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Abstract In this paper, an efficient pattern recognition

method for functional data is introduced. The proposed

method works based on reproducing kernel Hilbert space

(RKHS), random projection and K-means algorithm. First,

the infinite dimensional data are projected onto RKHS,

then they are projected iteratively onto some spaces with

increasing dimension via random projection. K-means

algorithm is applied to the projected data, and its solution is

used to start K-means on the projected data in the next

spaces. We implement the proposed algorithm on some

simulated and climatological datasets and compare the

obtained results with those achieved by K-means clustering

using a single random projection and classical K-means.

The proposed algorithm presents better results based on

mean square distance (MSD) and Rand index as we have

expected. Furthermore, a new kernel based on a wavelet

function is used that gives a suitable reconstruction of

curves, and the results are satisfactory.

Keywords Functional data � K-means algorithm � Random
projections � Reproducing kernel Hilbert space �
Climatological data

1 Introduction

On the one hand, the goal of clustering is to discover

homogeneous groups in the data. Clustering approaches are

divided into hierarchical and non-hierarchical methods

which K-means is in the second group, (Everitt et al.

2011, Chapters 4 and 7).

On the other hand, functional data appear in many fields

such as physical processes, genetics, biology, meteorology

and signal processing (Bernardi et al. 2017; Ferraty and

Vieu 2006; Ruiz-Medina and Espejo 2012; Bagirov and

Mardaneh 2006). ‘‘A random variable X is called a func-

tional variable if it takes values in an infinite dimensional

space (or a functional space). An observation X of X is a

functional data’’ (Ferraty and Vieu 2006, Chapter 1), and

its analysis is called functional data analysis (FDA). FDA

is an important topic in statistics and has received a wide

range of applications. It contains principal components

analysis, canonical correlation and discriminant analysis,

functional linear models and clustering. Ramsay and Sil-

verman (2005) presented various techniques to analyze

these data.

Generic examples of functional data contain weather

data and human growth data. Some authors such as Bal-

zanella et al. (2017), Bohorquez et al. (2017) and Ruiz-

Medina (2014) used FDA for environmental science

application. Mateu and Romano (2017) presented a com-

prehensive reviewed of spatial functional data issue. In

medicine, the growth of a child and the evaluation state of a

patient are essentially functional data (Jacques and Preda

2014b; Tokushige et al. 2007) although their observations

are discrete. They are primarily functional data because

they can be considered as a continuous function of another

varible such as time.
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In practice, functional data are observed from a finite set

of time-points. In other words, we usually have a set of

ffiðt1Þ; . . .; fiðtnÞg with i ¼ 1; . . .;N, tj 2 ½0; T � and T 2 Rþ.

The matrix representation of these observations is as

follows:

f1ðt1Þ f1ðt2Þ � � � f1ðtnÞ
f2ðt1Þ f2ðt2Þ � � � f2ðtnÞ
..
. ..

. . .
. ..

.

fNðt1Þ fNðt2Þ � � � fNðtnÞ

2
66664

3
77775
:

Each row of this matrix corresponds to one observation

such as growth of a child which is recorded at n points. If n

tends to infinity, then each row becomes a continuous curve

(i.e. infinite dimensional data or functional data). Raw data

do not include extra information involved by an underlying

process which produces data. Due to continuous nature of

data, if a multivariate analysis is used on the raw data, the

suitable results may not be achieved. In functional data

clustering, the suitable result is a performance of an algo-

rithm for assigning data to true clusters. It can be measured

with different indices such as mean square distance. There

are three shortcomings of multivariate analysis (Ramsay

1982) for these types of data: (1) more investigation about

variations e.g. estimation of the first and second derivative

along with the time, is impossible, (2) realization depen-

dency in separate points of time is ignored, (3) information

about variable between two consequence time-point is not

available. Hence, FDA is appropriate. To use FDA

including functional data clustering, it is common to

reconstruct a continuous curve from finite points. It is done

by approximating curves through some finite basis func-

tions such as splines (specially B-splines), Fourier series,

wavelets and reproducing kernel Hilbert space (RKHS).

The last one is used in this paper. To this end, let H be a

real Hilbert space of functions and a set f/1; . . .;/Lg, L 2
N be an orthonormal basis that generated some space of

functions in H. Each /l, l ¼ 1; . . .; L, is a continuous

function, for example in Fourier series /lðtÞ ¼ Al cosðltÞ þ
Bl sinðltÞ where Al and Bl are constant. Then, a function

fi 2 H can be expressed as a linear combination as follows:

fiðtÞ ¼
XL
l¼1

ail/lðtÞ ¼ UTðtÞai; ð1Þ

where UðtÞ ¼ ð/1ðtÞ; . . .;/LðtÞÞT and the expansion coef-

ficient ai ¼ ðai1; . . .; aiLÞT of i-th curve, fi, is estimated

using an interpolation procedure or least squares smoothing

(Jacques and Preda 2014a). The continuous estimation of fi

is f̂iðtÞ ¼ UTðtÞâi:
Functional data are infinite dimensional data because

they are continuous curves. In the most of functional data

clustering methods, the expansion coefficients, ai, obtained

from Eq. (1) are clustered, instead of clustering the func-

tional data, see e.g. James and Sugar (2003), Abraham

et al. (2003) and Luz-López-Garcı́a et al. (2015). In other

words, they project the infinite dimensional data onto the

finite basis functions f/1; . . .;/Lg and obtain ai. Then, they
cluster the projected data, ai, which are finite dimensional

data. For clustering ai, K-means algorithm is used

commonly.

In this paper, we focus on functional data clustering

using RKHS and random projection.

In the next paragraph, we review some papers in func-

tional data clustering. In these articles, functional data are

projected onto a basis function and using K-means ai are
clustered. The main purpose of these works is to improve

K-means algorithm. The common basis applied in these

works is spline basis. Although they have suitable proper-

ties such as easy usage, and mathematical description

(James and Sugar 2003; Jacques and Preda 2014a), they

have two main drawbacks: (1) they applied to a function

with some degrees of regularity and they are not appro-

priate for an irregular function and a function with peaks,

(2) they require heavy computational for high dimensional

data (Antoniadis et al. 2013; Giacofci et al. 2013). For

these reasons, some works used wavelet decomposition

which is suitable for irregular function and non-stationary

data (Antoniadis et al. 2013).

Abraham et al. (2003) projected data onto a B-spline

basis and clustered the expansion coefficients via K-means

algorithm using Euclidean distance. Yamamoto (2012)

proposed a new objective function for this aim. Giuseppe

et al. (2013) presented a method for clustering Italian cli-

mate zones using B-spline. Antoniadis et al. (2013) con-

sidered K-means algorithm clustering and proposed a

dissimilarity measure between curves based on wavelet

transform. Ieva et al. (2013) clustered the multivariate

functional data via K-means algorithm using a proper

distance. Luz-López-Garcı́a et al. (2015) projected the

original data onto RKHS and reduced the dimension of

coefficients by two strategies: functional principal com-

ponents and random projection. Then, they clustered the

coefficients by K-means algorithm. Abramowicz et al.

(2017) presented a non-parametric statistical method which

gives a suitable result to cluster misaligned dependent

curves for seasonal climate interpretation.

