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Abstract This paper introduces an extension of the tradi-

tional stationary linear coregionalization model to handle

the lack of stationarity. Under the proposed model, core-

gionalization matrices are spatially dependent, and basic

univariate spatial dependence structures are non-stationary.

A parameter estimation procedure of the proposed non-

stationary linear coregionalization model is developed

under the local stationarity framework. The proposed

estimation procedure is based on the method of moments

and involves a matrix-valued local stationary variogram

kernel estimator, a weighted local least squares method in

combination with a kernel smoothing technique. Local

parameter estimates are knitted together for prediction and

simulation purposes. The proposed non-stationary multi-

variate spatial modeling approach is illustrated using two

real bivariate data examples. Prediction performance

comparison is carried out with the classical stationary

multivariate spatial modeling approach. According to

several criteria, the prediction performance of the proposed

non-stationary multivariate spatial modeling approach

appears to be significantly better.

Keywords Linear coregionalization model � Non-
stationarity � Local stationarity � Non-parametric �
Cokriging � Cosimulation

1 Introduction

Continuously indexed datasets with multiple variables are

often present in many disciplines in the geosciences. When

the interest is in predicting or simulating, multivariate

random fields are a natural modeling choice for multiple

variables measured at several locations. The spatial

dependence structure of the multivariate random field is

commonly depicted by direct and cross covariance func-

tions (or direct and cross variograms) describing the rela-

tionship between variables across locations. Their

modeling and estimation are fundamental for prediction

and simulation.

Simplifying modeling assumptions are often made on

direct and cross covariance functions (or direct and cross

variograms). They include the stationarity assumption

which states that direct and cross covariance functions (or

direct and cross variograms) remain constant over the

whole study domain. This assumption is driven more by

mathematical convenience than by reality. In practice, it is

often violated due to some local influences or localized

effects which can be reflected by computing local station-

ary direct and cross variograms whose characteristics may

vary spatially, particularly when data come from large

study domains. In such case, using a stationary multivariate

spatial modeling approach would be liable to produce less

accurate prediction, including an incorrect evaluation of

the prediction error. So research has been directed toward

developing non-stationary multivariate spatial modeling

approaches.

Although many non-stationary univariate spatial mod-

eling approaches have been developed over the last decade

(see Fouedjio 2016 for a review), non-stationary multi-

variate spatial modeling approaches are very few in the

current literature (see Genton and Kleiber 2015 for a
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review). The main difficulty is in specifying valid non-

stationary cross covariance functions (or cross variograms).

Existing non-stationary multivariate spatial modeling

approaches include works by Gelfand et al. (2004),

Majumdar et al. (2010), Kleiber and Nychka (2012), and

Kleiber and Porcu (2015). The most popular stationary

multivariate spatial model commonly known as linear

coregionalization model (Journel and Huijbregts 1978;

Bourgault and Marcotte 1991; Goulard and Voltz 1992;

Grzebyk and Wackernagel 1994; Vargas-Guzmán et al.

2002; Wackernagel 2003) was extended to the first plau-

sible non-stationary multivariate spatial model by Gelfand

et al. (2004). The idea consists in letting the coefficients of

basic univariate spatial dependence structures of the model

to vary across space. However, basic univariate spatial

dependence structures of the model remain stationary.

Majumdar et al. (2010) generalize the stationary multi-

variate convolution model proposed by Majumdar and

Gelfand (2007) to the non-stationary setting. The modeling

approach is based on convolutions of spatially varying

covariance kernels. Kleiber and Nychka (2012) and Kleiber

and Porcu (2015) respectively extend the stationary Matérn

and Cauchy cross covariance functions to allow for spa-

tially varying variance, scale, smoothness, and range-de-

pendence parameters.

This paper introduces an extension of the conventional

stationary linear coregionalization model to handle the lack

of stationarity. Under the proposed model, coregionaliza-

tion matrices are spatially dependent, and basic univariate

spatial dependence structures are non-stationary. A three-

step parameter estimation procedure of the proposed non-

stationary linear coregionalization model is developed

under the local stationarity setting. Firstly, a matrix-valued

local stationary variogram kernel moment estimator is

defined at any location of interest. Then, a weighted local

least squares procedure is carried out to estimate parame-

ters at a set of locations referred to as anchor locations

covering the study region. Finally, estimated parameters at

any location of interest are obtained through a kernel

smoothing technique. The proposed estimation framework

is distribution free and computationally attractive. It does

not impose any distributional assumptions except the

existence of the first and second order moment structures. It

does not require any calculation of inverse or determinant

of matrices. Local parameter estimates are knitted together

for purposes of prediction and simulation. The proposed

non-stationary multivariate spatial modeling approach is

illustrated using two practical examples: geophysical and

geochemical bivariate data.

The format of the remainder of the paper is as follows.

Section 2 introduces the non-stationary linear coregional-

ization model. Section 3 laid out the parameter estimation

details. Section 4 tackles cokriging and conditional

cosimulations in this non-stationary framework. Section 5

contains illustrations of the proposed non-stationary mul-

tivariate spatial modeling approach using two practical

examples: geophysical and geochemical bivariate data.

Section 6 offers concluding discussion and few summary

remarks.

2 Proposed model

Consider a p-dimensional vector-valued random field

ZðxÞ ¼ Z1ðxÞ; . . .; ZpðxÞ
� �T

defined over a spatial domain

of interest G of Rdðd� 1Þ, and having the following

representation:

ZðxÞ ¼ lðxÞ þ
Xr

u¼1

AðuÞðxÞWðuÞðxÞ þ Að0ÞðxÞ�ðxÞ; 8x 2 G;

ð1Þ

where lð�Þ is an unknown vector-valued fixed function;

AðuÞð�Þ
n or

u¼0
are unknown p� p matrix-valued fixed

functions; WðuÞð�Þ
� �r

u¼1
are mutually independent p-di-

mensional vector-valued random fields whose their com-

ponents are mutually independent, each with zero mean,

unit variance, and basic non-stationary univariate correla-

tion function qðuÞNS ð�; �Þ; �ð�Þ is a p-dimensional vector-val-

ued random field independent of WðuÞð�Þ
� �r

u¼1
and whose

components are standard white noises.

Under the model defined in Eq. (1), the first and second

order moment structures of the vector-valued random field

Zð�Þ are expressed as follows (the proof is given in

Appendix):

EðZðxÞÞ ¼lðxÞ; ð2Þ

CovðZðxÞ;ZðyÞÞ ¼
Xr

u¼1

AðuÞðxÞAðuÞðyÞTqðuÞNS ðx; yÞ

þ Að0ÞðxÞAð0ÞðyÞTqð0ÞS ðkx� ykÞ
� Cðx; yÞ;

ð3Þ

where qð0ÞS ð�Þ is the nugget correlation function defined by

qð0ÞS ðkhkÞ ¼ 1 for khk ¼ 0 and qð0ÞS ðkhkÞ ¼ 0 khk[ 0.

The superscript T denotes matrix transposition.

