models will be based on the specific

properties of the same class.

Given a strictly stationary space-time random field

Z with finite variance, suppose that

• K ¼ fðhi; ujÞ; ðhi; 0Þ; ð0; ujÞ; i ¼ 1; . . .; ls; j ¼ 1;

. . .; ltg; is the set of space-time lags, where at least ls or

lt must be greater than 2, and m ¼ ðls þ 1Þðlt þ 1Þ its

cardinality;

• G is the vector of a specific covariance function

Cðh; uÞ, evaluated at a finite number of lags ðh; uÞ 2 K,
with Cðhi; 0Þ 6¼ Cðhj; 0Þ, if hi 6¼ hj, and Cð0; uiÞ 6¼
Cð0; ujÞ, if ui 6¼ uj;

• bGn is the vector of the corresponding covariance

estimators (bCnðh; uÞ, with ðh; uÞ 2 K) computed over

Dn ¼ S� Tn;

• fPS is the vector of functions whose generic couple of

consecutive elements (used for the contrasts) is defined

for a) a triplet of spatial lags hi1 ; hi2 ;hi3 and a temporal

lag uj1 , i1; i2; i3 2 f1; . . .; lsg, j1 2 f1; . . .; ltg;
i1 6¼ i2 6¼ i3, as follows

Cðhi2 ; uj1Þ � Cðhi1 ; uj1Þ
Cðhi2 ; 0Þ � Cðhi1 ; 0Þ

Cðhi3 ; uj1Þ � Cðhi2 ; uj1Þ
Cðhi3 ; 0Þ � Cðhi2 ; 0Þ

ð31Þ

or similarly for b) a triplet of temporal lags uj1 ; uj2 ; uj3
and a spatial lag hi1 ; i1 2 f1; . . .; lsg,
j1; j2; j3 2 f1; . . .; ltg, j1 6¼ j2 6¼ j3 as follows

Cðhi1 ; uj2Þ � Cðhi1 ; uj1Þ
Cð0; uj2Þ � Cð0; uj1Þ

Cðhi1 ; uj3Þ � Cðhi1 ; uj2Þ
Cð0; uj3Þ � Cð0; uj2Þ

:

ð32Þ

Then, the null hypothesis for the class of models defined in

(28) is written as H0 : Af
PSðGÞ ¼ 0, where the general

form of the contrast matrix A, with at most
ls
3

� �

ltþ

ls
lt
3

� �

rows and 2
ls
3

� �

lt þ ls
lt
3

� �

columns, is given in

(16).

Thus, under the asymptotic probability distributions in

(6) and (7), the test statistic (11), which can be used in this

case to assess the above null hypothesis, converges in

distribution to a Chi-square with degrees of freedom equal

to the row rank of the contrast matrix A, equal at most to

ls
3

� �

lt þ ls
lt
3

� �

:

For example, given the following set of space-time lags:

K ¼ fðh1; u1Þ; ðh2; u1Þ; ðh3; u1Þ; ðh1; 0Þ; ðh2; 0Þ; ðh3; 0Þ;

ðh4; u1Þ; ðh4; u2Þ; ðh4; u3Þ; ð0; u1Þ; ð0; u2Þ; ð0; u3Þg;
ð33Þ

and the corresponding G, let us consider the elements

fPSðGÞ and A; respectively

fPSðGÞ ¼ Cðh2;u1Þ �Cðh1;u1Þ
Cðh2;0Þ �Cðh1;0Þ

Cðh3;u1Þ �Cðh2;u1Þ
Cðh3;0Þ �Cðh2;0Þ

�

Cðh4;u2Þ �Cðh4;u1Þ
Cð0;u2Þ �Cð0;u1Þ

Cðh4;u3Þ �Cðh4;u2Þ
Cð0;u3Þ �Cð0;u2Þ

�>
;

ð34Þ

A ¼
1 � 1 0 0

0 0 1 � 1

� �

: ð35Þ

Then, the null hypothesis (H0 : Af
PSðGÞ ¼ 0) regarding the

class of models defined in (28), can be tested by applying

the test statistic (11), which converges in distribution to a

Chi-square with q ¼ 2 degrees of freedom.

4.3 Testing some general classes of covariance

function models

Some classes of space-time covariance function models

share some properties, which can be useful in the testing

procedure. Before going into details, it is worth introducing

the following general result.

Proposition 4.3 Given a class of covariance function

models, suppose that there exist two functions /ðh; uÞ ¼
U½Cðh; 0Þ;Cð0; uÞ;Cðh; uÞ� and wðh; uÞ ¼ W½Cðh; 0Þ;Cð0;
uÞ;Cðh; uÞ� such that

/ðh; uÞ ¼aðuÞjjhjj2c þ bðuÞ; 8u; ð36Þ

wðh; uÞ ¼cðjjhjjÞu2a þ dðjjhjjÞ; 8h; ð37Þ

where a; c 2�0; 1� and að�Þ; bð�Þ; cð�Þ, dð�Þ are differentiable
functions. Then, for any set of spatial lags hi, i ¼ 1; 2; 3,

such that jjh1jj2c � jjh2jj2c ¼ jjh2jj2c � jjh3jj2c, and tem-

poral lag u, the increments

/ðh2; uÞ � /ðh1; uÞ /ðh3; uÞ � /ðh2; uÞ ð38Þ

are equal. Similarly, for any set of temporal lags ui, i ¼
1; 2; 3; such that u2a1 � u2a2 ¼ u2a2 � u2a3 , and spatial lag h;

the increments

wðh; u2Þ � wðh; u1Þ wðh; u3Þ � wðh; u2Þ ð39Þ

are equal.
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The proof follows from the assumptions (36) and (37),

thus the difference between the elements of any couple of

the type given in (38) is zero; similarly, the difference

between the elements of any couple of the type given in

(39) is zero.

