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Abstract Kernel Principal Component Analysis (KPCA)

is an efficient multivariate statistical technique used for

nonlinear process monitoring. Nevertheless, the conven-

tional KPCA suffers high computational complexity in

dealing with large samples. In this paper, a new kernel

method based on a novel reduced Rank-KPCA is devel-

oped to make up for the drawbacks of KPCA. The basic

idea of the proposed novel approach consists at first to

construct a reduced Rank-KPCA model that describes

properly the system behavior in normal operating condi-

tions from a large amount of training data and after that to

monitor the system on-line. The principle of the proposed

Reduced Rank-KPCA is to eliminate the dependencies of

variables in the feature space and to retain a reduced data

from the original one. The proposed monitoring method is

applied to fault detection in a numerical example, Con-

tinuous Stirred Tank Reactor and air quality-monitoring

network AIRLOR and is compared with conventional

KPCA and Moving Window KPCA methods.

Keywords Reduced Rank-KPCA � Nonlinear process
monitoring � Fault detection

1 Introduction

The modern manufacturing industries require higher pro-

duct quality and safety operations. In order to ensure the

suitable functioning system and to minimize downtime in

case of failure, it is important to detect process faults as

early as possible (Baklouti et al. 2016). Several process

monitoring-based Multivariate Statistical Process (MSP)

methods were developed thanks to their efficiencies and

simplicities (Botre et al. 2016; Mansouri et al. 2016). In

fact, these methods are based on the analysis of process

history data in order to model the relationships between

variables (Chetouani 2008). Principal Components Analy-

sis (PCA) (Tharrault et al. 2008; Jaffel et al. 2014) and

Partial Least Squares (PLS) (Li et al. 2010; Taouali et al.

2015) are the two commonly used methods in the field of

process fault detection and diagnosis. More recently

Independent Component (ICA) (Lee et al. 2004a, b; Zhao

et al. 2008) have been proposed for this purpose.

The PCA method (Harkat et al. 2006) is a statistical

method widely used of analysis and dimensional reduction.

It is used to identify the dependency structure between the

observations in order to transform the input space into a

smaller dimensional space while retaining the maximum

variance of the input data. The PCA technique produces

new uncorrelated variables called principal components

(PC) with each component is linear combinations of orig-

inal variables. However, the majority of chemical and

biological processes data have nonlinear relationships. In

fact, PCA only defines a linear projection of data. Hence, it

is incapable to analyze and represent the data with non-

linear characteristics. This limitation and nonlinearity

problem have motivated various researchers to develop

nonlinear extensions, such as nonlinear PCA that combined

principal curve and Neural Network (NN) (Harkat et al.
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2010; Dong and McAvoy 1996) and Kernel Principal

Components Analysis (KPCA) that define a nonlinear

generalization of the conventional linear PCA (Schölkopf

et al. 1998; Mika et al. 1998).

The KPCA method is a simple and interesting technique

developed by Schölkopf to faithfully model the nonlinear

relationships between process data. Using the concept of

kernel tricks (Aronszajn 1950; Aizerman et al. 1964),

KPCA can efficiently project the input data with linearly

inseparable structure onto a higher dimensional feature

space in which the data becomes linearly separable and

then perform the conventional PCA in the feature space.

KPCA requires only solving an eigenvalue problem with-

out any nonlinear optimization compared to other nonlinear

PCA techniques based on NN. Moreover, KPCA was

applied in several applications and showed a good results

in terms of analysis, modeling and fault detection accura-

cies: face recognition (Kim et al. 2002) speech recognition

(Amaro et al. 2005) nonlinear process monitoring and fault

diagnosis (Lee et al. 2004a, b; Fazai et al. 2016; Cho et al.

2005; Kazor et al. 2016; Sheriff et al. 2017).

However, it suffers from two major drawbacks. Firstly,

the KPCA is not a sparse model (the computation time of

projections in feature space and memory increase with the

number of training data). Secondly, the conventional

KPCA relies on a time invariant model thus not adapted for

monitoring time-varying industrial processes. To overcome

these disadvantages, in this paper we proposed a novel

method to reduce the order of KPCA model and to guar-

antee a good fault detection.

This article is organized as follows. In Sect. 2, a brief

presentation KPCA and its fault detection index. Section 3

presents the new proposed approach called Reduced Rank-

KPCA and its principle. In Sect. 4, we develop two online

algorithms for dealing with fault detection of nonlinear

dynamic process. Section 5 demonstrates the efficiency of

the proposed method compared to classical methods

through three examples. Conclusions are given at the end

of the paper.