In the following, we present various works which

increased the performance of functional data clustering

approaches such as non-parametric approach and model-

based approach. Also, some of them compare different

methods. James and Sugar (2003) projected the functional

data onto spline basis and proposed the model-based

algorithm that is especially for sparse data. Rossi et al.

(2004) projected data onto spline basis and used self

organized map (SOM) algorithm to cluster expansion
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coefficients. Ray and Mallick (2006) decomposed the data

with wavelet transform and clustered obtained coefficients

using a model-based algorithm. Bouveyron and Jacques

(2011) applied a model-based method on the functional

principal components. Boullé (2012) proposed non-para-

metric density estimation to cluster functional data. Hag-

garty et al. (2012) developed univariate and multivariate

functional data clustering to determine a pattern of water

quality data in Scotland. Jacques and Preda (2013) applied

the model-based clustering via probability density which is

defined by Delaigle and Hall (2010). The model-based

clustering is extended to the multivariate case by Jacques

and Preda (2014b). Jacques and Preda (2014a) presented a

classification of different methods for functional data

clustering: (1) raw-data clustering, (2) two-stage methods,

(3) non-parametric clustering, (4) model-based clustering.

Finazzi et al. (2015) presented a novel approach for func-

tional data clustering and compared it with other approa-

ches such as K-means algorithm.

By a regionalization procedure, groups of sites which

are homogenous in term of hydro-meteorological charac-

teristics could be found. One of the useful techniques to

divide catchments in a region into natural groups is clus-

tering. In what follows, we present several works which are

related to regionalization of climatological data. Some of

those works e.g. Rao and Srinivas (2006b) and Srinivas

(2008) are based on hybrid clustering and global fuzzy

K-means.

Mitchell (1976) regionalized the western United States

into climatic regions based on the air masses. Anyadike

(1987) used cluster analysis to the regions over West

Africa, and obtained ten-region climatic clusters. Brring

(1988) regionalized the daily rainfall in Kenya using

common factor analysis. El-Jabi et al. (1998) divided the

province of New Brunswick (Canada) into homogeneous

regions by the regionalization of floods. Alila (1999)

regionalized the precipitation annual maxima in Canada

using a hierarchical approach. Guenni and Bárdossy (2002)

disaggregated the highly seasonal monthly rainfall data

using a stochastic method in two steps. Rao and Srinivas

(2006a) regionalized the annual maximum flow data from

the watersheds in Indiana by fuzzy cluster analysis. The

regionalization of watersheds by hybrid-cluster analysis

(the hybrid of Wards and K-means algorithms) was pro-

posed by Rao and Srinivas (2006b). They conclude that the

hybrid method is flexible and presents suitable results for

regionalization studies. Srinivas (2008) combines self-or-

ganizing feature map and fuzzy clustering to regionaliza-

tion of watersheds. Bharath and Srinivas (2015b)

delineated extreme rainfall in India by global fuzzy

c-means based on location indicators (latitude, longitude,

and altitude) and seasonality measure of extreme rainfall.

Asong et al. (2015) proposed a new approach for

regionalization of precipitation climate characteristics in

the Canadian prairie provinces. The obtained regions are

homogeneous statistically and climatologically. Nam et al.

(2015) delineated the climatic rainfall regions of South

Korea using a multivariate analysis and regional rainfall

frequency analysis. Rahman et al. (2017) developed the

regional flood frequency analysis techniques by general-

ized additive models for Australia. The proposed method

obtains better results than three other methods (log-linear

model, canonical correlation analysis and region-of-influ-

ence approach).

Most of the mentioned methods are based on K-means

algorithm (James and Sugar 2003; Ieva et al. 2013; Anto-

niadis et al. 2013; Luz-López-Garcı́a et al. 2015). The

K-means algorithm starts by initializing the k cluster cen-

ters randomly and minimizing the total distance (total

square error) between each of the N points and its nearest

centroid. The cluster centroid is the arithmetic mean of the

points on each cluster. The distance is minimized when the

algorithm converges, however, it may be a local minimum.

In general, the objective function of K-means is not con-

vex, and there is no guarantee that its solution is global. It

reaches to a local solution in some datasets, (Cardoso and

Wichert 2012).

Before analyzing high dimensional data, their dimension

usually is reduced. The principal component analysis

(PCA) (Jolliffe 2002) and random projection (RP) (Johnson

and Lindenstrauss 1984) are used for this purpose. In this

paper and some other works (Luz-López-Garcı́a et al.

2015; Cardoso and Wichert 2012), high dimensional data

are projected onto a lower dimensional subspace via RP

such that Euclidean distances between the points are

approximately preserved.

In this paper, we propose a new algorithm which has the

following advantages:

1. It improves all known K-means based functional data

clustering approaches.

2. It avoids local minimum which leads to a solution (i.e.

a set of labels for curves) with a lower mean square

distance (MSD) and larger Rand index.

3. A new kernel based on a wavelet function reduces the

condition number of a linear system and MSD. In most

of the data, MSD, Rand index and the number of

iterations of the proposed method based on the wavelet

kernel are smaller than other ones.

4. K-means in the last step of the proposed method, has

less iteration number than clustering using a single

random projection and classical K-means.

5. Since the obtained condition number under the new

kernel is small, it produces a suitable and stable recon-

struction of the curves that may be used in the

estimation (prediction) problem of FDA.
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The paper is organized as follows: Sect. 2 briefly presents

RKHS, random projection and random projection K-means

algorithm for functional data clustering denoted by

(RPFD). The proposed method is introduced in Sect. 3.

Section 4 reports the results of simulation studies. The real

datasets are clustered in Sect. 5. Conclusions are given in

Sect. 6.

2 RKHS and RPFD K-means

In this section, we present a brief review of RKHS and

applying of Tikhonov regularization theory in RKHS. For

the general version of Tikhonov regularization and theory

of RKHS see (Tikhonov and Arsenin 1997; Aroszajn

1950), respectively. An excellent background for RKHS

representation is given by Gonzáleez-Hernández (2010). At

the end of this section, we mention the introduced algo-

rithm by Luz-López-Garcı́a et al. (2015) which called

RPFD.

2.1 RKHS

Definition 1 (Reproducing kernel) Let H be a real Hil-

bert space of functions defined in X � Rn with inner pro-

duct h:; :iH and the norm jjf jjH ¼ hf ; f i1=2H . A function

K : X � X ! R is called a reproducing kernel of H if

1. Kð:; xÞ 2 H for all x 2 X,

2. f(x) = hf ð:Þ;Kð:; xÞiH for all f 2 H and for all x 2 X.