This general result can be utilized for testing some

special classes of space-time covariance function models,

such as the integrated product, Gneiting and Cressie-Huang

models, as described below.

Let Z be a strictly stationary space-time random field

with finite variance. Assume that for a given class of

covariance function models, chosen to describe the space-

time dependency of the random field Z, there exist two

functions /ðh; uÞ ¼ U½Cðh; 0Þ;Cð0; uÞ;Cðh; uÞ� and

wðh; uÞ ¼ W½Cðh; 0Þ;Cð0; uÞ;Cðh; uÞ� such that

/ðh; uÞ ¼aðuÞjjhjj2c þ bðuÞ; 8u; ð40Þ

wðh; uÞ ¼cðjjhjjÞu2a þ dðjjhjjÞ; 8h; ð41Þ

where a; c 2�0; 1� and að�Þ; bð�Þ; cð�Þ, dð�Þ are differentiable
functions. Suppose that

• K ¼ fðhi; ujÞ; ðhi; 0Þ; ð0; ujÞ; i ¼ 1; . . .; ls; j ¼ 1; . . .; ltg;
be a set of space-time lags, where at least ls or lt must

be greater than 2 and there are at least ns ¼ 1 triplets of

spatial lags hi1 ; hi2 ; hi3 , such that jjhi1 jj
2c�

jjhi2 jj
2c ¼ jjhi2 jj

2c � jjhi3 jj
2c
, i1 6¼ i2 6¼ i3 or nt ¼ 1 tri-

plets of temporal lags uj1 ; uj2 ; uj3 , such that

u2aj1 � u2aj2 ¼ u2aj2 � u2aj3 , j1 6¼ j2 6¼ j3;

• m ¼ ðls þ 1Þðlt þ 1Þ denote the cardinality of K;

• G ¼ fCðh; uÞ : ðh; uÞ 2 Kg and bGn ¼ bCnðh; uÞ :
n

ðh; uÞ 2 Kg, where bCnðh; uÞ, for a specific lag ðh; uÞ,
denotes the covariance estimator based on random

variables in the sequence of the index sets Dn ¼ S� Tn;

• fGC be the vector of functions whose generic couple of

consecutive elements (used for the contrast) is defined

a) for a triplet of spatial lags hi1 ; hi2 ; hi3 , such that

jjhi1 jj
2c � jjhi2 jj

2c ¼ jjhi2 jj
2c � jjhi3 jj

2c
, and a temporal

lag uj1 , i1 6¼ i2 6¼ i3; as follows

/ðhi2 ; uj1Þ � /ðhi1 ; uj1Þ /ðhi3 ; uj1Þ � /ðhi2 ; uj1Þ;
ð42Þ

and b) for a triplet of temporal lags uj1 ; uj2 ; uj3 , such

that u2aj1 � u2aj2 ¼ u2aj2 � u2aj3 , and a spatial lag hi1 ; j1 6¼
j2 6¼ j3; as follows

wðhi1 ; uj2Þ � wðhi1 ; uj1Þ wðhi1 ; uj3Þ � wðhi1 ; uj2Þ:
ð43Þ

Then, the null hypothesis for the above general class of

covariance function models can be written as

H0 : Af
GCðGÞ ¼ 0, where the contrast matrix A is of the

general form given in (16), with at most ðnslt þ lsntÞ rows
and 2ðnslt þ lsntÞ columns. Thus, the testing procedure can

be conducted on the basis of the statistic (11) which con-

verges in distribution, under the null hypothesis and the

usual assumption on the asymptotic probability distribu-

tions in (6) and (7), to a Chi-square with degrees of free-

dom equal to the row rank of the contrast matrix A (at most

nslt þ lsnt).

Proposition 4.3 can be easily applied to some well-

known classes of space-time covariance function models,

with variance r2 [ 0, smoothness parameters a; c 2�0; 1�
and range parameters a; b[ 0, such as:

• the integrated product covariance functions (De Iaco

et al. 2002)

Cðh; uÞ ¼ r2c

ðajjhjj2c þ bu2a þ cÞ
; c[ 0; ð44Þ

by assuming: UðCðh; uÞÞ ¼ ½Cðh; uÞ��1;

WðCðh; uÞÞ ¼ ½Cðh; uÞ��1;
• Gneiting covariance functions (Gneiting 2002)

Cðh; uÞ ¼ r2
1

ðbjuj2a þ 1Þs

 !

� exp � ajjhjj2c

ðbjuj2a þ 1Þcb

 !

;

b 2 ½0; 1�; s	 bd=2;

ð45Þ

by assuming

UðCðh; uÞÞ ¼ lnCðh; uÞ;

WðCð0; uÞ;Cðh; uÞÞ ¼ ln
Cð0; uÞ
Cðh; uÞ

	 
�1
cb

;
ð46Þ

• Cressie-Huang covariance functions (Cressie and

Huang 1999)

Cðh; uÞ ¼ r2
1

ðajuj þ 1Þ
d
2

 !

� exp � b2jjhjj2

ðajuj þ 1Þ

 !