2 Previews work

2.1 Review of kernel principal component analysis

(KPCA) description

Kernel Principal Component Analysis (KPCA) is among

the most popular dimensional reduction and analysis

method (Li and Zhang 2013). It extends the linear PCA to

deal with nonlinear modes. The main objective of Kernel

PCA is to model process data with non-linear structure. It

consists to transform the nonlinear part of input data space

E into a linear part in a new high dimensional feature space

denoted H and to perform PCA in that space. The feature

space H is nonlinearly transformed from the input space E

with a non-linear mapping function /. The mapping of

sample x 2 E in the feature space H can be written as:

/ : E �Rm ! H � RH

x ! /ðxÞ
ð1Þ

Let us consider X ¼ x1; . . .; xi; . . .; xN½ �T the training data

matrix scaled to zero mean and unit variance. Where xi 2
E � Rm is a data vector, N is the number of observation

samples and m is the number of process variables.

The monitoring phase based on linear PCA approach

requires the selection of principal components that maxi-

mize the variance in the data set. This is done by the Eigen-

decomposition of the covariance matrix. Similarly, this

approach was generalized in Kernel PCA approach by

scholkopf (Schölkopf et al. 1998). The covariance matrix

CU in the feature space H is given by:

CU ¼ 1

N

XN

i¼1

/ðxiÞ/ðxiÞT ð2Þ

Let v ¼ /ðx1Þ. . ./ðxiÞ. . ./ðxNÞ½ �T2 RN�h define the

data matrix in the feature space H, then CU can be

expressed as:

CU ¼ 1

N
vT v ð3Þ

The principal components of the mapped data

/ðx1Þ. . ./ðxiÞ. . ./ðxNÞ are computed by solving the

eigenvalue decomposition of CU such that:

kj lj ¼ CU lj with j ¼ 1; . . .; h ð4Þ

with lj is jth eigenvector and kj is the associated jth

eigenvalue. For kj 6¼ 0 there exist coefficients ai;j; i ¼
1. . .N such all eigenvectors lj can be considered as a linear

combination of /ðx1Þ/ðx2Þ. . ./ðxNÞ½ � and can be expres-

sed by:

lj ¼
XN

i¼1

ai;j /ðxiÞ ð5Þ

However, in practice, the mapping function / is not

defined and then the covariance matrix CU in the feature

space cannot be calculated implicitly. Thus, instead of

solving eigenvalue problem directly on CU, we apply the

kernel trick used firstly for Support Vector Machine (SVM)

(Vapnik 1999). The inner product given in Eq. (2) may be

calculated by a kernel function kð : ;:Þ that satisfy Mercer’s

theorem (Mercer 1909) as follow:

/ðxÞ;/ðx0Þh iH ¼ kðx; x0Þ 8 x; x0 2 Rm ð6Þ

Let define a kernel matrix K associated to a kernel

function k as:
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K ¼ vvT ¼
kðx1; x1Þ � � � kðx1; xNÞ

..

. . .
. ..

.

kðxN ; x1Þ � � � kðxN ; xNÞ

2
64

3
75 2 RN�N

ð7Þ

Applying the kernel matrix may reduce the problem of

eigenvalue decomposition of CU. Hence, Eigen-decompo-

sition of the kernel matrix K is equivalent to performing

PCA in RH , so that:

NKV ¼ KV ð8Þ

With: K is the diagonal matrix of eigenvalues kj arran-
ged in descending order.

K ¼ diagðk1. . .kj. . .kNÞ ð8:aÞ

And V is the matrix of their corresponding eigenvectors.

V ¼ a1. . .aj. . .aN
� �

ð8:bÞ

Since the principal components are orthonormal, it is

required to guarantee the normality of ljin Eq. (4), such that:

lj; lj
� �

H
¼ 1; j ¼ 1. . .n ð9Þ

With n the number of the first non-zero Eigen-values.