The matrix-valued covariance function Cð�; �Þ described
in Eq. (3) is a valid covariance structure by construction

(the proof is given in Appendix). The covariance matrix

Cðx; yÞ is a p� p matrix that contains direct covariances

CovðZiðxÞ; ZiðyÞf gpi¼1 along its major diagonal and cross

covariances fCovðZiðxÞ; ZjðyÞgpi;j¼1;i 6¼j off that diagonal.

The variance-covariance matrix Cðx; xÞ is expressed as the

sum of the ðr þ 1Þ coregionalization matrices
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AðuÞðxÞAðuÞðxÞT
n or

u¼0
. The basic non-stationary univariate

correlation functions family qðuÞNS ð�; �Þ
n or

u¼1
is chosen in the

class of closed-form non-stationary univariate correlation

functions with locally varying geometric anisotropy intro-

duced by Paciorek and Schervish (2006). Thus, the matrix-

valued covariance function Cð�; �Þ takes the following

form:

Cðx; yÞ ¼
Xr

u¼1

AðuÞðxÞAðuÞðyÞT/xy
ðuÞqðuÞS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q

ðuÞ
xy ðx� yÞ

q� �

þ Að0ÞðxÞAð0ÞðyÞTqð0ÞS ðkx� ykÞ;
ð4Þ

where /ðuÞ
xy ¼ RðuÞ

x

		 		
1
4 RðuÞ

y

			
			
1
4 R

ðuÞ
x þ RðuÞ

y

2

					

					

�1
2

; QðuÞ
xy ðhÞ ¼

hT
RðuÞ
x þRðuÞ

y

2

� ��1

h; 8h 2 Rd; RðuÞð�Þ :
�

Rd ! PDdðRÞ;

x 7!RðuÞ
x gru¼1 are mappings from Rd to PDdðRÞ the set of

real-valued positive definite d-dimensional square matri-

ces; qðuÞS ð�Þ
n or

u¼1
are continuous isotropic stationary uni-

variate correlation functions positive definite on Rd, for all

d 2 NH (e.g., Matérn family, Cauchy family, max

stable family). Matrix-valued functions RðuÞð�Þ
� �r

u¼1
are

parametrized via the spectral decomposition, thus ensuring

their positive definiteness: 8x0 2 G; RðuÞ
x0

¼ WðuÞ
x0
KðuÞ

x0

WðuÞ
x0

T
, where KðuÞ

x0
is the diagonal matrix of eigenvalues and

WðuÞ
x0

is the eigenvector matrix formulated in 2D as follows:

KðuÞ
x0

¼ kðuÞ1

2
ðx0Þ 0

0 kðuÞ2

2
ðx0Þ

 !

;

WðuÞ
x0

¼ coswðuÞðx0Þ sinwðuÞðx0Þ
� sinwðuÞðx0Þ coswðuÞðx0Þ

� �
;

with kðuÞ1 ðx0Þ; kðuÞ2 ðx0Þ[ 0 controlling the local ranges and

wðuÞðx0Þ 2 ½0; p½ specifying the local geometric anisotropy

angle.

In Eq. (4), matrix-valued coregionalization functions

AðuÞð�Þ
n or

u¼0
, and matrix-valued geometric anisotropy

functions RðuÞð�Þ
� �r

u¼1
are enabled to vary spatially. Thus,

the resulting matrix-valued covariance function Cð�; �Þ is

non-stationary, i.e., the simple and cross covariance func-

tions are now dependent on the spatial location pair and not

just the lag vector, CovðZiðxÞ; ZjðyÞÞ ¼ Cijðx; yÞ. In the

non-stationary model defined by Eq. (4), when x 6¼ y, we

may have AðuÞðxÞ 6¼ AðuÞðyÞ and so AðuÞðxÞAðuÞ

ðyÞT 6¼ AðuÞðyÞAðuÞðxÞT . Thus, this non-stationary model

may provide a non-symmetric cross-covariance matrix

function, Cijðx; yÞ 6¼ Cjiðx; yÞ. It is also important to note

that by definition Cðx; yÞ ¼ Cðy; xÞT . The non-stationary

model described by Eq. (4) includes also the conventional

stationary linear coregionalization model as a special case.

Moreover, it is more flexible than the spatially varying

linear coregionalization model of Gelfand et al. (2004)

where basic univariate correlation functions are rather

considered stationary.

3 Estimating model parameters

Suppose that the p-dimensional vector-valued random field

Zð�Þ is observed at known spatial locations

fs1; . . .; sng � G. Let us assume that all components of Zð�Þ
has all data values at all sample locations (isotopic sam-

pling). Without loss of generality, we consider that the

study domain G is part of R2ðd ¼ 2Þ. The goal is to esti-

mate at any location of interest the following parameters:

the vector-valued mean function lð�Þ, the matrix-valued

coregionalization functions AðuÞð�Þ
n or

u¼0
, and the matrix-

valued geometric anisotropy functions RðuÞð�Þ
� �r

u¼1
char-

acterized by kðuÞ1 ð�Þ; kðuÞ2 ð�Þ;wðuÞð�Þ
n or

u¼1
.

The estimation is carried out under the local stationarity

or quasi-stationarity assumption (Matheron 1971; Wack-

ernagel 2003). In the quasi-stationarity setup, parameter

functions lð�Þ, AðuÞð�Þ
n or

u¼0
, kðuÞ1 ð�Þ
n or

u¼1
, kðuÞ2 ð�Þ
n or

u¼1
,

and wðuÞð�Þ
n or

u¼1
are smooth functions varying slowly in

space so that at any location of interest x0 2 G, one can

define a neighborhood Vx0 ¼ fx 2 G; kx0 � xk� gg
wherein the first and second order moment structures of

Zð�Þ are approximately stationary. Thus, 8ðx; yÞ 2 Vx0 �
Vx0 Eqs. (2) and (4) are reduced as follows:

lðxÞ 	 lðyÞ 	 lðx0Þ; ð5Þ

Cðx; yÞ 	
Xr

u¼1

BðuÞðx0ÞqðuÞS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞTRðuÞ

x0

�1ðx� yÞ
q� �

þ Bð0Þðx0Þqð0ÞS ðkx� ykÞ
�CSðx� y; x0Þ;

ð6Þ

where BðuÞðx0Þ ¼ AðuÞðx0ÞAðuÞðx0Þ
T

n or

u¼0
are local core-

gionalization matrices.

Thus, locally, the vector-valued non-stationary mean

function is constant, and the matrix-valued non-stationary

covariance function is reduced to a matrix-valued station-

ary covariance function. The local estimation is carried out
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through a three-step estimation scheme. Firstly, a matrix-

valued local stationary variogram kernel moment estimator

is defined at any location of interest. Then, a weighted local

least squares procedure is performed to estimate parame-

ters at a set of locations referred to as anchor locations

covering the study domain. Finally, parameter estimates at

any location of interest are obtained through a kernel

smoothing technique. All of these different elements are

described in this section.