A Hilbert space of functions is called a reproducing

kernel Hilbert space (RKHS) if it admits a reproducing

kernel. From Definition 1, it is concluded that Kðx; yÞ ¼
hKð:; xÞ;Kð:; yÞiH and for each f 2 H of the form f ðxÞ ¼Pn

i¼1 aiKðx; xiÞ with x; xi 2 X and ai 2 R, we have

jjf jj2H ¼
Xn
i¼1

Xn
j¼1

aiajKðxi; xjÞ ¼ aTKxa: ð2Þ

Now, we express the Tikhonov regularization theory to

reconstruct functions from sample points. Let compact

subset X � Rp, K be a Mercer kernel (positive definite and

symmetric kernel), HK is its associated RKHS and the

Borel probability measure in X � R is denoted by m. Let
fmðxÞ ¼

R
R
ydmðyjxÞ be a regression function where dmðyjxÞ

is the conditional probability measure on R. Both m and fm
are unknown, and we want to reconstruct fm using a random

sample. Let Xn :¼ fx1; . . .; xng � X and f j :¼ fðxi; yijÞ 2
X � Rgni¼1 be a random sample with j ¼ 1; . . .;N. Let Vn :

¼ spanfKð:; xiÞ : xi 2 Xng be a function space (the span of

an arbitrary set may be defined as the set of all finite linear

combinations of its elements).

Tikhonov regularization theory projects the sample fn
onto Vn. It builds a stable reconstruction of fm by solving the

f �
j

n :¼ arg min
f j2Vn

1

n

Xn
i¼1

ðf jðxiÞ � yijÞ2 þ cjjf jjj2HK
ð3Þ

where c[ 0 is a regularization parameter, j ¼ 1; . . .;N and

jjf jjHK
¼ hf ; f i

1
2

HK
. In other words, Tikhonov regularization

theory states that there is a stable solution for the opti-

mization problem (3). The following theorem gives a

representation form for f �
j

n 2 Vn � HK .

Theorem 1 (Luz-López-Garcı́a et al. 2015) Under the

mentioned assumptions there is a unique solution of (3)

which can be represented by

f �
j

n ðxÞ ¼
Xn
i¼1

aiKðx; xiÞ; for all x 2 X

and j ¼ 1; . . .;N;

where a ¼ ða1; . . .; anÞT is obtained from

ðncIn þ KxÞa ¼ yj; ð4Þ

where In is an identity n� n matrix, yj ¼ ðy1j; . . .; ynjÞT and

matrix ðKxÞst ¼ Kðxs; xtÞ for s ¼ t ¼ 1; . . .; n. The estimate

of fm in Xn is as follows:

f̂ �
j

n ¼ Kxa: ð5Þ

Since Kx is a Mercer kernel, it is decomposed as

Kx ¼ VTDV , where the rows of V are eigenvectors of the Kx

and the elements of diagonal matrix D are corresponding

(non-negative) eigenvalues. Therefore, we can write

Kx ¼ D
1
2V

� �T

D
1
2V

� �
¼ UTU; where U ¼ D

1
2V : ð6Þ

Using Eqs. (6) and (2), jjf jj2Vn
¼ jjUajj2 which means that

the norm of f 2 Vn is equal to the Euclidean norm of its

transformation. Let m be a Borel probability measure

defined on X � R. Suppose that f �n ðxÞ ¼
Pn

i¼1 aiKðx; xiÞ
and g�nðxÞ ¼

Pn
i¼1 biKðx; xiÞ are the regularized c-projec-

tion of fm and gl respectively, which obtained from two

samples fn :¼ fðxi; yiÞ 2 X � Rgni¼1 and gn :¼ fðxi; y0iÞ 2
X � Rgni¼1. It follows by Luz-López-Garcı́a et al. (2015)

that the distance between fn and gn is attained by

d2Vn
ðfn; gnÞ :¼ jjf �n � g�njj

2
Vn

¼ ða� bÞTKxða� bÞ ¼ jjUa� Ubjj2:

2.2 Random projection and RPFD

The nature of functional data requires high CPU times.

So, we need to reduce their dimension. This fact
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encourages us to use RP for dimensionality reduction. The

RP projects N points of dimension n to a random

subspace of dimension h. To use RP, we generate

a random matrix that its elements are randomly

drawn from any zero mean distribution. For example, let

A ¼

2 3 2 0 4

�2 3 12 10 9

0 �3 4 1 0

4 5 �1 7 �4

2
664

3
775 be data in R5

(four points of dimension 5). To project them onto R2,

we generate a random matrix R ¼

2:63 1:52
0:44 0:50
�0:50 1:75
�0:15 1:17
�0:53 �0:16

2
66664

3
77775

which elements are drawn from the standard normal dis-

tribution. The projected data in R2 are obtained as follows:

B ¼ A� R ¼

3:49 7:38

�16:15 29:67

�3:46 6:67

14:26 15:65

2
6664

3
7775 (four points of dimension 2):

The success of RP is highlighted by the Johnson-Linden-

strauss lemma (Johnson and Lindenstrauss 1984; Dasgupta

and Gupta 2003) is presented as follows:

Lemma 1 For any real number of e; d 2 ð0; 1Þ and any

N 2 N, let h 2 N such that

h� 4ðe
2

2
� e3

3
Þ�1

log
Nffiffiffi
d

p
� �

then, with probability 1� d

ð1� eÞjjUa� Ubjj 	 jjRUa� RUbjj 	 ð1þ eÞjjUa� Ubjj;

where R is a h� n matrix and a; b are obtained from

Eq. (4) and U is attained from Eq. (6).

Lemma 1 states that the Euclidean distances between

the points and the Euclidean distances between their pro-

jections are approximately preserved. The distance

between fn and gn is defined as dVn
ðfn; gnÞ ¼ jjUa� Ubjj.

According to Lemma 1, dVn
ðfn; gnÞ ¼ jjUa� Ubjj ffi

jjRUa� RUbjj and the projection matrix is P ¼ RU. Now,

we can cluster the reduced expansion coefficients, a. A
review of RPFD is presented in Algorithm 1.

Algorithm 1 Random projection K-means for

functional data (RPFD)

input:

1. Dimension h (dimension of the projected space).

2. The number of clusters k.

3. Xn :¼ fx1; . . .; xng � X and a sample of empirical

functions ff jgNj¼1 where f j :¼ fðxi; yijÞ 2 X � Rgni¼1:

output:

1. Cluster label G.

begin

1. Calculate the kernel matrix Kx by

ðKxÞij ¼ Kðxi; xjÞ.
2. Compute the matrix U ¼ D

1
2V where

Kx ¼ ðD1
2VÞTðD1

2VÞ ¼ UTU.

3. Choose the regularization parameter c based on

cross-validation.

4. For j ¼ 1; . . .;N, solve ðcnIn þ KxÞa ¼ y j where

y j ¼ ðy1j; . . .; ynjÞT . Denote the solution by a j.

5. Initialize G randomly.

6. Generate the random matrix Rh�n.

7. Set the projection matrix Ph�n ¼ Rh�nU.

8. For j ¼ 1; . . .;N, project the data using bj
T

h�1 ¼
Ph�na

j
n�1 and put them in the rows of a matrix

ARP
N�h.

9. According to G, calculate the mean of each cluster

in ARP
N�h and put them in rows of a matrix CRP

k�h as

centers of the clusters.

10. Apply K-means on ARP
N�h with CRP

k�h as initialization

to obtain G.

11. Return G.

end

3 Proposed method

In Sect. 2, we reviewed an algorithm for functional data

clustering. It first projects the curves onto RKHS and

second RP reduces the dimension of expansion coeffi-

cients. Then, it clusters them using K-means algorithm.