;

ð47Þ

by assuming (with a ¼ 0:5, c ¼ 1)

UðCðh; uÞÞ ¼ lnCðh; uÞ;

WðCð0; uÞ;Cðh; uÞÞ ¼ ln
Cð0; uÞ
Cðh; uÞ

	 
�1

;
ð48Þ

or alternatively the following class of Cressie-Huang

models

Cðh; uÞ ¼ r2ðajuj þ 1Þ
½ðajuj þ 1Þ2 þ b2jjhjj2�

ðdþ1Þ
2

; ð49Þ

by assuming (with a ¼ 0:5, c ¼ 1):

UðCð0; uÞ;Cðh; uÞÞ ¼ Cð0;uÞ
Cðh;uÞ

n o 2
dþ1

;
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WðCð0; uÞ;Cðh; uÞ;Cðh0; uÞÞ
¼ UðCð0; uÞ;Cðh; uÞÞ � UðCð0; uÞ;Cðh0; uÞÞf g�2

:

ð50Þ

In particular, if the integrated product model (44) is con-

sidered, then for any set of spatial lags h1, h2, and h3, such

that jjh1jj2c � jjh2jj2c ¼ jjh2jj2c � jjh3jj2c, or alternatively

for any set of temporal lags u1, u2, and u3, such that

u2a1 � u2a2 ¼ u2a2 � u2a3 , the following properties are satisfied:

1

Cðh2; uÞ
� 1

Cðh1; uÞ
¼ 1

Cðh3; uÞ
� 1

Cðh2; uÞ
; 8 u;

1

Cðh; u2Þ
� 1

Cðh; u1Þ
¼ 1

Cðh; u3Þ
� 1

Cðh; u2Þ
; 8 h:

ð51Þ

Thus, given the contrast matrix as in (35) and the vector of

functions, denoted for the integrated product class as f IP, i.e.,

f IPðGÞ ¼ 1

Cðh2; uÞ
� 1

Cðh1; uÞ
1

Cðh3; uÞ
� 1

Cðh2; uÞ

�

1

Cðh; u2Þ
� 1

Cðh; u1Þ
1

Cðh; u3Þ
� 1

Cðh; u2Þ

�>

ð52Þ

the null hypothesis H0 : Af
IPðGÞ ¼ 0; can be tested by

using the statistic (11), which converges in distribution to a

Chi-square with q ¼ 2 degrees of freedom. Proposition 4.3

can also be applied to the following generalization of the

subclass of the integrated product model (44)

Cðh; uÞ ¼ kcnþ1

ðajjhjj2c þ bu2a þ cÞnþ1
; ð53Þ

with UðCðh; uÞÞ ¼ fCðh; uÞg
�1
nþ1; WðCðh; uÞÞ ¼

fCðh; uÞg
�1
nþ1; (n 2 N).

For example, if the Gneiting model (45) is considered

and the spatial and temporal marginals present a linear

behavior near the origin (a ¼ 0:5, c ¼ 0:5), then the fol-

lowing properties are valid (a) for any set of spatial lags h1,

h2, and h3, such that jjh1jj � jjh2jj ¼ jjh2jj � jjh3jj, and 8u,
lnCðh1; uÞ � lnCðh2; uÞ ¼ lnCðh2; uÞ � lnCðh3; uÞ;

ð54Þ

or alternatively, (b) for any set of temporal lags u1, u2, and

u3; such that u1 � u2 ¼ u2 � u3 and 8h,

ln
Cð0; u2Þ
Cðh; u2Þ

	 
�2
b

� ln
Cð0; u1Þ
Cðh; u1Þ

	 
�2
b

¼ ln
Cð0; u3Þ
Cðh; u3Þ

	 
�2
b

� ln
Cð0; u2Þ
Cðh; u2Þ

	 
�2
b

:

ð55Þ

Then, given the contrast matrix as in (35) and the vector of

functions, denoted as fGn, i.e.,

fGnðGÞ ¼ lnCðh1; uÞ � lnCðh2; uÞ lnCðh2; uÞ � lnCðh3; uÞ½

ln
Cð0; u2Þ
Cðh; u2Þ

	 
�2
b

� ln
Cð0; u1Þ
Cðh; u1Þ

	 
�2
b

ln
Cð0; u3Þ
Cðh; u3Þ

	 
�2
b

� ln
Cð0; u2Þ
Cðh; u2Þ

	 
�2
b

#>

;

ð56Þ

the null hypothesis H0 : Af
GnðGÞ ¼ 0 can be used for

testing the Gneiting model defined in (45).

Note that, since fGnðGÞ depends on the parameter b, the
test can be computed by considering different admissible

values of this parameter, whose domain is ½0; 1�. For

example, the test for the selected class of models can be

computed starting from 0.1, with consecutive increments of

0.2, up to 0.9, as shown in De Iaco et al. (2016). Evidently,

if the hypothesis of separability is rejected, the value b ¼ 0

is not be considered as an admissible value since this case

corresponds to a separable model, which is inconsistent

with rejection of separability.

Remarks

• The statistical tests proposed in the paper keep

stimulating the interest in this subject and enrich the

usefulness of the tests proposed in the literature.

• Regarding the estimation of the covariance matrix, the

subsampling estimation method has been used for the

case studies, with a block length consistent with a

number of blocks close to the number of contrasts (rank

of the contrast matrix). However, there is a closely

related literature on the block size selection in the

context of spectrum estimation and resampling depen-

dent data (Hall et al. 1995; Politis et al. 1999; Lahiri

2003).

• Different methods can be used for the estimation of the

covariance matrix. In particular, by extending the

random normalization idea presented in Lobato

(2001) and in Shao and Li (2009), alternative tests,

with an asymptotic null distributions which are free of

tuning parameters, can be used instead of the ones

based on the asymptotic Chi-square distribution.

• The estimation method of the model parameters does

not affect the performance of the proposed test, since

the specific covariance function model is fitted (i.e., its

parameters are estimated) after testing the class of

models (to which the specific model belongs).