Using Eqs. (5) and (9) leads to:

lj; lj
� �

H
¼
XN

i;k

ai;jak;j /ðxiÞ;/ðxkÞh iH

¼
XN

i;k

ai;jak;jKi;k

¼ aj;Kaj
� �

H

¼ kj aj; aj
� �

H

ð10Þ

where:Ki;k ¼ kðxi; xkÞ. The corresponding eigenvectors aj
must be scaled as:

aj; aj
� �

H
¼ aj
�� ��2¼ 1

kj
j ¼ 1; . . .; n ð11Þ

Many kernel functions have been proposed in literature

i.e.:

• Laplacian kernel:

kðxi; xjÞ ¼ exp �
xi � xj
�� ��

r

� �
ð12Þ

• Gaussian kernel [Radial Basis Function (RBF)]:

kðxi; xjÞ ¼ exp �
xi � xj
�� ��2

2r2

 !
ð13Þ

• Polynomial function:

kðxi; xjÞ ¼ \xi; xj [ þ 1
	 
d ð14Þ

where d is a positive integer.

• Sigmoid function

kðxi; xjÞ ¼ tanh b0 \xi; xj [
	 


þ b1
	 


ð15Þ

where b0 and b1 are fixed by the user to satisfy Mer-

cer’s theorem.

Finally, in Eq. (2) we have implicitly assumed thatPN
i¼1 /ðxiÞ ¼ 0. Generally, this is not the case, this leads to

the normalization of the kernel matrix, where we replacing

K by the Gram matrix G as follows:

G ¼ K � 1NK � K1N þ 1NK1N ð16Þ

with: 1N ¼ 1
N

1 . . . 1

..

. . .
. ..

.

1 � � � 1

0
@

1
A 2 RN�N :

2.2 Number of principal components

Determining the number of retained principal components

(‘) is the important step of modeling based on KPCA. The

cumulative percent variance (CPV) has been proposed to

compute the retain PC (‘) (Zhang et al. 2012) and (Jaffel

et al. 2016a, b). The cumulative percent variance (CPV) is

the sum of the first ‘ eigenvalues divided by their total

variations. It can be expressed as:

CPVð‘Þ ¼
P‘

j¼1 kjPm
j¼1 kj

100% ð17Þ

The number ‘ of retained PCs is chosen if the CPV is

higher to 95%.

2.3 Fault detection

Like in PCA approach, the squared prediction error (SPE) is

usually used for fault detection using KPCA (Nomikos and

MacGregor 1995; Lahdhiri et al. 2017). However, the con-

ventional KPCA does not provide any approach of data

reconstruction in the feature space. Thus, the computation SPE

index is difficult in theKPCAmethod. (Lee et al. 2004a, b;Choi

et al. 2005)proposeda simple expression to calculateSPE in the

feature space H, which is shown as follows:

SPE ¼ kðx; xÞ � kTxt P̂ K̂�1 P̂T kxt
�� �� ð18Þ

where, P̂ ¼ a1; . . .; a‘½ � is the matrix of the first ‘ principal

eigenvectors of K,K̂ ¼ diag k1; . . . ; k‘½ � is the diagonal

matrix of the first ‘ eigenvalues of K and kxt ¼
kðx1; xtÞ; . . .; kðxN ; xiÞ; . . .; kðxN ; xtÞ½ �T ; i ¼ 1. . .N.

The confidence limit for SPE index can be calculated

using the v2-distribution and is given by:
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SPElim � d2a ð19Þ

where d2a is the control limit expressed by:

d2a ¼ gv2h;a ð20Þ

with: g ¼ b
2a
and h ¼ 2a2

b
, where a is the estimated mean and

b is the variance of the SPE.

3 The proposed reduced Rank-KPCA approach

3.1 Principle

For fault detection based on conventional KPCA approach,

we would like to identify the best KPCA monitoring

model. For a given test observation xt 2 Rm, the calcula-

tion of its projections in the feature space requires com-

putation of kernel vector kxt in respect of all N training

data. Therefore, the amount of training data tends to be

large, which leads to computational complexity of the

KPCA model. Considering this, the choice of reduced

training data can be made randomly, but this does not

insure that the reduced data will represent an optimal

model of the system behavior. Recently, several solutions

have been developed to solve this problem and to search a

reduced data set that represent adequately the system

(Taouali et al. 2016; Jaffel et al. 2016a, b; Honeine 2012).

This section will present a new reduced Rank-KPCA

method for monitoring nonlinear dynamic system. The key

idea of this proposed method is to remove the dependencies

of variables in the feature space and to retain a reduced

data from the original one Xr ¼ x1; . . .; xi; : : : ; xr½ �T 2
Rr�m, where r is the number of retained observations. The

procedure of this novel monitoring process includes two

phases: offline reduced Rank-KPCA model identification

and online fault detection procedure. The first phase is to

identify the reduced reference model that describes the

normal operating condition. Its principle is to retain the

observations that generate independent linear combinations

in the feature space and reveal the useful information. After

that, the built model is performed on-line in order to

monitor the system.