There are two difficulties in this algorithm: (1) projecting

data onto RKHS and reducing the dimension by RP cause

more details are lost and the probability of assigning a

point to a wrong cluster increases. (2) clustering by

K-means algorithm may give a local solution (i.e. a set of

labels).

To overcome these difficulties, we propose an algorithm

to improve the Algorithm 1. We call the proposed algo-

rithm iterative RP functional data clustering (IRPFD). The

scheme of this algorithm is presented in Fig. 1. Note that

when we use iterative RP, K-means attains a non-local

solution. We explain IRPFD in what follows.

As we mentioned before, RPFD uses a RP onto a single

space, but in IRPFD, we project the expansion coefficients

onto several spaces then we use K-means to cluster them.

In each of the epochs, we increase the dimension of the

projection. In a given dimension, the obtained clusters are

used to initialize the K-means in the next dimension.
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Let Xn :¼ fx1; . . .; xng � X and a sample of empirical

functions ff j ¼ ðxi; yijÞ; i ¼ 1; . . .; ngNj¼1 be data. To pro-

ject data onto RKHS, we calculate the kernel matrix Kx

which is the size of n� n. We choose a suitable regular-

ization parameter c using cross-validation (CV which will

be explained briefly for a real dataset). The expansion

coefficients (a j
n�1) are obtained from Eq. (4) for all curves.

We also compute Cholesky decomposition of Kx from

Eq. (6) to obtain Un�n. After projecting data onto RKHS

(i.e. obtaining expansion coefficients a j
n�1), we project the

expansion coefficients onto a random subspace of dimen-

sion d1\n as follows. For dimension d1, we generate the

random matrix Rd1�n and obtain the projection matrix Pd1�n

from Pd1�n ¼ Rd1�nUn�n. Now, we project a j
n�1 using

bj
T

d1�1 ¼ Pd1�na
j
n�1 and put bj

T

d1�1 in the rows of a matrix

ARP1

N�d1
. To initialize label of clusters, we generate N ran-

dom numbers from unif ðf1; . . .; kgÞ where unif is discrete

uniform distribution and put them in the set G. Using G, we

obtain the cluster centers, CRP1

k�d1
, based on the mean of each

cluster in ARP1

N�d1
. By applying K-means on ARP1

N�d1
which is

initialized by CRP1

k�d1
, G is updated. Based on G, we obtain

CRP2

k�d2
from ARP2

N�d2
. We initialize K-means for dimension d2

using CRP2

k�d2
to cluster matrix ARP2

N�d2
. We repeat this process

for some subspaces with increasing dimension i.e.

d1 	 d2 	 � � � 	 de\n. The relation between dz for z ¼
1; . . .; e is heuristic, and we can find them using cross-

validation.

Lower dimension is like a high temperature in simulated

annealing clustering, and when we increase the dimension,

it cools the simulated annealing clustering. So, the relation

between dz is similar to simulated annealing cooling

(Cardoso and Wichert 2012; Selim and Alsultan 1991).

The details of the proposed method are given in

Algorithm 2.

Algorithm 2 Iterative random projection

K-means for functional data (IRPFD)

input:

1. List of dimension dz; z ¼ 1; . . .; e (dimension of the

projected spaces).

2. The number of clusters k.

3. Xn :¼ fx1; . . .; xng � X and a sample of empirical

functions ff jgNj¼1 where f j :¼ fðxi; yijÞ 2 X � Rgni¼1:

Apply K-means which

ini�alized by obtained  
 using random 

Apply K-means which

ini�alized by obtained  
 using 

Apply K-means which 

ini�alized by obtained
 using 

Apply K-means which 

ini�alized by obtained 
 using 

,  , 

are data in 
Hilbert space 

are expansion
coefficients 

with dimension 
n

Start

EndNote that: 

, 

, 

Project them 

onto RKHS

,

Fig. 1 The flowchart of the proposed method. G is a set of cluster labels
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output:

1. Cluster label G.

begin

1. Calculate the kernel matrix Kx by ðKxÞij ¼
Kðxi; xjÞ.

2. Compute the matrix U ¼ D
1
2V where

Kx ¼ ðD1
2VÞTðD1

2VÞ ¼ UTU.

3. Choose the regularization parameter c based on

cross-validation.

4. For j ¼ 1; . . .;N, solve ðcnIn þ KxÞa ¼ y j where

y j ¼ ðy1j; . . .; ynjÞT . Denote the solution by a j.

5. Initialize G randomly.

For z = 1: e

L1. Generate the random matrix Rdz�n.

L2. Set the projection matrix Pdz�n ¼ Rdz�nU.

L3. For j ¼ 1; . . .;N, project the data using bj
T

dz�1 ¼
Pdz�na

j
n�1 and put them in rows of a matrix ARPz

N�dz
.

L4. According to G, calculate the mean of each cluster

in ARPz

N�dz
and put them in the rows of a matrix C

RPz

k�dz

as centers of the clusters.

L5. Apply K-means on ARPz

N�dz
with C

RPz

k�dz
as initializa-

tion to obtain G.

end

6. Return G.

end

4 Simulation studies

n this section,we implement threemethods: classical K-means,

RPFD K-means and IRPFD K-means (the proposed method)

under three kernels usedbyLuz-López-Garcı́a et al. (2015) and

a new kernel, on some simulated and real datasets that have

been used in the most papers.

4.1 Simulated data

We describe following datasets which their figures are

presented at the end of the paper.

1. Waves (Luz-López-Garcı́a et al. 2015): For these

data, there are N ¼ 450 realizations of curves in n ¼
400 time-points, and they have k ¼ 3 clusters. Let

h1ðxÞ :¼ maxð6� jx� 11j; 0Þ; h2ðxÞ ¼ h1ðx� 4Þ;
h3ðxÞ ¼ h1ðxþ 4Þ;

where x 2 ½1; 21�. The waves data are obtained by a

convex combination as follows:

y1ðxÞ ¼ uh1ðxÞ þ ð1� uÞh2ðxÞ þ eðxÞ for class 1,

y2ðxÞ ¼ uh1ðxÞ þ ð1� uÞh3ðxÞ þ eðxÞ for class 2,

y3ðxÞ ¼ uh2ðxÞ þ ð1� uÞh3ðxÞ þ eðxÞ for class 3,

where u is a uniform random variable in (0, 1) and eðxÞ
is a standard normal variable. The first row of Fig. 2a

corresponds to these data and their centroids.

2. Irrationals (Luz-López-Garcı́a et al. 2015): For

these data, there are N ¼ 300 realizations of curves in

n ¼ 1009 time-points, and they generated from k ¼ 3

clusters. These data are not equidistant. Three irra-

tional functions constructed as follows:
y1ðxÞ ¼xð1� xÞ þ eðxÞ for class 1,

y2ðxÞ ¼x
3
2ð1� xÞ þ eðxÞ for class 2,

y3ðxÞ ¼x2ð1� xÞ þ eðxÞ for class 3,

where eðxÞ is a uniform random variable in ð�0:2; 0:2Þ.
The last row of Fig. 2a shows them.

3. Three groups: (Ferreira and Hitchcock 2009) This

dataset contains three main groups of signal functions.

In this paper, we call them by group 1, group 2 and

group 3. In each group, there are k ¼ 4 clusters. For

each group, there are N ¼ 120 realizations of curves in

n ¼ 200 time-points. They are shown in Fig. 2b.