The basic steps of the testing procedure for a class of

models is given in ‘‘Appendix 4’’.

4.4 Hints for choosing a space-time model

In this Section a simple procedure which can help practi-

tioners in selecting a class of space-time covariance func-

tion models is proposed. The procedure can be described

through the following steps:
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1. use the test (11) to check the null hypothesis for a

space-time covariance function to be separable or

not; if the hypothesis of separability is rejected, then a

non-separable class of models is needed;

2. use the technique described in Sect. 3 to check the type

of non-separability (i.e. uniformly positive, uniformly

negative or pointwise non-separable);

3. according to the type of non-separability, select a class

of models as described in Sect. 4;

4. consider further useful features, such as behavior at the

origin, asymptotic behavior of the marginals and

anisotropy aspects.

It is clear that the above testing procedure regards a class of

covariance function models, not a specific model. The class

of models to be tested is selected on the basis of the main

characteristics of the empirical covariance surface, such as

full symmetry, separability, behavior at the origin, aniso-

tropy aspects, as well as type of non-separability and

asymptotic behavior (De Iaco et al. 2016).

Regarding the test on the type of non-separability, it is

worth to underline that the conditions fixed in the null

hypothesis are necessary and sufficient only for pointwise

negative or positive non-separability (l ¼ 1), otherwise if

l[ 1 they are only necessary. Moreover, l is set to be greater

than 1, only in the case the analyst decides to put together

(for the test) more than one lag characterized by the same

type of non-separability (homogeneus lags). In other words,

the tests (18) and (19) can be used to decide to reject or non-

reject the hypothesis on positive or negative non-separabil-

ity for the specific sets of lags selected for the test. After

testing the type of non-separability on sets of homogeneus

lags, the final conclusions on uniform non-separability

might be just supported by the graphical inspection of the

box-plots of the sample non-separability ratios.

Moreover, note that all the tests are based on spatio-

temporal covariance functions, estimated for different

spatio-temporal lags. From a practical point of view, it is

common to select and combine various spatial lags or

couples of spatial points as well as different temporal lags

according to the specific characteristics of the phenomenon

under study or simply by taking into account the geometry

of the sample points and the lags where the correlation is

strong. This aspects have been clarified in the next Section.

5 Case studies

In this Section the procedure for testing the type of non-

separability, as well as a class of space-time covariance

functions, has been applied to the well known data set

AirBase, provided by the European Environmental Agency

and available with the package spacetime of the R

environment (Pebesma 2012; Bivand et al. 2013). More-

over, simulated data sets have been used to assess the size

and the power of the tests.

The results, concerning each case study, have been

obtained by using the R package covatest (De Iaco et al

2017). It is worth pointing out that the choice regarding the

specific spatial points to be selected can be justified on the

basis of different reasons: for example, they can be chosen

by taking into account the pairs of points with the smallest

or, alternatively, with the largest ratio between the east-

west component and the north-south component of the

spatial lag, as well as the pairs of points with the shortest

distance khk. In general, the analyst can start with few

pairs of spatial locations spread out over the domain. In

some empirical cases, the selection of the pairs of spatial

locations might be based on intrinsic characteristics of the

phenomenon under study. For example, for wind speed

data, the pairs of spatial locations might be selected along

the prevalent wind direction over the study area, as sug-

gested in the paper of Li et al. (2007), where the authors

highlighted that the test results might depend on the spatio-

temporal lags chosen. Regarding the temporal lags, it is

common to use a) lags for which the sample non-separa-

bility ratios are much greater/less than one (these lags can

be detected by inspecting the box-plots of the sample non-

separability ratios grouped by temporal lags), for the test

on the type of non-separability, or b) lags which are

characterized by strong correlation (often short lags

u1; u2; u3), for the test on the type of model.

5.1 PM10 daily residuals

In this case study, the air quality data base AirBase has

been used and in particular, the PM10 daily data, measured

from the 1st of January 2004 to the 31st of December 2009,

at 26 rural background stations (Fig. 1) located in Germany

have been selected. These data represent a subset of the

whole database, since only the temporal span and the sta-

tions with a very small percentage of missing data (around

3%) have been retained. As highlighted in Gräler et al.

(2015), the PM10 daily data are characterized by a periodic

component, then by using the program ‘‘REMOVE’’ given

in De Cesare et al. (2002), this component has been esti-

mated by moving averages (Brockwell and Davis 2006)

and removed simultaneously before applying the tests. In

case of missing values, this program uses linear interpo-

lation to replace a prescribed number (set equal to 5) of

consecutive missing values.

In the literature, non-separable symmetric covariance

function models have been already fitted to the empirical

space-time covariance surface computed for these data

(Gräler et al. 2012, 2015; Pebesma 2004). Indeed, daily

mean PM10 concentrations measured at rural stations
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across Germany did not show any strong asymmetric pat-

tern due to prevailing environmental effects; on the other

hand these data violated the assumption of separability.

This is confirmed by applying the tests of symmetry and

separability on 15 pairs of monitoring stations among 325

pairs and on the first 3 temporal lags (where the correlation

is strong): the null hypothesis of symmetry is not rejected

(TS1 ¼ 18:839; q ¼ 45; p value ¼ 0:999) and the null

hypothesis of separability is rejected (TS2 ¼ 273:579;

q ¼ 45; p value ¼ 1:63e�34). Consequently, the type of

non-separability and the class of covariance function

models to be used have been checked. In particular, the

testing procedures have been applied by considering 15

pairs of survey stations, spread out over the domain, at

various distances, and different temporal lags, where the

correlation is strong and the sample non-separability ratios

are much less than one.