3.1 Matrix-valued local stationary variogram

kernel estimator

The matrix-valued local stationary covariance function

CSð�; x0Þ obtained in Eq. (6) being an even function, it is

equivalent to the matrix-valued local stationary variogram

CSð�; x0Þ ¼ CSð0; x0Þ � CSð�; x0Þ. Thus, the estimation can

be formulated in a framework with variograms. A non-para-

metric kernel moment estimator of the matrix-valued local

stationary variogram function at a target location x0 2 G and

for a spatial lag vector h 2 Rd; khk� g is defined as follows:

where ~Knðkx0 � skkÞ ¼ Knðkx0 � skkÞ=
Pn

t¼1 Knðkx0 �
stkÞ are standardized weights with Knð�Þ a positive kernel

function with bandwidth parameter n[ 0. VðhÞ ¼
fðsk; sk0Þ 2 G� G : sk � sk0 ¼ hg is the set of all pairs of

sample locations separated by vector h. In case of irregularly

sampled data where there are usually not enough sample

locations separated by exactly h, VðhÞ is commonly modified

by fðsk; sk0Þ 2 G� G : sk � sk0 2 T ðhÞg, where T ðhÞ is a

tolerance region surrounding h.

In Eq. (7) each pair of sample locations receives a

weight proportional to the product of the individual

weights. Pairs of sample locations close to the target

location have more influence on the matrix-valued local

stationary variogram kernel estimator than those which

are faraway. The role of the kernel function is to

smoothly down-weight the influence of distant sample

locations. Taking KnðkhkÞ / 1 and g as the radius of the

study domain G reduces Eq. (7) to the conventional

moment estimator for a global matrix-valued stationary

variogram used in practice. For KnðkhkÞ / 1khk\n and

g ¼ n, Eq. (7) leads to the classical moving window

estimator.

In Eq. (7) the kernel function Knð�Þ is chosen as the

Gaussian kernel KnðkhkÞ / expð� 1

2n2
khk2Þ

� �
whose

support is non-compact and therefore includes all sample

locations. By doing this, the matrix-valued local stationary

variogram kernel estimator is not limited to the local

information, remote sample locations are also considered

albeit down-weighted. This choice helps to reduce the

instability of the matrix-valued local stationary variogram

kernel estimator at regions with low sampling density. It

avoids artifacts caused by the only use of sample locations

close to the target location. Moreover, it avoids the prob-

lem of non-smooth local parameter estimates which is

incompatible with the local stationarity assumption.

Regarding the size of the quasi-stationarity neighborhood

g, it sets according to the bandwidth parameter n. g ¼
ffiffiffi
3

p
n

so that the standard deviation of the Gaussian kernel cor-

responds to one of the uniform kernel whose support is

compact. Other possible choices for g include a quantile of

the Gaussian kernel (e.g., g 	 2n) or the full width at half

maximum (g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð2Þ

p
n).

3.2 Parameter raw estimates

The matrix-valued local stationary variogram kernel esti-

mator defined in Eq. (7) is used to estimate to the unknown

quantities AðuÞðx0Þ
n or

u¼0
, kðuÞ1 ðx0Þ
n or

u¼1
, kðuÞ2 ðx0Þ
n or

u¼1
,

and wðuÞðx0Þ
n or

u¼1
characterizing the local stationary

multivariate spatial dependence structure CSð�; x0Þ at the

target location x0 2 G. These quantities are determined by

minimizing the following local weighted sum of squares

criterion:

LWSSðx0Þ ¼
XL

l¼1

xðhl; x0ÞkbCSðhl; x0Þ � CSðhl; x0Þk
2

F ; 8x0 2 G;

ð8Þ

where fhl 2 Rd; khlk� ggLl¼1 is a finite set of spatial lag

vectors; similarly to the traditional stationary setting

(Chilés and Delfiner 2012), xðhl; x0Þ ¼

bCSðh; x0Þ ¼
P

VðhÞ ~Knðkx0 � skkÞ ~Knðkx0 � sk0kÞ ZðskÞ � Zðsk0Þ½ 
 ZðskÞ � Zðsk0Þ½ 
T

2
P

VðhÞ ~Knðkx0 � skkÞ ~Knðkx0 � sk0kÞ
; ð7Þ
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P
VðhlÞ

~Knðx0; skÞ ~Knðx0; sk0Þ

 �

khlk�1
are weights which

are chosen to be proportional to the amount of information

in the non-parametric kernel estimator defined in Eq. (7)

and inversely proportional to the norm of the spatial lag

vector (in order to improve the fitting at small distances);

kXk2F ¼ trðXXTÞ denotes the Frobenius norm of a square

matrix X. The minimization is subject to the constraint that

the local coregionalization matrices BðuÞðx0Þ ¼
�

AðuÞðx0ÞAðuÞðx0Þ
Tgru¼0 are all positive semi-definite.

The optimization problem defined in Eq. (8) can be

solved using existing algorithms developed in the station-

ary framework (Goulard and Voltz 1992; Lark and Papritz

2003; Emery 2010; Desassis and Renard 2013). The basic

idea of these algorithms is to minimize the weighted sum of

squares by optimizing each coregionalization matrix suc-

cessively, and to repeat the process until weighted sum of

squares cannot decrease any more.

It is worth pointing out that the estimation of unknown

quantities AðuÞðx0Þ
n or

u¼0
, kðuÞ1 ðx0Þ
n or

u¼1
, kðuÞ2 ðx0Þ
n or

u¼1
,

and wðuÞðx0Þ
n or

u¼1
does not require the prior estimation of

the mean vector lðx0Þ. The variogram as a first difference

operator filters out constants. The vector-valued mean

function being approximatively equal to a constant vector in

the quasi-stationarity neighborhood, the matrix-valued local

stationary variogram kernel estimator defined in Eq. (7) fil-

ters out the vector-valued mean function at short distances.

For distances up to the radius of the quasi-stationarity

neighborhood, the matrix-valued local stationary variogram

kernel estimator thus estimates well the underlying local

stationary multivariate spatial dependence structure of the

data whose parameters are estimated from Eq. (8).

The vector-valued mean function lð�Þ being considered

constant within the quasi-stationarity neighborhood, its

estimation at a target location x0 2 G is performed through

a local stationary cokriging of the mean (Wackernagel

2003). This latter is based on parameters AðuÞðx0Þ
n or

u¼0
,

kðuÞ1 ðx0Þ
n or

u¼1
, kðuÞ2 ðx0Þ
n or

u¼1
, and wðuÞðx0Þ

n or

u¼1
charac-

terizing the local stationary multivariate spatial dependence

structure CSð�; x0Þ and estimated according to Eq. (8).

Therefore, no model is specified for the vector-valued

mean function lð�Þ. More specifically, we have:

blðx0Þ ¼
Xn0

k¼1

Pkðx0ÞTZðs0kÞ; 8x0 2 G; ð9Þ

where fs0k ; k ¼ 1; . . .; n0g are data locations belonging to

the quasi-stationarity neighbourhood Vx0 ; fPkðx0Þ; k ¼
1; . . .; n0g are p� p matrices of weights which are solution

of the following system of equations:

CSðs01 � s01; x0Þ . . . CSðs01 � s0n0 ; x0Þ I

..