4.2 Kernels

We use three kernels applied by Luz-López-Garcı́a et al.

(2015),

and a new kernel, Mexican hat wavelet. We calculate

their parameters using cross-validation (CV) technique. We

will explain it briefly for a real dataset. These kernels are as

follows:

1. Laplacian kernel:

Kðxi; xjÞ :¼ e
� 1

r2
1

jjxi�xjjj1

2. Gaussian kernel:

Kðxi; xjÞ :¼ e
� 1

r2
2

jjxi�xjjj22

3. Polynomial kernel:

Kðxi; xjÞ :¼ ð1þ axTi : xjÞb

4. Mexican hat kernel:

Kðxi; xjÞ :¼ ðr23 � jjxi � xjjj22Þ e
� 1

r2
3

jjxi�xjjj22

where r1; r2; r3; a[ 0, b 2 N and jj:jjp is norm p.
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Hereafter, we call the fourth kernel by wavelet. The

kernel parameters and c for simulated data are given in

Table 1. Note that in three groups dataset, the pre-

sented parameters are the same for groups 1, 2 and 3

except for group 3, r3 ¼ 0:7.

4.3 Experiments

We measure the performance of three methods (classical

K-means, RPFD K-means and IRPFD K-means) on the

reported datasets with MSD and Rand index. We also

calculate running time and the number of iterations that

K-means converges. We compare the condition number of

four kernels for all datasets. Now, we explain them.

The MSD is the mean square distance between each

cluster center and its members. In other words, MSD is

obtained by

MSD ¼ 1

N

Xk
j¼1

X
f2Sj

jjf � Cjjj2 ð7Þ

where Sj is the j-th cluster and Cj is its center.

Rand index (Rand 1971; Hubert and Arabie 1985)

measures the similarity between two partitions. It takes a
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Fig. 2 Simulated datasets and their centroids. a Waves and irrationals datasets and their centroids, b three groups data and their centroids
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value between 0 and 1. When it tends to 1, two partitions

have a high agreement.

It can be calculated using the function rand.index()

of the package fossil of the R software.

To obtain expansion coefficients, we solve Eq. (4) by

numerical algorithms commonly. The type of matrix Kx has

an effective role on the accuracy of solution of Eq. (4) i.e.

a. In the following, we consider one validity criterion

which shows an accuracy of the linear system. An impor-

tant issue in a numerical analysis is the condition number

(Trefethen and Bau 1997) of a matrix that is associated

with the linear equation Ax ¼ b. It states the amount of

sensitivity of a system. The higher condition number is

equivalent to more sensitivity and yields the ill-posed

system. In other words, a small variation of b makes big

changes in x. The condition number of a nonsingular An�n

is defined by condðAÞ ¼ jjAjj2 : jjA�1jj2. In general, if the

condition number of a matrix A be 10m, then m digits of

accuracy may lose. In next sections, for each kernel and

dataset, we calculate the condition number of kernel

matrix, Kx, and T ¼ ðncIn þ KxÞ defined in (4). We

implement mentioned algorithms on the simulated and real

datasets, separately.

4.3.1 Performance on simulated datasets

We generate data from stated models. We run each algo-

rithm 1000 times for each dataset. In all experiments, the

entries of the random matrix are independent and identi-

cally distributed standard Gaussian random variables,

N(0, 1). The classical K-means algorithm uses raw data,

i.e. it uses only yij for i ¼ 1; . . .; n and j ¼ 1; . . .;N. The

way of choosing h and dz in the RPFD and IRPFD,

respectively, is heuristic. In other words, we run the algo-

rithms for different values and choose the best one based

on MSD and Rand index. In Table 2, we present the

average running time (by time), the average number of

iterations, (by Iter), the average of MSD (by MSD), the

average of Rand index (by RI) and their standard deviation

by SD on 1000 iterations. The bolded numbers are the best

results, and the selected values of h and dz are mentioned in

the table. The values are rounded at most to 2-decimal

places. The cells with 0.00 have an exact value less than

0.005 which we round them up to 0.00. According to

Table 2, we conclude that

1. IRPFD K-means has the minimum MSD among RPFD

K-means and the classical K-means. In other words, it

avoids local minimum;

2. As expected, in all datasets, the running time of the

classical K-means is less than others because it

performs K-means only one time on raw data. This is

while the RPFD and IRPFD project the raw data onto

some spaces and this needs more time than the

classical K-means. The running time of IRPFD

K-means and RPFD K-means are approximately the

same in the most datasets. Note that K-means on the

projected data takes a shorter running time than on the

raw data;

3. The Iter of IRPFD K-means is less than two other

methods in all datasets except for irrationals dataset;

4. The Rand index of IRPFD K-means is the best among

all methods in all datasets;

5. In the most datasets for both cases (IRPFD K-means

and RPFD K-means), the MSD, the Iter and Rand

index of the wavelet kernel are better than three other

kernels.

Thus, in all datasets, clustering via functional nature

(especially IRPFD) is better than classical K-means based

on MSD, RI and Iter.

The results of the condition number are shown in

Table 3. In the three groups, the results for group 1,

group 2 and group 3 are equal. In all datasets, the

wavelet kernel has the best condition number for the matrix

T, that are bolded.

For the dataset of group 1, the boxplots of its results

are presented in Fig. 3. In this figure, the classical method

is denoted by C, RPFD using wavelet kernel is denoted by

Wrp, RPFD using Laplacian kernel is denoted by Lrp,

RPFD using the Gaussian kernel is denoted by Nrp, RPFD

using the polynomial kernel is denoted by Prp, IRPFD

using wavelet kernel is denoted by Wirp, IRPFD using

Laplacian kernel is denoted by Lirp, IRPFD using the

Gaussian kernel is denoted by Nirp and IRPFD using the

polynomial kernel is denoted by Pirp. According to these

boxplots, the wavelet IRPFD has the best performance with

Table 1 Kernel parameters of

simulated datasets
Data Kernels

Laplacian Gaussian Polynomial Wavelet

r1, c1 r2, c2 a, b, c3 r3, c4

Waves 1, 10�4 1, 10�4 1, 5, 1 0.3, 10�4

Irrationals 10, 10�4 5, 10�4 10�2, 5, 10�4 1, 10�4

Three groups 1, 10�4 1, 10�4 10�4, 5, 10�4 0.76, 10�4 except for group 3, r3 ¼ 0:7
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respect to MSD and RI. We also show the scatter plot of

the first and the second principal components of the true

partition of y1; . . .; yN (top-left) and those obtained by

classical method (top-right), IRPFD (bottom-left) and

RPFD via wavelet kernel (bottom-right) for group 1 and

group 2 datasets in Fig. 4a, b, respectively. The clusters

Table 2 The clustering results of simulated data: Time, Iter, MSD and RI for different kernels. SD is a standard deviation

Datasets Classical RPFD IRPFD

Laplacian Gaussian polynomial wavelet Laplacian Gaussian polynomial wavelet

Waves Iter 1.65 14.98 14.83 11.57 5.95 13.57 13.38 0.43 0.53

SD 0.87 5.73 5.55 6.14 2.74 5.58 5.34 0.34 0.65

h ¼ 90 Time (s) 0.01 0.25 0.21 0.66 0.49 0.26 0.22 0.66 0.50

SD 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dz= (10, 20, 60, 90)T MSD 713 953 955 948 689 953 955 948 686