Before testing the type of non-separability, it is worth

exploring the box-plots of the sample ratios between the

empirical space-time covariance and the product of the

sample spatial and temporal marginals, classified by spatial

and temporal lags. Looking at Fig. 2, a uniform negative

non-separability can be detected. Hence, as discussed in

Sect. 3, a right tailed test, over a range of spatial couples

and temporal lags, has been applied. Thus, this type of non-

separability has been tested by considering 15 pairs of

monitoring stations at different distances (Fig. 1) and

temporal lags from 1 to 6 (where the sample non-separa-

bility ratios are equal or less than one). From the test results

(r̂ ¼ �0:200, TS3 ¼ �0:064, p value = 0.526), the null

hypothesis regarding the presence of negative non-separa-

bility is not rejected, at 5% significant level, for the

selected spatial couples and temporal lags. Moreover, it is

worth pointing out that the p value of the test statistic

increases when the temporal lags are larger. In particular,

for the same 15 pairs of monitoring stations and temporal

lags from 3 to 8 (where the negative non-separability is

stronger, i.e., the sample non-separability ratios are much

less than one r̂ ¼ �1:801), the non-rejection decision is

strengthened (TS3 ¼ �0:427, p value = 0.665).

Fig. 1 Pairs of spatial points

considered for the test of

separability and the type of non-

separability (continuous line)

and for the test on the type of

class of models (dashed line)

(a) (b)

Fig. 2 Box-plots of sample non-separability ratios, computed using the sample space-time covariance function of residuals and classified for

spatial a and temporal, b lags
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Hence, a uniformly negative non-separable covariance

function model can be suitably selected in order to describe

the space-time correlation exhibited by the data. Moreover,

by looking at the spatial and temporal profiles of the

sample space-time covariance versus, respectively, jjhjj
and |u|, it is easy to observe a different variability along

space with respect to time (Fig. 3).

All these features are consistent with the class of pro-

duct-sum models in (27), which can be tested by using the

procedure proposed in Sect. 4. For this aim, the elements

A;G and fPS, of the general null hypothesis AfPSðGÞ ¼ 0

have been suitably fixed. As in the previous case, this last

test has been applied to 15 couples of survey stations and

temporal lags from 1 to 6. The testing procedure indicates

the non-rejection of the null hypothesis regarding the class

of product-sum models (27), since TSPS ¼ 5:463, q ¼ 32,

with p value = 1.000.

In addition, the test is applied on a class of models which

is not consistent with respect to the type of non-separability

empirically detected; in particular, the test has been applied

to the Gneiting model in (45), by using the same couples of

stations and temporal lags considered to test the product-

sum class. In this case, the test statistic (TSGn ¼ 103:548,

q ¼ 32) and the p value (1:79e�9) reasonably support the

rejection of the null hypothesis at 5% of significance.

Note that after the selection of a class of models, tra-

ditional structural analysis should be performed, including

fitting process of the covariance function model and cross-

validation. As a further step, space-time mapping of pre-

dicted values should be also considered to provide a visual

representation.

5.2 Simulated data

In this case study, the null hypotheses formulated on dif-

ferent types of non-separability and classes of covariance

function models have been tested on zero-mean simulated

space-time realizations. In particular, two classes of

covariance function models, i.e., the product-sum model

(27) and the Gneiting model (45), have been used to gen-

erate simulated space-time data regularly distributed over a

range of grid sizes (spatial grids of dimensions 12� 12 and

16� 16), with temporal lengths jTnj ¼ 600, jTnj ¼ 800,

jTnj ¼ 1000. The product-sum model has exponential

marginals with spatial and temporal effective ranges equal,

respectively, to 4 and 20 and parameters

ðk1; k2; k3Þ ¼ ð0:5; 0:3; 0:2Þ, while the Gneiting model has

marginals with linear behaviour near the origin (with

smoothness parameters c and a equal to 0.5) and

ða; b; b; s; r2Þ ¼ ð0:75; 0:75; 1; 1; 1Þ (which correspond to

spatial and temporal marginals that decay approximately at

4 and 20, respectively). Note that the idea of considering

the test on these two classes of covariance function models

to produce alternative simulations is interesting since they

present two opposite types of non-separability, i.e, the

former is uniformly negative non-separable and the latter is

uniformly positive non-separable. 900 replicates have been

obtained through a Gaussian-related program, that is the

sequential simulation algorithm, based on the above-men-

tioned classes of covariance function models.

The conclusions have been supported by the analysis of

the empirical size and power of the tests over a range of

grid sizes, temporal lengths and classes of models.

Regarding the test on the type of non-separability,

• data sets simulated through the Gneiting model (which

is uniformly positive non-separable) have been used to

determine 1) the empirical size through the fre-

quency of rejecting the uniform positive non-

separability, denoted with FrfR
H

ðþÞ
0

jHðþÞ
0 g, and 2) the

empirical power through the frequency of rejecting the

uniform negative non-separability, denoted with

FrfR
H

ð�Þ
0

jHðþÞ
1 g;

• similarly, data sets simulated through the product-sum

model (which is uniformly negative non-separable)

have been considered to compute 1) the empirical size

through the frequency of rejecting the uniform negative

non-separability, denoted with FrfR
H

ð�Þ
0

jHð�Þ
0 g, and 2)

the empirical power through the frequency of rejecting

the uniform positive non-separability, denoted with

FrfR
H

ðþÞ
0

jHð�Þ
1 g.