. . .
. ..

. ..
.

CSðs0n0 � s01; x0Þ . . . CSðs0n0 � s0n0 ; x0Þ I

I . . . I 0

2

666664

3

777775

P1ðx0Þ
..
.

Pn0ðx0Þ
M

2

66664

3

77775

¼

0

..

.

0

I

2

66664

3

77775
;

ð10Þ

withM being p� pmatrix of Lagrange multipliers, 0 being

p� p matrix of zeros, and I being the identity matrix of

size p� p. The matrix-valued local stationary covariance

function CSð�; x0Þ is evaluated using the parameter esti-

mates computed at Eq. (8).

3.3 Smoothing parameter raw estimates

Parameter estimates are required at any location of interest,

especially at unsampled and sampled locations in order to

perform cokriging or cosimulation. Ideally, parameters

should be inferred at each data location and each location

to be predicted or simulated. However, this would be very

demanding in computer resources. In practice, solving the

optimization problem defined in Eq. (8) for all target

locations is computationally extensive. In addition, it may

be redundant for close target locations due to the high

correlation of their associated estimates. To reduce the

computational burden, the basic idea consists in performing

the parameter estimation procedure described in Sect. 3.2

only at a reduced set of locations referred to as anchor

locations defined over the study domain. Using the

parameter estimates at anchor locations, a kernel smooth-

ing technique is performed to make available parameter

estimates at any location of interest. To do this, parameters

being supposed to be regular functions varying slowly from

one end of the study domain to the other end, the Nadar-

aya-Watson kernel estimator (Wand and Jones 1995) with

a Gaussian kernel is used, in addition to being relatively

simple. However, other smoothers can be used as well

(e.g., local polynomials, splines).

The Nadaraya-Watson kernel estimator of the vector-

valued mean function lð�Þ at a location of interest x0 2 G is

given by:

elðx0Þ ¼
Xm

k¼1

wkðx0ÞblðxkÞ; wkðx0Þ ¼
Kdðkx0 � xkkÞPm
k¼1 Kdðkx0 � xkkÞ

;

ð11Þ

where Kdð�Þ is the Gaussian kernel with smoothing

parameter d[ 0; fblðxkÞgk¼1;...;m are raw estimates of the
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parameter lð�Þ at anchor locations fxkgk¼1;...;m obtained in

Sect. 3.2.

Similarly to the Nadaraya-Watson kernel estimator of

the vector-valued mean function elð�Þ described by

Eq. (11), Nadaraya-Watson kernel estimators

eAðuÞð�Þ
n or

u¼0
, ek1 ðuÞð�Þ
n or

u¼1
, ek2 ðuÞð�Þ
n or

u¼1
are defined.

Regarding anisotropy angles wðuÞð�Þ
n or

u¼1
, they can not be

interpolated as scalars because anisotropy angles h, hþ p,
and h� p give the same direction of anisotropy. Noting

that eliðx0Þ a component of elðx0Þ defined in Eq. (11) is the

solution of the minimization problem

argminl02R
Pm

k¼1 wkðx0Þðl0 � bliðxkÞÞ2, we can simi-

larly define the Nadaraya-Watson kernel estimator of

wðuÞð�Þ as follows:

ewðuÞðx0Þ ¼ argminw02
�p;p½
Xm

k¼1

wkðx0Þd2ðw0;
bwðuÞðxkÞÞ; u ¼ 1; . . .; r;

ð12Þ

where bwðuÞðxkÞ
n o

k¼1;...;m
are the raw estimates of the

parameter wðuÞð�Þ at anchor locations fxkgk¼1;...;m;

dðw0;
bwðuÞðxkÞÞ is a distance between two angles defined

by dðw0;
bwðuÞðxkÞÞ ¼ minðjw0 � bwðuÞðxkÞj; jw0 � bwðuÞðxkÞ

�pj; jw0 � bwðuÞðxkÞ þ pjÞ.
Note that the estimation of parameters at an anchor

location is performed independently of other anchor loca-

tions. Likewise, the kernel smoothing of parameter raw

estimates at a target location is carried out independently of

other target locations. Thus, if parallelization is utilized

then the computational time could be reduced. Regarding

the choice of anchor locations, the set of anchor locations is

chosen as a grid covering the study domain. The number of

anchor locations or the spacing of the anchor locations

must be such that the smoothed parameters closely follow

those that would be inferred directly at every target loca-

tion. The number of anchor locations or the spacing of the

anchor locations may depend on the complexity of the true

underlying non-stationarity and especially it is a trade-off

between computational efficiency and the accuracy of the

estimated parameters. As we will see on the practical

examples in Sect. 5, parameters inferred directly at each

target location can be closely reconstructed by smoothing

the values obtained at a moderate set of anchor locations.

3.4 Tuning hyper-parameters

An important aspect in the proposed estimation method is

the selection of the bandwidth parameter g entering in the

computation of the matrix-valued local stationary vari-

ogram kernel estimator (Eq. 7). The size of the quasi-

stationarity neighborhood is controlled by this bandwidth

parameter. Another key points are the selection of the

smoothing parameter d intervening in the interpolation of

the raw estimates of parameters (Eq. 11) and the choice of

the number of basic local stationary univariate covariance

structures ðr þ 1Þ (Eq. 4). The selection of the appropriate

values of the bandwidth parameter g and the smoothing

parameter d is data-driven.

Spatial dependence structure modeling and estimating

are rarely goals per se but intermediate steps before the

spatial prediction which is the ultimate goal. The data-

driven approach consists in taking the bandwidth value that

gives the best one leave-out cross-validation mean square

prediction error (Wackernagel 2003):

CV1ðgÞ ¼
1

np

Xp

i¼1

Xn

k¼1

ZiðskÞ � bZ�k
i ðskÞ


 �2
; ð13Þ

where bZ�k
i ðskÞ is the spatial predictor computed at location

sk using all observations except fZiðskÞg. The spatial pre-

diction method is described in Sect. 4.1.

The value of the smoothing bandwidth d associated with

the vector-valued mean function lð�Þ is selected using the

following cross-validation criterion (Wand and Jones

1995):

CV2ðdÞ ¼
1

m

Xm

l¼1

blðxlÞ � elðxlÞ
1� wlðxlÞ

� �2

; ð14Þ

where fblðxlÞgl¼1;...;m and felðxlÞgl¼1;...;m are respectively

the raw and smoothed estimates of the vector-valued mean

function lð�Þ at anchor locations fxkgl¼1;...;m. Theoretically,

smoothing bandwidths associated with each parameter may

be different. In practice, choosing the same smoothing

bandwidth for all parameters in order to reduce the com-

putational burden, makes little difference in terms of pre-

diction performance.