SD 46.58 11.87 11.08 8.89 17.08 11.76 10.75 8.71 3.10

RI 0.93 0.54 0.54 0.57 0.97 0.56 0.55 0.55 0.99

SD 0.17 0.07 0.02 0.01 0.04 0.00 0.00 0.00 0.01

Irrationals Iter 1.10 3.83 3.77 3.84 3.29 4.24 4.23 4.06 3.64

SD 0.48 2.06 1.96 2.06 1.80 2.17 2.19 2.12 1.95

h ¼ 100 Time (s) 0.07 1.65 1.40 4.16 3.00 1.67 1.41 14.18 3.01

SD 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

dz= (10, 20, 60, 100)T MSD 13.04 13.05 13.04 13.05 13.05 13.03 13.03 13.03 13.03

SD 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

RI 0.53 0.52 0.52 0.52 0.52 0.55 0.55 0.55 0.55

SD 0.02 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00

Group 1 Iter 4.88 4.11 3.93 5.69 5.42 4.02 4.35 4.57 3.47

SD 2.74 2.58 2.41 2.68 3.02 1.92 2.05 2.16 1.86

h ¼ 80 Time (s) 0.00 0.13 0.11 0.36 0.24 0.14 0.12 0.37 0.25

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dz= (10, 20, 50, 80)T MSD 527 540 542 533 528 525 530 529 515

SD 13.18 11.69 11.06 8.74 11.55 8.72 8.80 8.62 8.24

RI 0.57 0.49 0.48 0.56 0.57 0.66 0.64 0.63 0.70

SD 0.12 0.10 0.09 0.06 0.09 0.02 0.02 0.01 0.02

Group 2 Iter 1.96 4.32 4.93 5.68 3.03 1.10 1.68 5.06 0.20

SD 1.42 2.35 2.54 2.57 1.85 1.32 1.55 2.34 0.59

h ¼ 60 Time (s) 0.00 0.13 0.11 0.36 0.23 0.13 0.16 0.37 0.24

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dz= (5, 20, 40, 60)T MSD

(�103)

2.34 2.39 2.44 4.06 2.33 2.28 2.30 4.04 2.26

SD 225 215 208 238 202 96 99 241 115

RI 0.93 0.88 0.85 0.57 0.93 0.93 0.91 0.63 0.96

SD 0.08 0.06 0.05 0.04 0.07 0.06 0.05 0.01 0.06

Group 3 Iter 2.03 5.09 5.46 6.39 3.33 1.18 2.24 3.50 0.43

SD 1.59 2.82 2.91 2.93 2.21 1.36 1.72 1.93 0.88

h ¼ 60 Time (s) 0.00 0.13 0.11 0.37 0.24 0.13 0.12 0.38 0.24

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

dz= (5, 20, 40, 60)T MSD

(�103)

1.86 1.89 1.93 2.99 1.86 1.81 1.84 2.97 1.81

SD 170 131 123 226 155 48 46 207 64

RI 0.90 0.85 0.80 0.71 0.90 0.93 0.87 0.78 0.94

SD 0.19 0.08 0.07 0.05 0.10 0.06 0.04 0.03 0.07
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of group 1 dataset are close together and their recognitions

are difficult, but for group 2 dataset, the clusters are

distinct. The IRPFD method presents a partition which is

more similar than others to the true partition.

5 Application to real datasets

In this part, we try to obtain homogeneous groups (clusters)

for real datasets. We introduce real datasets and explain

CV, determining the number of clusters (using Wilks

Lambda) and IRPFD for one dataset.

5.1 Real data

Some examples of functional data appear in meteorology

and earth science (Tokushige et al. 2007; Luz-López-

Garcı́a et al. 2015; Ferraty and Vieu 2006). We describe
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Fig. 3 Boxplot of Rand index, MSD, Iter and running time for group 1 data

Table 3 The condition number of simulated data and T ¼ ðncIn þ KxÞ
from Eq. (4)

Datasets Laplacian Gaussian polynomial wavelet

Waves condðKxÞ 1:57� 103 3.70 �1019 1.30 �1026 9:60� 1018

condðTÞ 604 882 1.64 �1012 15.5

Irrationals condðKxÞ 2:01� 109 2.92 �1020 1.56 �1020 4.07 �1020

condðTÞ 1 �104 1 �104 7.04 �1013 9:92� 103

Three
groups

condðKxÞ 16.65 9.62 �103 7.90 �1019 14.61

condðTÞ 15.47 174.98 6.24 �104 11.39
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three following datasets to show the performance of the

proposed method. Their figures are presented at the end of

the paper.

1. Canadian temperature:Ramsay and Silverman

(2005) presented the details of these data. They are

available in the R package fda. This dataset is used by

some authors for FDA and clustering, for example, see

Aguilera-Morillo et al. (2017) and Jacques and Preda

(2014b). For N ¼ 35 locations in Canada, the daily

temperature had been measured and averaged over

1960–1994. The obtained data constitute a 35� 365

matrix whose elements correspond to the average of 35

observed temperatures over 35 years. We consider

each of the rows of this matrix as a curve. We present

the data in Fig. 5 and their geographical locations are

shown in Fig. 6a. Our purpose is to present the

homogeneous groups of this dataset.

2. Russian temperature:1 These data investigated

by Bulygina and Razuvaev (2012) and are presented in

detail in CDIAC (Carbon dioxide information center).

The source of this dataset contains temperature of 518

stations in Russia. These data have been recorded since

1874–2011. We consider 490 stations which cover an

interval 1978–2009, i.e. 32 years. For each station,

after removing its trend (if it exists, for example, the

stations 76 and 77 are stationary), the average of

temperature over 32 years is computed. Therefore, we

have a matrix of size 490� 365 such that each row

corresponds to the average of temperature over 32
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Fig. 4 The first and the second principal components of the different methods for group 1 and group 2 datasets

1 This dataset is available at http://cdiac.ornl.gov/ftp/russia_daily/.
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years for one station. Each row is considered as a curve

over interval [1, 365]. Thus, we have 490 curves that

are shown in Fig. 5b. We also show the geographical

locations of these data in Fig.6b.

3. Radar:2 This dataset is recorded by satellite Topex/

Poseidon around a region of 25 kilometers on the

Amazon river and contains N ¼ 472 waveforms (i.e.

curves). Each curve is measured at 70 points,

fXiðt1Þ; . . .;Xiðt70Þg472i¼1, and corresponds to a type of

ground (i.e. its natural features). To explore hydrolog-

ical aims of Amazonian basin, this dataset is analyzed.

The dataset forms a 472� 70 matrix which each row

of this matrix is considered as a curve. These data have

clustered by Luz-López-Garcı́a et al. (2015). The data

are shown in Fig. 5c.