For both types of data sets, an indirect way of approxi-

mating the power of the test, which consists on evaluating

how large is the p value for the decision of non-rejection

(when the null hypothesis is true), has been also proposed.

In particular, the frequencies of non-rejecting the null
Fig. 3 Sample space-time covariogram
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hypotheses with large p values (greater than 0.9), denoted

with Frf�R
H

ðþÞ
0

jHðþÞ
0 ; p values[ 0:9g and

Frf�R
H

ð�Þ
0

jHð�Þ
0 ; p values[ 0:9g, have been computed.

Moreover, for the size and power of the tests on the type of

class of models,

• Gneiting model-based data have been used to compute

the empirical size FrfRHGn
0
jHGn

0 g, which is equivalent to

the frequency of rejecting the same Gneiting model; on

the other hand the empirical power has been evaluated

through the frequency of rejecting the null hypotheses

formulated on two different classes, such as the

product-sum model or the integrated product model;

these two frequencies are denoted, respectively, with

FrfRHPS
0
jHGn

1 g and FrfRHIP
0
jHGn

1 g. Note that the power

of the test on the Gneiting class has been analyzed with

respect to two classes, whereof one of them is negative

non-separable (the product-sum model) and the other

one is positive non-separable (the integrated product

model);

• similarly, product-sum model-based data have been

considered to determine the empirical size through the

frequency of rejecting the product-sum model, denoted

with FrfRHPS
0
jHPS

0 g; as in the previous case, the

empirical powers, denoted with FrfRHGn
0
jHPS

1 g and

FrfRHIP
0
jHPS

1 g have been computed under the null

hypotheses formulated on two types of classes, i.e.

the Gneiting class and the integrated product class.

In addition, in order to approximate indirectly the power of

the test, the frequencies of non-rejecting the null

hypotheses (when it is true) with large p values (greater

than 0.9) have been computed; they are denoted with

Frf�RHGn
0
jHGn

0 ; p values[ 0:9g and

Frf�RHPS
0
jHPS

0 ; p values[ 0:9g.

Thus, the testing procedure has been applied to the zero-

mean simulated data sets, obtained for different alterna-

tives in terms of grid size, temporal length and class of

models; spatial couples and temporal lags at distances

1, 2, 3 have been considered for the tests. The first step

concerns the test on the type of non-separability, which has

been implemented by considering the above mentioned

alternatives; the empirical size with respect to the nominal

level 0.05 and power are given in Table 1. Looking at the

results, it is clear that the size of the test (p1 and p
0
1) is close

to the nominal level and the power (p3 and p03) approaches

1 as the grid size and temporal length increase; similarly

for the approximated powers (p2 and p02), measured in

terms of frequencies of non-rejecting the null hypotheses

(when it is true) with large p values (greater than 0.90); this

confirms the reliability of the test. It makes sense that there

is strong confidence in the conclusion of rejecting the null

hypothesis of negative/positive non-separability when the

alternative hypothesis is valid, as well as in the conclusion

of failing to reject the null hypothesis when the null

hypothesis is valid.

Next, the selected classes of covariance function models

have been tested. In Table 2 the results obtained for the test

on the classes of covariance function models show that the

size (p1 and p01) is sufficiently stable around the nominal

level for each option, while the empirical power (p3, p4 and

the corresponding p03, p04) fully supports the rejection

decision of the null hypothesis when it is false as well as

the approximated powers (p2 and p02) are consistent with

respect to the nominal frequency of the non-rejection

decision of the null hypothesis (when it is valid) with

p value greater than 0.9. Note also that the powers (in-

cluding the approximated powers) of all alternatives are not

appreciably different when the temporal length is equal to

1000. Moreover, there is evidence that the tests have

greater power when the underlining data are generated by a

covariance model characterized by a different type of non-

Table 1 Values of the empirical size and power for the tests on type

of non-separability for data simulated through a uniform negative

non-separable model (p1 ¼ FrfR
H

ð�Þ
0

jHð�Þ
0 g,

p2 ¼ Frf�R
H

ð�Þ
0

jHð�Þ
0 ; p values[ 0:9g and p3 ¼ FrfR

H
ðþÞ
0

jHð�Þ
1 g) and

through a uniform positive non-separable model

(p01 ¼ FrfR
H

ðþÞ
0

jHðþÞ
0 g, p02 ¼ Frf �R

H
ðþÞ
0

jHðþÞ
0 ; p values[ 0:9g and

p03 ¼ FrfR
H

ð�Þ
0

jHðþÞ
1 g)

Negative non-separable model-based simulations Positive non-separable model-based simulations

p1 p2 p3 p01 p02 p03

12� 12 jTnj ¼ 600 0.080 0.093 0.707 0.080 0.093 0.693

jTnj ¼ 800 0.053 0.107 0.747 0.053 0.107 0.760

jTnj ¼ 1000 0.053 0.107 0.933 0.040 0.107 0.920

16� 16 jTnj ¼ 600 0.067 0.107 0.827 0.067 0.093 0.813

jTnj ¼ 800 0.053 0.107 0.893 0.053 0.120 0.907

jTnj ¼ 1000 0.040 0.120 0.987 0.053 0.120 0.973
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separability with respect to the class of model under the

null hypothesis (i.e., p3 is greater than p4).

Both Table 1 and 2 show that (a) the grid size does not

significantly affect the size of the test, which is around the

nominal level even if the series length is equal to 600;

(b) the power increases as temporal length increases.

As specified in the previous Sections, the test statistics

recalled in this testing procedure converge in distribution to

a Chi-square (as in the case of TS1 and TS2) or to a normal

(as in the case of TS3), then all the above results are based

on these statements. In the following, a discussion of how

rapidly the sequence of distributions converges, has been

given as the temporal length increases from 400 up to

1000, with increments of 200 time points for each step.