3.2 Reduced Rank-KPCA: model identification

In order to identify the reduced Rank-KPCA model, we

save the most useful new observation in term of informa-

tion about the system in a reduced training data matrix Xr.

Let consider that the system operate in the normal condi-

tion during N0 instants. At first time, the initial reduced

data matrix is expressed as: Xr ¼ x1½ � 2 R1�m .

At each instant t, a new observation xt is collected, its

kernel vector kxt is calculated and the kernel matrix is

updated by adding a column and a row to the previous one,

as:

Kt
r ¼ Kt�1

r kxt
kTxt kðxt; xtÞ

� �
2 Rr�r ð21Þ

The rank of the updated kernel matrix is calculated, its

value leading to either case: the reduced data matrix is

incremented by adding the new observation or it is left

unchanged.

• Case 1:

rank ðKt
rÞ ¼ r ð22Þ

The kernel matrix has a full rank, which describes the

independencies between the projection data in the feature

space. In this case, the new observation is added to the

reduced data matrix.

• Case 2:

rank ðKt
rÞ \ r ð23Þ

The kernel matrix has not a full rank, which describes

the dependencies between the projection data in the feature

space. In this case, the reduced data matrix left unchanged

and we return the kernel matrix to its previous state.

Once, all the observations were evaluated, we obtain the

reduced data matrix Xr 2 Rr�m and we construct the

reduced kernel matrix Kr 2 Rr�r , such that

Kr ¼
kðx1; x1Þ � � � kðx1; xrÞ

..

. . .
. ..

.

kðxr; x1Þ � � � kðxr; xrÞ

2
64

3
75 2 Rr�r ð24Þ

Then, we estimate the initial reduced Rank-KPCA

model (eigenvalues and eigenvectors).

4 The proposed monitoring strategies based
on reduced Rank-KPCA

The monitoring strategies based on the novel reduced

Rank-KPCA, are presented by two phases: offline learning

and online monitoring. The off-line phase is useful for the

two proposed online monitoring processes.

4.1 Off-line learning

Consider the system in normal operating condition during

N0 instants.

Step 1 Get a new observation xt 2 Rm, scale it and

calculate its kernel vector.
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Step 2 Update the kernel matrix Kr.

Step 3 Test if Kr has a full rank, the new observation

contain useful information. Then, go to step 4. Otherwise,

cancel the updating of the kernel matrix and return to step

1.

Step 4 Update the reduced data matrix.

When, all the N0 observations were evaluated, we obtain

the reduced training data Xr 2 Rr�m.

Step 5 Compute the mean and variance of the reduced

training data.

Step 6 Construct the reduced kernel matrix and scale it

to obtain the Gram matrix Gr.

Step 7 Solve the eigenvalue problem and determine the

number ‘ of retained kernel principal components.

Step 8 Compute the monitoring index SPE and its

confidence limit.

4.2 Online monitoring with fixed reduced Rank-

KPCA model

Step 1 Obtain a new observation xtþ1 and scale it with the

mean and variance computed at off-line training.

Step 2 Calculate the kernel vector kt¼kðxt; xiÞ 2 R1�N

and scale it.

Step 3 Compute the fault detection index SPE for xtþ1 ,

if the control limit is exceeded, a fault is declared.

Step 4 Return to step 1.

4.3 Online monitoring based on reduced Rank-

KPCA and moving window

The idea of this proposed monitoring process is to improve

the effectiveness of the new Reduced Rank-KPCA method

for dealing with fault detection of nonlinear dynamic pro-

cess. Its principle is to update the built reduced model with

moving window only if a new observation contains new

pertinent information about the process and satisfies the

condition (22) is available. A detailed algorithm steps are

shown as follows:

Step 1 Obtain a new observation xkþ1 and scale it with

the mean and variance computed at off-line training.

Step 2 Calculate the kernel vector kt¼kðxt; xiÞ 2 R1�N

and scale it.

Step 3 Compute the fault detection index SPE for xtþ1 ,

if the control limit is exceeded, a fault is declared so turn to

step 1, else go to step 4.

Step 4 If the condition (22) is not satisfied, it is not

required to update the reduced Rank-KPCA model, so turn

to step 1, else go to next step.