5.2 Cross-validation and condition number for real

datasets

We determine the suitable parameters of stated kernels by

CV technique. For example, to select the parameters of

each kernel for Canadian temperature dataset, we calculate

the average of corresponding projections (i.e. we project

the data onto RKHS) for different values of cs and rt with

s ¼ 1; . . .; 4; t ¼ 1; 2; 4 and r3 ¼ ða; bÞT . Here r3 is a

vector. The optimal parameters are chosen such that the

sum of square error,
P35

j¼1

P365
i¼1 f jðxiÞ � f̂ �

jðxiÞ
� �2

, is
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Fig. 6 Geographical locations. a Location of Canadian weather

stations, b location of Russian weather stations

2 This dataset is available at http://www.math.univ-toulouse.fr/staph/

npfda/.
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minimized where f j and f̂ �
j

are original signal and its

reconstruction, respectively [f̂ �
j

is defined in Eq. (5)]. In

addition, these parameters should not yield an ill-posed

system. For Canadian temperature dataset, we consider the

following values to find the optimal parameters, cs ¼
100; 10�1; 10�2; 10�3; 10�4 and rt ¼ 0:1; 0:2; . . .; 2 s ¼
1; . . .; 4; t ¼ 1; 2; 4 and r3 ¼ ð10�3; 3ÞT , ð10�3; 4ÞT ,
ð10�3; 5ÞT , ð10�4; 3ÞT , ð10�4; 4ÞT , ð10�4; 5ÞT , ð10�5; 3ÞT ,

ð10�5; 4ÞT , ð10�5; 5ÞT : Using these parameters, we calcu-

late the kernel matrix K365�365, expansion coefficients a

and reconstruction of curves from f̂ �
j

n ¼ Kxa: We compare

the obtained square errors and choose those parameters that

yield minimal square errors and well-posed system in

Eq. (4). This procedure can be used for Russian tempera-

ture and radar datasets. The polynomial kernel cannot be

used since it yields an ill-posed system in Eq. (4) for real
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Fig. 7 a Average of projections and average of original curves via

polynomial kernel for real datasets, and b average of projections and

average of original curves via each kernel for real datasets. The

second column shows the differences between the average of original

signals and the average of their projections for different kernels
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datasets. In other words, if for a kernel the condition

number of matrix Kx and T ¼ ðncIn þ KxÞ from Eq. (4) is

increased, that kernel does not present a suitable recon-

struction of data. In Fig. 7a, we present the average of

original data and average of their reconstruction based on

the polynomial kernel. For real datasets, the condition

number of the polynomial kernel is presented in Table 4.

As we can see in Table 4, the condition number of the

polynomial kernel is very large, and it yields an ill-posed

system.

The best values for the real datasets and corresponding

error are shown in Table 5 where the smallest error is

bolded.

Now, we represent the average of original signals and

the average of their projections on RKHS (reconstruction)

for each dataset in Fig. 7b. Since the average of original

signals and the average of their projections are close

together, we also show the differences between the average

of original signals and the average of their projections in

the second column. As we can see, an excellent recon-

struction obtained based on wavelet kernel for Canadian

temperature and radar dataset and based on Laplacian

kernel for Russian temperature.

The condition number of real datasets are presented in

Table 6. Gaussian kernel, wavelet kernel, and Laplacian

kernel have the best condition number for Canadian tem-

perature, Russian temperature, and radar datasets,

respectively.

5.3 Determining the number of clusters

A major problem in clustering is the detection of the

number of clusters. There are many validity indices to

identify it, but they do not cover all problems. Three

examples of validity indices are Dunn index, Davies–

Bouldin index and Wilk’s Lambda index. We explain them

in the following.

The cluster diameters and dissimilarity between of

clusters are combined to obtain the most suitable number of

clusters by Dunn index (Dunn 1974). The high value of

Dunn index indicates that clusters are compact and well

separated.

Davies–Bouldin index (Davies and Bouldin 1979) can

be used to measure the dispersion of a cluster and

dissimilarity between clusters. The small value of Davies–

Bouldin index gives the suitable number of clusters.

These indices are successful only in special cases, and

they are not adequate for the general situation. Dunn index

requires expensive computations and is sensible to the

noise of data. It is not used for noisy data, moderate and big

data. Also, Davies–Bouldin index does not give good

results for overlapping clusters (Saitta et al. 2007).

For real data, the number of clusters is unknown.

Canadian temperature dataset is clustered by Jacques and

Preda (2014b) with 4 clusters. Luz-López-Garcı́a et al.

(2015) using Wilk’s Lambda (presented in the following)

determine k ¼ 3 for radar dataset. However, we used the

mentioned indices (Dunn index and Davies–Bouldin index)

for the real data and did not get appropriate results for the

number of clusters.3

Wilk’s Lambda (Kuo and Lin 2010) is usually used to

determine the number of clusters. It is defined as follows:

Table 4 The condition number

of real datasets for polynomial

kernel and T ¼ ðncIn þ KxÞ

Canadian temperature Russian temperature Radar

parameter {c ¼ 1, a ¼ 10�4} {c ¼ 10�3, a ¼ 10�2} {c ¼ 10�3, a ¼ 10�3}

b ¼ 5 b ¼ 0:75 b ¼ 5

condðKxÞ 1:11� 1023 6:99� 1019 4:49� 1019

condðTÞ 6� 104 9:85� 104 8:42� 105

Table 5 Kernel parameters for real datasets and corresponding error

Data name Laplacian Gaussian Wavelet

r1, c1 r2,c2 r3, c4

Canadian temperature 1, 10�4 0.1, 10�4 1.4, 10�4

Error 0.0471 0.2081 0.0368

Russian temperature 2, 10�5 1.4, 10�5 1.7, 10�5

Error 6.84 �10�10 35.8 �10�10 10.3 �10�10

Radar 1, 10�4 1, 10�4 1.5, 10�4

Error 0.0509 0.0681 0.0270

Table 6 Condition number of real datasets and T ¼ ðncIn þ KxÞ

Datasets Laplacian Gaussian Wavelet

Canadian temperature condðKxÞ 4.68 1 7.16

condðTÞ 4.41 1 6.66

Russian temperature condðKxÞ 64.59 63.05 49.64

condðTÞ 62.78 57.71 48.03

Radar condðKxÞ 4.6727 5.8823 12.8054

condðTÞ 4.6179 5.7714 12.5205

3 The results are available upon request from the authors.
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Wilk’s Lambda ¼ SSkwithin
SStotal

; k ¼ 2; . . .; kmax;

where SSkwithin is the within-cluster variance and SStotal is

the total variance. Using IRPFD K-means, we determine it

for Canadian temperature and Russian temperature datasets

by three kernels and radar dataset by two kernels (Gaussian

and wavelet). For k ¼ 2; 3; . . .; 20, we present Wilk’s

lambda in Fig. 8a, b for three datasets. We choose k ¼ 4,

k ¼ 8 and k ¼ 3 for Canadian temperature dataset, Russian

temperature dataset, and radar dataset, respectively. Wilk’s

lambda does not considerably decrease after the selected

points based on the most kernels.