In practice, the classical stationary linear coregional-

ization model is applied by usually selecting two or three

basic stationary univariate correlation structures repre-

senting different scales of variation (Chilés and Delfiner

2012): a first structure modeling a discontinuity at the

origin (the so-called nugget effect); a second structure

describing short range (small scale) variation; a third

structure of the same type as the previous for accounting

long range (large scale) variation. In the local stationarity

setting, accounting for large scale variation is irrelevant.

Thus for estimating model parameters, using two basic

local stationary univariate covariance structures (i.e., r ¼ 1

or r ¼ 2 depending whether the nugget effect is accounted

or not) in Eq. (6) should be sufficient to capture the local

spatial variability.
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4 Multivariate spatial prediction

The main goals of modeling and estimating the multi-

variate spatial dependence structure of the data are the

prediction and the simulation of variables at target loca-

tions. In this section, a description of cokriging and con-

ditional cosimulation in this non-stationary setting is given.

4.1 Cokriging

The goal is to predict the vector-valued random field Zð�Þ
at a target location s0 2 G based on data

Zðs1Þ; . . .;ZðsnÞ½ 
T . The point predictor for the unknown

value of the vector-valued random field Zð�Þ at a location

of interest s0 2 G is given by the simple cokriging

estimator:

bZðs0Þ ¼ lðs0Þ þ
Xn

k¼1

Pkðs0ÞT ZðskÞ � lðskÞ½ 
; ð15Þ

where p� p matrices of weights fPkðs0Þ; k ¼ 1; . . .; ng are

found from the following simple cokriging system:

Cðs1; s1Þ . . . Cðs1; snÞ
..
. . .

. ..
.

Cðsn; s1Þ . . . Cðsn; snÞ

2

664

3

775

P1ðs0Þ
..
.

Pnðs0Þ

2

664

3

775 ¼

Cðs1; s0Þ
..
.

Cðsn; s0Þ

2

664

3

775:

ð16Þ

The vector-valued mean function lð�Þ and the matrix-val-

ued covariance function Cð�; �Þ are evaluated using the

parameter estimates found at Sect. 3. The variance-co-

variance matrix of the prediction errors correspond to

Qðs0Þ ¼ Cðs0; s0Þ �
Pn

k¼1 Pkðs0ÞTCðsk; s0Þ.

4.2 Conditional cosimulation

The aim is to simulate the vector-valued random field Zð�Þ
assumed to be Gaussian, at a large number of locations

such that the realization honors the data Zðs1Þ; . . .;ZðsnÞ½ 
T .
This can be done from a non-conditional simulation of the

vector-valued random field Zð�Þ following by the method

of conditioning by cokriging (Lantuejoul 2002).

The vector-valued random field Zð�Þ being second order

non-stationary, traditional non-conditional simulation

techniques developed in the stationary framework can not

be used. The representation of the vector-valued random

field Zð�Þ in Eq. (1) suggests that the non-conditional

simulation of Zð�Þ involves: the non-conditional simulation

of p standard Gaussian white noises, and the non-condi-

tional simulation of p� r independent Gaussian univariate

random fields with zero mean, unit variance and closed-

form non-stationary correlation function. The non-condi-

tional simulation of these latter can be performed

efficiently either using the propagative version of the Gibbs

sampler proposed by Lantuejoul and Desassis (2012) or

using the spectral method proposed by Emery and Arroyo

(2017).

5 Practical examples

In this section, the proposed non-stationary multivariate

spatial modeling approach is illustrated using two real

bivariate data examples: geophysical and geochemical

bivariate data. Prediction performance comparison is car-

ried out with the traditional stationary multivariate spatial

modeling approach using some well-known predictive

scores (Gneiting and Raftery 2007; Zhang and Wang 2010;

Chilés and Delfiner 2012): mean absolute error (MAE),

root mean square error (RMSE), logarithmic score (LogS)

and continued ranked probability score (CRPS). For all

these scores, smaller values indicate better predictions.

5.1 Geophysical bivariate data example

The first real bivariate data example comes from a gamma

radiometric soil survey conducted in the region of the

Hunter Valley, NSW, Australia (Stockmann et al. 2012).

Variables of interest are gamma-ray emission from Potas-

sium (K, cps) and Thorium (Th, cps) occurring naturally in

the soil. We have a training dataset containing 537 obser-

vations for model estimation and a validation dataset of

1000 observations for prediction performance assessment.

Figure 1 shows spatial plots of the variables in the training

dataset and clearly reveals the high correlation between the

two variables; hence the need for a multivariate spatial

process model. There is no apparent global geometric

anisotropy in the data. This was confirmed when comput-

ing directional experimental variograms in the stationary

framework.

Figure 2 displays some parameter raw estimates (mean,

standard deviation, cross-correlation, and geometric ani-

sotropy) at anchor locations according to the estimation

procedure described in Sect. 3. Maps of different parameter

raw estimates at anchor locations indicate the presence of

the non-stationarity in the data. Means of Potassium

(K) and Thorium (Th) vary substantially across space as

well as their standard deviations. The cross-correlation

coefficient between Potassium (K) and Thorium (Th) varies

spatially taking values ranging from approximately 0.4 to

0.9. The locally varying geometric anisotropy depicted by

ellipses is quite visible. Such directional effects are also

quite apparent in the data. Parameter raw estimates at

anchor locations are obtained using two basic local uni-

variate stationary structure models (nugget effect model

and exponential model with geometric anisotropy).
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Figure 3 presents the maps of smoothed parameter

estimates over the study domain (mean, standard deviation,

cross-correlation, geometric anisotropy ratio, and geomet-

ric anisotropy direction). Following the hyper-parameters

selection procedure described in Sect. 3.4, the optimal

bandwidth associated with the matrix-valued local sta-

tionary variogram kernel estimator is g ¼ 141 m. Regard-

ing the smoothing bandwidth related to the interpolation of

parameter raw estimates over study domain, its optimal

value is d ¼ 43 m. Figure 4 shows maps of some param-

eters inferred directly at each target location (parameter

raw estimates). It can be observed that the exhaustively

inferred parameters can be closely reconstructed by

smoothing the values obtained at anchor locations. The

number of anchor locations is 475 while the number of

target locations is 15,492.

A visualization of direct and cross covariance functions

at some reference locations through level contours under

the estimated non-stationary and stationary linear core-

gionalization models is given in Fig. 5. This plot illustrates

the fact that the non-stationary linear coregionalization

model allows the spatial dependence structure to change

from one location to another, while the stationary linear

coregionalization model estimates a constant spatial

dependence structure. The stationary linear

coregionalization model is estimated using two basic uni-

variate isotropic stationary structure models (nugget effect

and exponential models). It can be observed that the sta-

tionary model provides an elliptical correlation pattern,

while the non-stationary model produces non-elliptical

correlation pattern.

Table 1 reports the predictive scores computed on a

validation dataset (1000 observations) for non-stationary

and stationary linear coregionalization models. It emerges

that the non-stationary linear coregionalization model

outperforms the stationary linear coregionalization model

in terms of prediction accuracy and prediction uncertainty

accuracy. The cost of non-using the non-stationary mod-

eling approach is substantial. For example, the non-sta-

tionary modeling approach reduces the RMSE by 23% and

the CRPS by 40% according to the stationary modeling

approach.