Step 5 Update the reduced data matrix Xr by rejecting

the oldest observation and adding the new observation.

Step 6 Actualize the reduced Rank-KPCA model (up-

date the number of PC).

Step 7 Update the control limit of the SPE statistic.

Step 4 Return to step 1.
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Fig. 1 Evolution of the SPE index with Fault 1 using KPCA and Reduced Rank-KPCA
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5 Simulation results

The utility and validity of our proposed monitoring

strategies were demonstrated using the statistic SPE index.

First, we applied the proposed approach to fault detection

in a numerical example. Second, the well Known simulated

CSTR process and the air quality monitoring network are

used to test the effectiveness of the proposed technique and

compare it to the classical monitoring techniques KPCA

and MWKPCA (Liu et al. 2009).
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Fig. 2 Evolution of the SPE index with Fault 1 using MWKPCA and MW Reduced Rank-KPCA
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Fig. 3 Evolution of the SPE index with Fault 2 using KPCA and Reduced Rank-KPCA
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5.1 Application to numerical example

5.1.1 Process description

We study the applicability of the proposed reduced Rank-

KPCA approach by applying it for a simple numerical

example (Kallas et al. 2014). This example contains four

variables si; i ¼ 1. . .4.

The following equations detail the nonlinear redundancy

interrelationships between s1; s2; s3 and s4. Where s1; s2 2
0 : : :1½ � were uniformly distributed signals.

s3 � s1 s2 ¼ 0

s4 � s21 ¼ 0

(
ð25Þ

The observation vector xðkÞ is given by:

xðkÞ ¼ s1ðkÞ s2ðkÞ s3ðkÞ s4ðkÞ½ �T .

5.1.2 Fault detection results

Thousand samples were generated from this process. The

500 first samples were used to construct the reduced model

and the 500 last samples are used to test the fault detection
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Fig. 4 Evolution of the SPE index with Fault 2 using MWKPCA and MW Reduced Rank-KPCA

Table 1 Performances of (KPCA, Reduced Rank-KPCA, MWKPCA and MW Reduced Rank-KPCA) for online monitoring

Approach FAR 95% FAR 99% GDR 95% GDR 99% CT (s)

Normal Operating condition KPCA 5.3 1.7 94.7 98.3 3.58

Reduced Rank-KPCA 4.2 1.7 95.8 98.3 1.39

MWKPCA 5.4 1.6 92.5 96.4 81.15

MW reduced Rank-KPCA 9.3 5 90.7 95 3.16

Fault 1 KPCA 5.38 1.62 98.01 92.04 3.74

Reduced Rank-KPCA 4.5 1.62 98.5 90.05 1.23

MWKPCA 1.625 2.75 92.04 86.57 81.15

MW reduced Rank-KPCA 7.25 3.62 100 99 2.74

Fault 2 KPCA 2 0.125 96.52 95.52 4.093

Reduced Rank-KPCA 3.5 1.5 96.52 94.53 1.328

MWKPCA 5.25 1.63 96.52 95.52 80.62

MW reduced Rank-KPCA 7.5 3.5 97.02 96.52 2.641
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techniques. In this study, we have used the Gaussian kernel

[Radial Basis Function (RBF)]. The kernel parameter r is

determined using the cross validation. The number of

selected observations using the new reduced Rank-KPCA

is equal to r ¼ 167 from 500 observations. The confidence

limits of the statistical SPE index are set to 95 and 99%,

respectively. Next, the detection performance of developed

technique is assessed and compared to the classical meth-

ods, through two types of faults:

• Fault 1: A step bias of s1 by adding 30% than its range

of variation. The fault is introduced between the

samples 550 and 750.

• Fault 2: A ramp change of s4 by adding 0:015 � ðk �
699Þ was introduced between the samples 700 and 900.

The evolution of the SPE index for conventional KPCA,

MWKPCA and the proposed monitoring techniques with

Fault 1 and Fault 2 is shown in Figs. 1, 2, 3 and 4. It is clear

that the injected faults are successfully detected in both

thresholds (95 and 99%). In Table 1, we summarize the

detection performances in terms of False Alarm Rate

(FAR), Good Detection Rate (GDR) and the average

Computation Time (CT). We notice that the evaluated

GDR and FAR using KPCA, MWKPCA monitoring and

Reduced Rank-KPCA methods still comparable in normal

operating conditions and for both Fault1 and Fault2.