Thus, the Kolmogorov–Smirnov tests have been applied

for comparing the observed cumulative distribution func-

tions of TS2 (used to test the class of models) and TS3 (used

to test the type of non-separability) with their specified

theoretical distributions. Moreover, since the convergence

in distribution is pointwise, i.e. not uniform, the Kol-

mogorov–Smirnov tests have been computed by consider-

ing the empirical distributions of the test statistics,

evaluated for the simulated realizations, with and without

the tails at 5%. Fig. 4, which illustrates the empirical dis-

tribution function of the test statistic TS3, shows a rapid

convergence to a normal distribution, even when the tem-

poral length is greater than 400; moreover, the p values for

the Kolmogorov–Smirnov tests support the non-rejection

of the null hypothesis for all options. Fig. 5 illustrates the

empirical distribution function of the test statistic TS2, used

to test the selected class of models. In this case, the p val-

ues, which support the non-rejection of the null hypothesis

for all options, are greater than 0.8 (in particular, KS2 is in

the interval 0.846–0.868) when the temporal length is

greater than 800 and approach 1 (in particular, KS2 is in the

interval 0.903–0.984) when the temporal length is equal to

1000.

(a)

(b)

Fig. 4 Empirical distribution function of TS3 and values of the Kolmogorov–Smirnov test statistic with p values: a product-sum model-based

simulations, b Gneiting model-based simulations (Kolmogorov-Smirnov statistic KS1, including tails, and KS2, excluding tails)

Table 2 Values of the empirical size and power for the tests on type of class of covariance function models for data simulated through the Gneiting

model (p1 ¼ FrfRHGn
0
jHGn

0 g, p2 ¼ Frf�RHGn
0
jHGn

0 ; p values[ 0:9g, p3 ¼ FrfRHPS
0
jHGn

1 g and p4 ¼ FrfRHIP
0
jHGn

1 g) and through the product-summodel

(p01 ¼ FrfRHPS
0
jHPS

0 g, p02 ¼ Frf�RHPS
0
jHPS

0 ; p values[ 0:9g, p03 ¼ FrfRHGn
0
jHPS

1 g and p04 ¼ FrfRHIP
0
jHPS

1 g)

Gneiting model-based simulations Product-sum-based simulations

p1 p2 p3 p4 p01 p02 p03 p04

12� 12 jTnj ¼ 600 0.080 0.080 0.893 0.693 0.067 0.080 0.893 0.853

jTnj ¼ 800 0.053 0.093 0.907 0.707 0.040 0.093 0.907 0.880

jTnj ¼ 1000 0.040 0.107 0.973 0.773 0.040 0.107 0.987 0.973

16� 16 jTnj ¼ 600 0.067 0.093 0.947 0.720 0.053 0.107 0.907 0.880

jTnj ¼ 800 0.053 0.120 0.973 0.800 0.040 0.107 0.987 0.947

jTnj ¼ 1000 0.053 0.133 0.987 0.813 0.040 0.120 1.000 0.987

Stoch Environ Res Risk Assess (2018) 32:17–35 31

123



6 Conclusions

In this paper the definitions of uniformly positive/negative

non-separability and pointwise positive/negative non-sep-

arability were reviewed and a statistical test for checking

different forms of non-separability was introduced. More-

over, a technique for testing some classes of space-time

covariance function models (such as the Rodrigues and

Diggle class of models, the product-sum model, the

Gneiting models, the integrated product models and the

Cressie-Huang models) was also given. The empirical

results analyzed through some case studies can stimulate

the use of these tests since they can help the practitioners to

better select a space-time covariance function model.

Further developments might also regard other testing pro-

cedures for a different geometry of spatio-temporal points,

i.e. an irregular data frame, where data locations

ðs1; 1Þ; ðs2; 2Þ; ðs3; 3Þ; . . .; ðsn; nÞ are such that no two of

s1; s2; s3; . . .; sn are the same (typical of environmental

monitoring network based on mobile sensors).

Acknowledgements The authors are grateful to the Editor and the

reviewers for their helpful suggestions and comments. This research

has been partially supported by the Cassa di Risparmio di Puglia

Foundation (grant given to the authors on 2014).

Appendix 1: Test for the type of non-separability

If the non-separability assumption is reasonable, the type of

non-separability have to be investigated through the fol-

lowing steps:

1. Estimation of the space-time covariance surface

(bCðh; uÞ for a set of space-time lags ðh; uÞ) and of

the corresponding empirical space-time correlation

function (bqðh; uÞ).
2. Computation of the non-separability index ratio brðh; uÞ

(i.e. from definition (12), the ratio computed between

the empirical space-time correlation and the product of

the corresponding sample spatial and temporal

marginals).

3. Graphical representation of the sample non-separabil-

ity ratio through box-plots, classified for spatial lags

and temporal lags. The inspection of box-plots could

help to decide for a right tailed test (18) or a left tailed

test (19).

4. Fix the null hypothesis, i.e. the type of the test: a right

tailed test for testing the negative non-separability, a

left tailed test for testing the positive non-separability.

5. Selection of spatial and temporal lags (K) with sample

non-separability ratios much greater/less than one. The

test statistic is always computed for lags characterized

by the same type of non-separability, in such a way

that compensations among terms of the test statistic

with different signs are avoided.

6. Computation of the test statistic, which requires the

estimation of R; bG; fð bGÞ and the construction of the

contrast matrix A (Li et al. 2007), and of the corre-

sponding p value.