Figure 6 shows predictions and prediction standard

deviations based on estimated non-stationary and station-

ary linear coregionalization models. The overall look of

cokriging maps associated with each model differs notably,

in particular the cokriging standard deviation maps. Under

the non-stationary model, cokriging standard deviations

tend to be low in regions of low variability, while they tend

to be high in regions of high variability. Thus, cokriging

Fig. 1 a Soil gamma-

radiometric potassium

(K) training data; b soil gamma-

radiometric thorium (Th)

training data; c scatter plot of K
against Th in the training data
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standard deviations reflect not only the samples configu-

ration and availability around target locations, but also the

local variability. On the other hand, cokriging standard

deviations related to the stationary modeling approach

shows slight differences throughout the study domain, due

to the sampling intensity. Such a pattern was expected as

the stationary modeling approach assumes the same spatial

dependence structure over the region of interest.

Gaussian conditional simulations based on estimated

non-stationary and stationary linear coregionalization

models are presented in Fig. 7. Both simulations are gen-

erated from the same random number seed to facilitate

comparisons. As one can see, conditional simulations under

the non-stationary model differ from one under the sta-

tionary model, especially in terms of anisotropy.

5.2 Geochemical bivariate data example

The second real bivariate data example is the well-known

Meuse data (Burrough et al. 1998). Data set consists of 155

Fig. 2 Parameter raw estimates

at anchor locations. a mean of

K; b mean of Th; c standard

deviation of K; d standard

deviation of Th; e cross-

correlation between K and Th;

f geometric anisotropy

Stoch Environ Res Risk Assess (2018) 32:1699–1721 1707

123



Fig. 3 Smoothed parameter

estimates over the region of

interest. aMean of K; b mean of

Th; c standard deviation of K;

d standard deviation of Th;

e cross-correlation between K

and Th; f geometric anisotropy

ratio; g geometric anisotropy

direction
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samples of top soil heavy metal concentrations (ppm),

collected in a flood plain of the river Meuse, near the vil-

lage Stein, Netherlands. We focus on two variables Cd and

Zn. Both variables are positively skewed, hence a log

transformation was applied to each. Spatial plots of trans-

formed variables are depicted in Fig. 8 where one can

observe a high correlation between the two transformed

variables. The representation of data suggests the presence

of a global zonal anisotropy direction in the data. This is

confirmed when computing directional experimental vari-

ograms in the stationary setting. The orientation of maxi-

mum continuity is along the direction South/West - North/

East.

Maps of different parameter raw estimates at anchor

locations are shown in Fig. 9, revealing the non-stationarity

in the data. Means of log Cd and log Zn vary substantially

Fig. 4 Parameter raw estimates

over the study domain. a Mean

of K; b mean of Th; c standard

deviation of K; d standard

deviation of Th; e cross-

correlation between K and Th;

f geometric anisotropy ratio
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throughout the study domain as well as their standard

deviations. The strength of correlation between the two

variables evolves across the study domain, ranging from

0.86 to 0.93. The estimated geometric anisotropy function

at anchor locations reveals a locally varying geometric

anisotropy including the main direction of continuity dis-

covered by the stationary modeling approach. Note that

global anisotropy cannot describe local directional features

of a spatial surface, only global ones. Parameter raw

Fig. 5 a, b, c, d Direct and e,
f cross covariance function level

contours at some reference

locations. a Non-stationary

model; b stationary model;

c non-stationary model;

d stationary model; e non-

stationary model; f stationary
model

Table 1 External validation scores with 1000 hold-out observations

Criteria Non-stationary model Stationary model

K Th K Th

MAE 2.438 0.820 3.283 1.306

RMSE 3.548 1.098 4.309 1.612

LogS 5.427 2.936 6.266 4.058

CRPS 3.896 1.165 5.249 1.837
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Fig. 6 a, b, c, d Predictions and

e, f, g, h prediction standard

deviations. a Non-stationary

model; b non-stationary model;

c stationary model; d stationary

model; e non-stationary model;

f non-stationary model;

g stationary model; h stationary

model
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estimates at anchor locations are obtained using two basic

local univariate stationary structure models (nugget effect

model and exponential model with geometric anisotropy).

Maps of smoothed parameter estimates over the study

domain (mean, standard deviation, cross-correlation, geo-

metric anisotropy ratio, and geometric anisotropy direc-

tion) are given in Fig. 10. According to the bandwidth

selection approach described in Sect. 3.4, the optimal

bandwidth associated with the matrix-valued local sta-

tionary variogram kernel estimator is g ¼ 767 m. The

optimal value of the smoothing bandwidth related to the

interpolation of parameter raw estimates over study domain

corresponds to d ¼ 56 m. Maps of some parameters

inferred directly at each target location (parameter raw

estimates) are given in Fig. 11. It can be observed that the

completely inferred parameters can be closely recovered by

interpolating the values obtained at anchor locations. The

number of anchor locations is 505 while the number of

target locations is 13,500.

A representation of the estimated non-stationary and

stationary direct and cross covariance functions at some

reference locations via level contours is given in Fig. 12.

One can see how the non-stationary spatial dependence

structure changes the shape from one location to another

compared to the stationary one. Correlation patterns pro-

vided by the two models are quite different. The stationary

linear coregionalization model is estimated using three

basic local univariate stationary structure models (nugget

effect model, isotropic exponential model, and exponential

model with a zonal anisotropy along the direction South/

West–North/East).

To assess the predictive ability of the proposed non-

stationary modeling approach in this dataset, a pseudo

cross-validation is considered instead of an external vali-

dation due to the relatively small size of the dataset. The

pseudo cross-validation consists in leaving out a randomly

selected 10% of locations (15 locations), and cokrige the

remaining bivariate observations to these held-out loca-

tions, without re-estimate the model. This procedure is

repeated 1000 times. Table 2 contains the averaged pre-

dictive scores and standard deviations from this procedure.

The analysis of the table shows that the proposed non-

stationary linear coregionalization model performs better

than the stationary one in terms of prediction accuracy and

prediction uncertainty accuracy. The global improvement

is about 4% in terms of RMSE and 6% in terms of CRPS

Fig. 7 Conditional simulations

based on a, b the non-stationary

model and c, d the stationary

model. a Non-stationary model;

b non-stationary model;

c stationary model; d stationary

model
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with respect to the stationary linear coregionalization

model.