However, the two developed techniques based on Reduced

Rank-KPCA provide a smaller CT when compared to the

KPCA and MWKPCA. We can show also from Table 1,

that the developed MW Reduced Rank-KPCA provides

better results when compared to the developed Reduced

Rank-KPCA in terms of FAR and GDR, and both of them

out performances the classical monitoring methods: KPCA

and MWKPCA.

5.2 Proposed techniques and its applications

to CSTR process

5.2.1 Process description

The non-isothermal Continuous Stirred Tank Reactors

(CSTR) is a dynamic nonlinear process, which has been

mostly used for comparison of several process monitoring

and fault detection strategies such as VMWKPCA (Fazai

et al. 2016), SVD-RKPCA (Jaffel et al. 2016a, b) and

RKPCA (Taouali et al. 2016).

The CSTR process is composed of two feed streams that

are the stream of reactant 1 and 2 which are mixed to

furnish a final product. The schematic diagram of the

reactor is configured in Fig. 5. The dynamic behavior of

the process is described by the following equations:

dhðtÞ
dt

¼ w1ðtÞ þ w2ðtÞ � 0:2
ffiffiffiffiffiffiffiffi
hðtÞ

p

dCbðtÞ
dt

¼ ðCb1ðtÞ � CbÞ
w1

hðtÞ þ ðCb2ðtÞ � CbÞ
w2

hðtÞ �
k1CbðtÞ

ð1þ k2CbðtÞÞ2

8
>>><

>>>:

ð26Þ

where h; Cb and w0 are respectively the height, the con-

centration and the feed of reacting mixture, Cb1 and Cb2

are the concentration of reactant 1 and reactant 2,

Reac�ve 2 (W2, Cb2)Reac�ve 1 (W1, Cb1)

Agitator 

Motor 

Mixed product (W0, Cb) 

Fig. 5 Schematic diagram of the reactor

Table 2 Sensor Fault description

Case Affected variable Fault description Location

Fault 1 w2 Bias 20% 700–900

Fault 2 Cb2 Bias 15% 500–700

Fault 3 Cb1 Bias 16% 650–850

Table 3 Performances of (KPCA, Reduced Rank-KPCA, MWKPCA and MW Reduced Rank-KPCA) in normal operating conditions

Approach FAR 95% FAR 99% GDR 95% GDR 99% CT (s)

Normal Operating condition KPCA 4.9 2.5 95.1 97.5 2.18

Reduced Rank-KPCA 5.3 2.2 94.7 97.8 1.31

MWKPCA 1.61 12.3 83.9 87.9 33.74

MW Reduced Rank-KPCA 8.2 4.1 91.8 95.9 2.30

1840 Stoch Environ Res Risk Assess (2018) 32:1833–1848

123



respectively, w1 and w2 are the flow rate of reactant 1 and

reactant 2, respectively, k1 and k2 are the reaction rates

assumed to be constants (k1 ¼ k2 ¼ 1).

In this study, we considered five monitored variables

w1; w2; Cb; Cb1 and Cb2. The observation vector xðkÞ
defined by:

xðkÞ ¼ w1ðkÞw2ðkÞCbðkÞCb1ðkÞCb2ðkÞ½ �T : ð27Þ

5.2.2 Simulation results

During a normal operation of the process, 1000 simulated

observations are used. The first 300 observations were used

as a training dataset in order to construct the initial reduced

model, and the 700 last samples were used as a test dataset,

to illustrate the performances of the new proposed method,

three types of faults are considered (Table 2).
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Fig. 6 Evolution of the SPE index with Fault 1 using KPCA and Reduced Rank-KPCA
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Fig. 7 Evolution of the SPE index with Fault 1 using MWKPCA and MW Reduced Rank-KPCA
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Table 3 shows a comparison of the average computation

time (CT), FAR and GDR for the proposed methods and

conventional ones in normal operating conditions.

According to Table 3, conventional KPCA and reduced

Rank-KPCA have similar performances in term of FAR

and GDR but we remark that the proposed Reduced Rank-

KPCA has a reduced CT. It is also noted that the proposed

MW Reduced Rank-KPCA has a higher GDR and a

reduced FAR at the confidence level 99% compared to

MWKPCA.

Figures 6, 7, 8 and 9 show the monitoring results of

conventional KPCA, Reduced Rank-KPCA, MWKPCA

and MW Reduced Rank-KPCA using the SPE index in the

cases of Fault 1 and Fault 2. We can show that, the faults

are detected at time in the both thresholds (95 and 99%).