7. If the p value associated with the test statistic is less

than 0.05 the null hypothesis is rejected.

As explained in Li et al. (2007), De Iaco et al. (2016), the

analyst can compute the tests on a set of spatial and

(a)

(b)

Fig. 5 Empirical distribution function of TS2 and values of the Kolmogorov–Smirnov test statistic with p values: a product-sum model-based

simulations, b Gneiting model-based simulations (Kolmogorov–Smirnov statistics KS1, including tails, and KS2, excluding tails)
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temporal lags chosen on the basis of different reasons. In

general, the analyst can start with few pairs of spatial

locations (spatial lags), which are spread out over the

domain and are representative of the spatio-temporal cor-

relation of the data set. In some empirical cases, the

selection of the pairs of spatial locations might be based on

intrinsic characteristics of the phenomenon under study

(some examples for wind data are in the above mentioned

papers). Moreover, the lags or pairs of locations can be

chosen by taking into account the pairs of points with the

smallest or, alternatively, with the largest ratio between the

east-west component and the north-south component of the

spatial lag, as well as the pairs of points with the shortest

distance khk. Regarding the temporal lags, it is common to

use short temporal lags characterized by strong correlation.

In addition to the above mentioned insights, the analyst can

select, for the test on the type on non-separability, spatial

and temporal lags for which the sample non-separability

ratios are much greater/less than one. For this aim, an

useful support is given by the inspection of box-plots of the

sample non-separability ratios, classified by spatial and

temporal lags.

Appendix 2: Proof of Proposition 4.1

Given dðh1; u2Þ ¼ Cðh1; u2ÞCð0; 0Þ � Cðh1; 0ÞCð0; u2Þ, it

is easy to show that

dðhi; ujÞ ¼
r4

4
½qs;1ðhiÞ � qs;2ðhiÞ�½qt;1ðujÞ � qt;2ðujÞ�;

i; j ¼ 1; 2:

ð57Þ

Then for any set of spatial lags h1 and h2 and temporal lags

u1 and u2 the following properties are satisfied:

dðh1; u1Þ
dðh2; u1Þ

� dðh1; u2Þ
dðh2; u2Þ

¼ 0; 8 u1; u2; ð58Þ

dðh1; u1Þ
dðh1; u2Þ

� dðh2; u1Þ
dðh2; u2Þ

¼ 0; 8 h1; h2: ð59Þ

Appendix 3: Proof of Proposition 4.2

Part 1 (if)

For the proof, consider that because of (28) the fol-

lowing properties are satisfied for any set of spatial lags h1,

h2, and h3

cðh1; uÞ � cðh2; uÞ ¼ ½cðh1; 0Þ � cðh2; 0Þ�½1� kcð0; uÞ�; 8 u;
ð60Þ

cðh3; uÞ � cðh2; uÞ ¼ ½cðh3; 0Þ � cðh2; 0Þ�½1� kcð0; uÞ�; 8 u;
ð61Þ

or equivalently

cðh3; uÞ � cðh2; uÞ
cðh3; 0Þ � cðh2; 0Þ

� cðh1; uÞ � cðh2; uÞ
cðh1; 0Þ � cðh2; 0Þ

¼ 0; 8 u:

ð62Þ

Recalling the relationship between c and C, the expression

(62) can be rewritten as:

Cðh3; uÞ � Cðh2; uÞ
Cðh3; 0Þ � Cðh2; 0Þ

� Cðh2; uÞ � Cðh1; uÞ
Cðh2; 0Þ � Cðh1; 0Þ

¼ 0; 8 u:

ð63Þ

Analogously, for the proof of the property in (30).

Part 2 (only if)

Let C be a space-time covariance function. The ratio of

increments in (29), where the spatial marginal Cðh; 0Þ is

interpreted as an independent variable, is constant with

respect to this last variable and depends solely on u. This

implies that the space-time covariance C is a linear func-

tion of the spatial marginal. Analogously, the incremental

ratio in (30), where the temporal marginal Cð0; uÞ is

interpreted as an independent variable, is constant with

respect to this last variable and depends solely on h. This

implies that the space-time covariance function C is a

linear function of the temporal marginal. In conclusion, the

space-time covariance function C is a linear function of

both marginals, thus the most general form that ensures this

feature is given by the construction (27).

Appendix 4: Test for some classes of covariance
function models

The appropriateness of a class of space-time covariance

function models can be investigated through the following

steps:

1. Estimation of the space-time covariance surface

(bCðh; uÞ for a set of space-time lags ðh; uÞ) and of

the corresponding empirical space-time correlation

function (bqðh; uÞ).
2. Fix the class of models to be tested on the basis of

empirical evidences (such as type of non-separability,

behavior at the origin and to infinity) and the

corresponding null hypothesis.

3. Selection of spatial and temporal lags (K). Note that

the integrated product, Gneiting and Cressie class of

models have to be tested at least on one triplet of

spatial lags hi1 ; hi2 ; hi3 , such that

jjhi1 jj
2c � jjhi2 jj

2c ¼ jjhi2 jj
2c � jjhi3 jj

2c
, i1 6¼ i2 6¼ i3 or

at least on one triplets of temporal lags uj1 ; uj2 ; uj3 , such

that u2aj1 � u2aj2 ¼ u2aj2 � u2aj3 , j1 6¼ j2 6¼ j3.
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4. Computation of the test statistic which requires the

estimation of R; bG; fð bGÞ and the construction of the

contrast matrix A (Li et al. 2007).

5. If the p value associated with the test statistic is less

than 0.05 the null hypothesis is rejected.
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