The cokriging results for the estimated non-stationary

and stationary linear coregionalization models are shown in

Fig. 13. The general appearance of the maps of cokriged

values associated with each model differs. Moreover, the

non-stationary and stationary linear coregionalization

models differ also in describing the spatial uncertainty

associated with the predictions. One can see that under the

non-stationary multivariate spatial modeling approach,

prediction standard deviations reflect not only the samples

configuration and availability around estimates, but also the

local variability. However, cokriging standard deviation

maps under the stationary multivariate spatial modeling

approach shows slight differences in the prediction stan-

dard deviations over the study domain, which were

dependent on the sampling intensity. As previously men-

tioned in the first example in Sect. 5.1 such pattern was

expected for a stationary modeling approach because it is

based on identical global structural parameters throughout

the study domain, while the non-stationary approach adapts

to locally varying structure of data.

Figure 14 shows Gaussian conditional simulations per-

formed under the estimated non-stationary and stationary

linear coregionalization models. In order to facilitate

comparisons, simulations are generated from the same

random number seed. It appears that conditional simula-

tions based on the non-stationary linear coregionalization

model differ from one based on the stationary linear

coregionalization model, especially regarding the

anisotropy.

6 Discussion and conclusion

In this paper, a fully non-stationary linear coregionalization

model is introduced as an extension of the conventional

stationary linear coregionalization model to handle the lack

of stationarity. The proposed non-stationary linear core-

gionalization model is more flexible than the spatially

varying linear coregionalization model of Gelfand et al.

(2004). It lets coregionalization matrices to change with

space and basic univariate correlation functions belonging

to the class of closed-form non-stationary univariate cor-

relation functions with locally varying geometric aniso-

tropy proposed by Paciorek and Schervish (2006). Thus,

some varying spatial features of the coregionalization as

locally varying geometric anisotropy can be captured.

Fig. 8 a log Cd concentration

data; b log Zn concentration

data; c scatter plot of log Cd

against log Zn
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The proposed estimation framework offers an integrated

treatment of all aspects of non-stationarity: mean, variance,

and spatial continuity. It relies on the mild hypothesis of

local stationarity and does not impose any distributional

assumptions except the existence of the two first moments.

It does not require any calculation of inverse or determi-

nant of matrices, and it is parallelizable. The proposed non-

stationary multivariate spatial modeling approach has the

advantage to retain ease of interpretation as well compu-

tational tractability. It allows using tools already developed

in the stationary multivariate framework as well as in the

non-stationary univariate setting. The advantage in terms of

prediction has been demonstrated on two real bivariate data

examples. Beyond the spatial prediction, it can serve as an

exploratory tool for the non-stationarity.

The proposed non-stationary multivariate spatial mod-

eling approach relies on the matrix-valued local stationary

variogram kernel estimator defined under the local sta-

tionarity setting. This kernel-type estimator can also be

used under the intrinsically locally stationary setup where

the matrix-valued local stationary variogram is unbounded.

Thus, it is important to verify that the matrix-valued local

stationary variogram kernel estimator used to describe the

local multivariate spatial variation presents a sill or is

Fig. 9 Parameter raw estimates

at anchor locations. a Mean of

log Cd; b mean of log Zn;

c standard deviation of log Cd;

d standard deviation of log Zn;

e cross-correlation between

log Cd and log Zn; f geometric

anisotropy
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Fig. 10 Smoothed parameter

estimates over the study

domain. a Mean of log Cd;

b mean of log Zn; c standard

deviation of log Cd; d standard

deviation of log Zn; e cross-

correlation between log Cd and

log Zn; f geometric anisotropy

ratio; g geometric anisotropy

direction
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bounded before deciding to use the proposed non-station-

ary multivariate spatial modeling approach. This can be

accomplished by visualizing the matrix-valued local sta-

tionary variogram kernel estimator at anchor locations. To

better adapt to the variable sampling density in the study

domain, it would be interesting to work with a locally

adaptive kernel estimator. The basic idea is to increase the

bandwidth in low sample density regions and to narrow it

in highly sampled regions.

The proposed non-stationary multivariate spatial mod-

eling can be applied to partially heterotopic datasets (some

variables share some sample locations) although it was

described for isotopic datasets (data are available for each

variable at all sampling locations). In the particular case of

entirely heterotopic datasets (variables have been measured

on different sets of sample locations and have no sample

locations in common), the matrix-valued local stationary

variogram cannot be computed. However, in the same way

Fig. 11 Parameter raw

estimates over the study

domain. a Mean of log Cd;

b mean of log Zn; c standard

deviation of log Cd; d standard

deviation of log Zn; e cross-

correlation between log Cd and

log Zn; f geometric anisotropy

ratio
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Fig. 12 a, b, c, d Direct and e,
f cross covariance function level

contours at some reference

locations. a Non-stationary

model; b stationary model;

c non-stationary model;

d stationary model; e non-

stationary model; f stationary
model

Table 2 Pseudo cross-

validation scores averaged over

1000 cross-validation

replications and associated

standard deviations in

parentheses

Criteria Non-stationary model Stationary model

log Cd log Zn log Cd log Zn

MAE 0.602 (0.142) 0.289 (0.066) 0.655 (0.142) 0.300 (0.067)

RMSE 0.813 (0.191) 0.377 (0.093) 0.857 (0.197) 0.390 (0.102)

LogS 2.264 (0.512) 0.938 (0.406) 2.594 (0.559) 0.981 (0.467)

CRPS 0.754 (0.168) 0.357 (0.097) 0.858 (0.175) 0.377 (0.098)
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Fig. 13 a, b, c, d Predictions

and e, f, g, h prediction standard

deviations. a Non-stationary

model; b non-stationary model;

c stationary model; d stationary

model; e non-stationary model;

f non-stationary model;

g stationary model; h stationary

model
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as the matrix-valued local stationary variogram kernel

estimator has been defined, one can define a non-para-

metric kernel estimator of the local mean and a matrix-

valued local stationary covariance kernel estimator. These

can be used to estimate the proposed non-stationary linear

coregionalization model in the completely heterotopic

case.

The proposed non-stationarymultivariate spatial modeling

approach which is based on the local stationarity assumption

works well for smoothly varying non-stationarity. It also

requires enough data to be able to capture the non-stationarity

adequately as any non-stationary spatial modeling approach.

As a result, it may not work well for small and sparse data or

data with abrupt spatial structure changes. In these cases, it

may be advisable proceeding under the stationary framework

or partitioning the study domain if possible.

As a linear coregionalization model, the proposed non-

stationary linear coregionalization model can not handle

variables with different degrees of regularity (behavior at

the origin). The smoothness is identical for all the vari-

ables, imposed by the roughest basic univariate spatial

dependence structure. In such situation, a more complex

non-stationary multivariate spatial model should be used as

the one proposed by Kleiber and Nychka (2012).