The performances of the four monitoring methods are
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Fig. 8 Evolution of the SPE index with Fault 2 using KPCA and Reduced Rank-KPCA
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Fig. 9 Evolution of the SPE index with Fault 2 using MWKPCA and MW Reduced Rank-KPCA
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summarized in Table 4. We note that the proposed

Reduced Rank-KPCA and MW Reduced Rank-KPCA at

the confidence level 99% have a higher GDR and less CT

compared to conventional KPCA and MWKPCA.

Figure 10 shows the monitoring results of conventional

KPCA and Reduced Rank-KPCA using the SPE index in

the case of Fault 3. We notice also that the conventional

KPCA and the Reduced Rank-KPCA are not able to detect

the fault in the threshold 99%. Figure 11 show the ability

of the MWKPCA and MW Reduced Rank-KPCA to detect

this fault. MW Reduced Rank-KPCA has a less computa-

tion time and a reduced false alarm rate than MWKPCA

(see Table 4, Fig. 7).

5.3 Proposed techniques and its application to an air

quality monitoring network

5.3.1 Process description

The air quality monitoring network AIRLOR, operating in

Lorraine, France. The AIRLOR consists of twenty stations

placed in several sites: rural, peri-rural and urban. Each

station served to the acquisition of some pollutants in the

air like nitrogen oxides (NO and NO2), ozone (O3), carbon

monoxide (CO) and Sulphur dioxide (SO2). In this study,

six stations are served to the registering of the additional

metrological parameters. The main objective is to detect

defects of the sensors, which measure ozone concentration

Table 4 Performances of

(KPCA, reduced Rank-KPCA,

MWKPCA and MW reduced

Rank-KPCA) for online

monitoring

Approach FAR 95% FAR 99% GDR 95% GDR 99% CT (s)

Fault 1 KPCA 4.87 2.5 100 60 2.59

Reduced Rank-KPCA 5 2.13 100 69.2 1.14

MWKPCA 12.5 9.12 100 100 24.64

MW Reduced Rank-KPCA 7 3.25 100 100 1.91

Fault 2 KPCA 4.13 1.75 100 35.82 2.53

Reduced Rank-KPCA 4.5 1.5 100 73.13 1.19

MWKPCA 11.88 7.13 100 100 25.77

Reduced Rank-KPCA 6.13 3 100 100 2.19

Fault 3 KPCA 5.125 2.6 95.5 5.97 2.25

Reduced Rank-KPCA 5.5 2.25 96.51 10 1.07

MWKPCA 13.38 9 99.5 93.03 24.73

MW Reduced Rank-KPCA 7.37 3.25 100 85.07 2.11
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Fig. 10 Evolution of the SPE index with Fault 3 using KPCA and Reduced Rank-KPCA
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O3 and nitrogen oxides NO and NO2. The phenomenon of

photochemical pollution presents a dynamic nonlinear

behavior (Harkat et al. 2006).

The observation vector xðkÞ contains 18 monitored

variables v1 to v18, which corresponding to ozone con-

centration, nitrogen oxide and nitrogen dioxide, respec-

tively, of each station.

5.3.2 Simulation results

Only 1000 simulated observations are used. The first 500

observations were used in the training phase to elaborate

the reduced Rank-KPCA model and the last observations

501–1000 were used to test the proposed fault detection

methods. In this part, we simulated two faults, which are

presented in Table 5.

Table 6 summarizes the monitoring performances of the

four methods when the process is operating in normal

condition. We note that the proposed monitoring methods

have a less computation time compared to the others.

Figures 12 and 13 show the monitoring results of the

four methods using the SPE index in the case of bias fault
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Fig. 11 Evolution of the SPE index with Fault 3 using MWKPCA and MW Reduced Rank-KPCA

Table 5 Sensor Fault description

Case Affected variable Fault description Fault location

Fault 1 v18ðNO2Þ Bias 65% 750–950

Fault 2 v2ðNOÞ Bias 35% 520–750

Table 6 Performances of (KPCA, Reduced Rank-KPCA, MWKPCA and MWReduced Rank-KPCA) in normal operating condition

Approach FAR 95% FAR 99% GDR 95% GDR 99% CT (s)