Moreover, as a linear coregionalization model, the appli-

cation of the proposed non-stationary linear coregional-

ization model assumes implicitly that variables under study

are correlated. Thus, if variables under study are almost

uncorrelated, it will be better to handle them separately.
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Appendix

Proof of Eq. (2)

Under the model specified in Eq. (1) the mean of the

vector-valued random field Zð�Þ is straightforward to

compute:

EðZðxÞÞ ¼ lðxÞ þ
Xr

u¼1

AðuÞðxÞEðWðuÞðxÞÞ þ Að0ÞðxÞEð�ðxÞÞ

¼ lðxÞ; because EðWðuÞðxÞÞ ¼ 0 and Eð�ðxÞÞ ¼ 0:

Proof of Eq. (3)
The model specified in Eq. (1) can be rewritten in the

univariate form as follows:

Fig. 14 Conditional

simulations based on a, b the

non-stationary model and c,
d the stationary model. a Non-

stationary model; b non-

stationary model; c stationary

model; d stationary model
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ZiðxÞ ¼ liðxÞ þ
Xr

u¼0

Xp

m¼1

a
ðuÞ
im ðxÞW ðuÞ

m ðxÞ;

with W ð0Þ
m ðxÞ ¼ �mðxÞ; i ¼ 1; . . .; p:

ð17Þ

The covariance between ZiðxÞ and ZjðyÞ is:

Cijðx; yÞ
¼ CovðZiðxÞ;ZjðyÞÞ

¼ Cov
Xr

u¼0

Xp

m¼1

a
ðuÞ
im ðxÞW ðuÞ

m ðxÞ;
Xr

u0¼0

Xp

m0¼1

a
ðu0Þ
jm0 ðyÞW

ðu0Þ
m0 ðyÞ

 !

¼
Xr

u¼0

Xp

m¼1

Xr

u0¼0

Xp

m0¼1

a
ðuÞ
im ðxÞaðu0Þjm0 ðyÞCov W ðuÞ

m ðxÞ;W ðu0Þ
m0 ðyÞ


 �

¼
Xr

u¼0

Xp

m¼1

a
ðuÞ
im ðxÞaðuÞjm ðyÞCov W ðuÞ

m ðxÞ;W ðuÞ
m ðyÞ


 �
;

because W ðuÞ
m ð�Þ ? W

ðu0Þ
m0 ð�Þ

¼
Xr

u¼0

Xp

m¼1

a
ðuÞ
im ðxÞaðuÞjm ðyÞqðuÞNS ðx; yÞ;

with qð0ÞNS ðx; yÞ ¼ qð0ÞS ðkx� ykÞ:

Hence C ðx; yÞ ¼
Pr

u¼1 A
ðuÞðxÞAðuÞðyÞTqðuÞNS ðx; yÞ þ

Að0ÞðxÞ Að0ÞðyÞTqð0ÞS ðkx� ykÞ.
The matrix-valued covariance function Cð�; �Þ represents

a valid covariance structure if and only if Cð�; �Þ is non-

negative definite in the sense that, for any n-dimensional

finite system of p-dimensional vectors fbkgnk¼1 , and for

any n-dimensional collection of spatial locations fxkgnk¼1 ,

and any integer n, we have
Pp

i;j¼1

Pn
k;l¼1

bikCijðxk; xlÞbjl � 0.

Xp

i;j¼1

Xn

k;l¼1

bikCijðxk; xlÞbjl

¼
Xp

i;j¼1

Xn

k;l¼1

Xr

u¼0

Xp

m¼1

bika
ðuÞ
im ðxkÞaðuÞjm ðxlÞbjlq

ðuÞ
NS ðxk; xlÞ

¼
Xr

u¼0

Xp

m¼1

Xn

k;l¼1

Xp

i¼1

bika
ðuÞ
im ðxkÞ

 !
Xp

j¼1

bjla
ðuÞ
jm ðxlÞ

 !

qðuÞNS ðxk; xlÞ

¼
Xr

u¼0

Xp

m¼1

Xn

k;l¼1

mu;mk mu;ml qðuÞNS ðxk; xlÞ
 !

;

with mu;mk ¼
Xp

i¼1

bika
ðuÞ
im ðxkÞ; mu;ml ¼

Xp

j¼1

bjla
ðuÞ
jm ðxlÞ

� 0; because qðuÞNS ð�; �Þ
n or

u¼0
are valid univariate

correlation functions,

that is
Xn

k;l¼1

mu;mk mu;ml qðuÞNS ðxk; xlÞ� 0:

References

Bourgault G, Marcotte D (1991) Multivariable variogram and its

application to the linear model of coregionalization. Math Geol

23(7):899–928

Burrough PA, McDonnell R, McDonnell RA, Lloyd CD (1998)

Principles of geographical information systems. Oxford Univer-

sity Press, Oxford

Chilés JP, Delfiner P (2012) Geostatistics: modeling spatial uncer-

tainty. Wiley, Hoboken

Desassis N, Renard D (2013) Automatic variogram modeling by

iterative least squares: univariate and multivariate cases. Math

Geosci 45(4):453–470

Emery X (2010) Iterative algorithms for fitting a linear model of

coregionalization. Comput Geosci 36(9):1150–1160

Emery X, Arroyo D (2017) On a continuous spectral algorithm for

simulating non-stationary gaussian random fields. Stoch Environ

Res Risk Assess 1–15

Fouedjio F (2016) Second-order non-stationary modeling approaches

for univariate geostatistical data. Stoch Environ Res Risk Assess

31(8):1887–1906

Gelfand AE, Schmidt AM, Banerjee S, Sirmans CF (2004) Nonsta-

tionary multivariate process modeling through spatially varying

coregionalization. Test 13(2):263–312

Genton MG, Kleiber W et al (2015) Cross-covariance functions for

multivariate geostatistics. Stat Sci 30(2):147–163

Gneiting T, Raftery AE (2007) Strictly proper scoring rules,

prediction, and estimation. J Am Stat Assoc

102(477):359–378

Goulard M, Voltz M (1992) Linear coregionalization model: tools for

estimation and choice of cross-variogram matrix. Math Geol

24(3):269–286

Grzebyk M, Wackernagel H (1994) Multivariate analysis and spatial/

temporal scales: real and complex models. Proc XVIIth Int

Biomet Conf 1:19–33

Journel A, Huijbregts C (1978) Mining geostatistics. Academic Press,

London

Kleiber W, Nychka D (2012) Nonstationary modeling for multivariate

spatial processes. J Multivar Anal 112:76–91

Kleiber W, Porcu E (2015) Nonstationary matrix covariances:

compact support, long range dependence and quasi-arithmetic

constructions. Stoch Env Res Risk Assess 29(1):193–204

Lantuejoul C (2002) Geostatistical simulation: models and algo-

rithms. Springer, New York

Lantuejoul C, Desassis N (2012) Simulation of a gaussian random

vector: a propagative version of the Gibbs sampler. In: The 9th

international geostatistics congress

Lark R, Papritz A (2003) Fitting a linear model of coregionalization

for soil properties using simulated annealing. Geoderma

115(3—-4):245–260

Majumdar A, Gelfand AE (2007) Multivariate spatial modeling for

geostatistical data using convolved covariance functions. Math

Geol 39(2):225–245

Majumdar A, Paul D, Bautista D (2010) A generalized convolution

model for multivariate nonstationary spatial processes. Statistica

Sinica 675–695

Matheron GF (1971) The theory of regionalized variables and its

applications, vol 5 of Les Cahiers du Centre de Morphologie
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