Normal Operating condition KPCA 4.4 1.7 956 983 3.412

Reduced Rank-KPCA 9.3 4.6 90.7 95.4 1.465

MWKPCA 7.5 2.4 92.5 97.6 22.92

MWReduced Rank-KPCA 16.5 9.3 83.5 90.7 2.887

xðkÞ ¼
v1ðkÞ v2ðkÞ v3ðkÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

O3ðkÞNOðkÞNO2ðkÞ: station1

� � � v10ðkÞ v11ðkÞ v12ðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O3ðkÞNOðkÞNO2ðkÞ: station4

� � � v16ðkÞ v17ðkÞ v18ðkÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O3ðkÞNOðkÞNO2ðkÞ:station6

" # T

ð28Þ
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at the measured concentration of NO2. The fault is detected

at time in the both thresholds (95 and 99%), using Reduced

Rank-KPCA, MWKPCA and MW Reduced Rank-KPCA.

From Table 7, we show that MW Reduced Rank-KPCA

has a highly GDR, reduced FAR and significantly reduced

CT compared to MWKPCA.

The second fault is a bias, it was introduced into the

measured concentration of NO. Figure 14 shows the

detection index SPE for this fault. It is impossible to detect

this fault using conventional KPCA. However, the

proposed Reduced Rank-KPCA method provides a good

detection of the simulated fault at the time in the threshold

95%. As it can be seen in Table 7, the evaluated GDR at

the threshold 99% is less than 50%. Since the reduced

Rank-KPCA is a monitoring method based on the use of a

fixed model so it is powerless to monitoring a dynamic

non-linear process. The simulation results of the two

adaptive KPCA methods were shown in Fig. 15. The

injected fault is clearly detected in both thresholds (95 and
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Fig. 12 Evolution of the SPE index with Fault 1 using KPCA and Reduced Rank-KPCA
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Fig. 13 Evolution of the SPE index with Fault 1 using MWKPCA and MW Reduced Rank-KPCA
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99%) using the proposed MW Reduced Rank-KPCA. We

notice that MWKPCA is unable to detect this fault.

6 Conclusion

In this paper, a new reduced Rank-KPCA method has been

proposed. Firstly, we derive an algorithm for choosing the

pertinent observations that describe the independence

between variables in feature space and after we build the

reduced Rank-KPCA model. Then, this proposed method

was developed into two monitoring strategies for non-lin-

ear processes. The first one was called Reduced Rank-

KPCA based on a fixed reduced model and is applied to

fault detection in a numerical example, a CSTR benchmark

and an air quality-monitoring network. This proposed

monitoring method gives more sophisticated results and

better monitoring performance compared with the con-

ventional KPCA.

The computation time is the most important criterion

when using Reduced Rank-KPCA model for process

monitoring. In offline training, the CT of reduced model

construction seems large in comparison to KPCA model

construction. However, once the reduced model and the

confidence limits of normal operating data have been cal-

culated, the online monitoring procedure of Reduced Rank-

KPCA has provided the shortest CT.

The training data set of the numerical example is

assumed invariant in time. Thus, the efficiency of the

proposed monitoring with fixed reduced Rank-KPCA

model has been proved. Moreover, most of real industrial

processes are time varying, hence the reduced Rank-model

should be updated. Seeing that, a second monitoring

strategy has been proposed to improve the Reduced Rank-

Table 7 Performances of

(KPCA, Reduced Rank-KPCA,

MWKPCA and MW reduced

Rank-KPCA) for online

monitoring

Approach FAR 95% FAR 99% GDR 95% GDR 99% CT (s)

Fault 1 KPCA 5.5 2.13 28.36 2.985 3.429

Reduced Rank-KPCA 10.37 5.5 100 100 1.545

MWKPCA 36.82 11.94 100 86.07 13.94

MW Reduced Rank-KPCA 15 8.25 100 100 2.048

Fault 2 KPCA 3.89 2.08 6.95 0.43 3.982

Reduced Rank-KPCA 7.27 3.12 93.94 44.16 1.879

MWKPCA 4.80 2.34 20.78 5.194 24.36

MW Reduced Rank-KPCA 13.51 7.53 100 97.83 1.962
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Fig. 14 Evolution of the SPE index with Fault 2 using KPCA and Reduced Rank-KPCA
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KPCA called MW Reduced Rank-KPCA, which aims to

update the reduced model using moving window. Appli-

cations to the CSTR and Air Quality Monitoring Network

have demonstrated that the proposed adaptive monitoring

method shows a higher performance for most faults than

the MWKPCA method.
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