5.4 The setting of IRPFD for Canadian temperature

dataset

Now, we explain working of IRPFD for Canadian tem-

perature dataset by previously obtained parameters in

Sects. 5.2 and 5.3. The optimal parameters are r1 ¼ 1,
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Fig. 8 a The values of Wilk’s Lambda for Canadian temperature dataset (the first column) and Russian temperature dataset (the second column)

for different kernels, and b the values of Wilk’s Lambda for radar dataset

98 Stoch Environ Res Risk Assess (2018) 32:83–104

123



c1 ¼ 10�4, r2 ¼ 0:1, c2 ¼ 10�4, r3 ¼ 1:4 and c3 ¼ 10�4.

The number of clusters is k ¼ 4. Here, we have N ¼ 35,

n ¼ 365, dz ¼ ð10; 40; 60; 80ÞT and Xn ¼ f1; 2; . . .; 365g.
Matrix K is computed for three kernels using the mentioned

values. Here, we consider Gaussian kernel which is as

Kðxi; xjÞ ¼ e
� 1

0:12
jjxi�xjjj22

where jj:jj2 is Euclidean norm and i; j ¼ 1; . . .; 365. We

obtain its Cholesky decomposition as K ¼ UUT where

matrix U is 365� 365. For j ¼ 1; . . .; 35, we solve the

linear system Eq. (4) to obtain aj for Gaussian kernel. Also,
aj is a vector of size 365� 1. We generate a random matrix

R10�365 which elements are drawn from the standard nor-

mal distribution and set P10�365 ¼ R10�365U365�365. For

j ¼ 1; . . .; 35, we project expansion coefficients by RP as

bj
T

10�1 ¼ P10�365a
j
365�1 and put them in the rows of a matrix

ARP1

35�10. Now, we initialize G by generating 35 random

numbers from unif ðf1; 2; 3; 4gÞ where unif is discrete

uniform distribution. According to G, we calculate the

mean of each cluster and put them in the rows of a matrix

CRP1

4�10 as cluster centers. That means

CRP1

4�10 ¼

1

jfijgi ¼ 1gj
X

fijgi¼1g
Ai

1

jfijgi ¼ 2gj
X

fijgi¼2g
Ai

1

jfijgi ¼ 3gj
X

fijgi¼3g
Ai

1

jfijgi ¼ 4gj
X

fijgi¼4g
Ai

2
66666666666666664

3
77777777777777775

;

where |.| is the cardinality of a set, gi belongs to G and Ai is

i-th row of ARP1

35�10 for i ¼ 1; . . .; 35. We cluster ARP1

35�10 by

K-means which is initialized with CRP1

4�10. K-means gives a

new G. We generate a new random matrix P40�365 as

previous and obtain ARP2

35�40. Using the obtained G and

ARP2

35�40, we calculate CRP2

4�40. Applying K-means on ARP2

35�40

using CRP2

4�40 gives a new G. We perform these process for

dimension 60 and 80. Using the obtained G in dimension

80, we calculate the cluster centers in the original space.

dz ¼ ð10; 40; 60; 80ÞT is selected from candidate values

which are minimized MSD.

5.5 Results

In this section, we present the results of applying classical

K-means, RPFD and IRPFD on real datasets. Note that we

use hard clustering techniques. However, there are several

works in hydrometeorology which used fuzzy clustering

and find statistically and climatologically homogeneous

regions, (Srinivas 2008; Satyanarayana and Srinivas 2011;

Bharath and Srinivas 2015a). The clustering results of real

datasets (similar to those of simulated datasets) over 5

iterations are shown in Table 8 where SD is a standard

deviation. Note that for real datasets, Rand index cannot be

calculated since the true clusters of the real datasets are

unknown. The proposed method with wavelet kernel for

the first two datasets and with the Gaussian kernel for the

third dataset has the best MSD among other methods. Let

us note that Jacques and Preda (2014b) also clustered

Canadian temperature and precipitation data. For their

obtained clusters, we calculate the MSD of the temperature

data. It is equal to 3:56� 103 which is greater than MSD of

the proposed method (2:89� 103).

The boxplots for MSD are shown in Fig. 9. According to

this figure, IRPFD based on wavelet kernel for Canadian

temperature and Russian temperature datasets and based on
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Fig. 9 MSD of real datasets. a Canadian temperature dataset,

b Russian temperature, c radar dataset
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the Gaussian kernel for radar dataset has the best perfor-

mance among others.

The results of geographical locations of Canadian tem-

perature dataset for classical K-means, RPFD and IRPFD

based on wavelet kernel are shown in Fig. 10. We also

present the geographical locations of the results which are

found by Jacques and Preda (2014b) in Fig. 10d. Detected

clusters by IRPFD and Jacques and Preda (2014b) are

different for northern and southern stations, obviously.

The geographical locations of Russian temperature

dataset for classical K-means, RPFD and IRPFD based on

wavelet kernel are shown in Fig. 11. According to

Figs. 10c and 11c, IRPFD has founded the homogeneous

clusters for Canadian temperature and Russian temperature

datasets which are consistent with the reality of climate of

Canada and Russia. Note that we do not use the geo-

graphical positions of the stations to obtain these clusters

for Canadian temperature and Russian temperature data-

sets. The proposed method is only for univariate functional

random variable. Horenko (2010) also clustered the his-

torical temperature data in Europe only using the temper-

ature. If we consider temperature and precipitation

variables, then we have a bivariate functional data. Let us

note that Satyanarayana and Srinivas (2011) and Bharath
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Fig. 10 Geographical locations of Canadian temperature dataset with a classical K-means, b RPFD, c IRPFD based on wavelet kernel and d the

results of Jacques and Preda (2014b)
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et al. (2016) proposed an approach for regionalization of

precipitation and temperature, respectively using location

indicators (e.g. latitude, longitude, altitude and distance to

sea) and large-scale atmospheric variables and they

obtained suitable results.

The curves of each cluster which obtained with IRPFD

based on wavelet kernel for Canadian temperature dataset

and based on the Gaussian kernel for radar dataset are pre-

sented in Fig. 12a, b. For Canadian temperature dataset with

IRPFD, the cluster 1 contains 17 signals, the cluster 2 has 10

signals, the cluster 3 has 3 signals and the fourth cluster has 5

signals while Jacques and Preda (2014b) have found 23, 3, 1

and 8 signals for the clusters 1, 2, 3 and 4, respectively. For

radar data using IRPFD, the clusters 1, 2 and 3 have 88, 50

and 334 signals while those obtained by Luz-López-Garcı́a

et al. (2015) are 94, 47 and 329, respectively.

For radar dataset, we present the details of running time for

classical K-means, RPFD and IRPFD based on the Gaussian

kernel in Table 7.According toAlgorithms 1 and 2, the running

time of RPFD and IRPFD is the sum of the running time of:

calculate kernel matrix (denoted by t.ker), Cholesky

decomposition (denoted by t.Ch), compute coefficients a
(denoted by t.alp) and K-means (denoted by t.K).

According to this table, the K-means running time (t.K) is

fairly small compared to the total running time.

6 Conclusions

Although functional data clustering can be performed by

clustering raw data (without considering the functional nat-

ure), there are examples of datasets that we must consider the

functional nature to obtain the appropriate results. In other

words, functional data clustering presents a better result than

classical K-means (for example see MSD of radar dataset in

Table8). In this paper,we have introduced an iterative random

projection K-means for functional data (IRPFD) which is a

method to cluster functional data based on random projection

(RP) and reproducing kernel Hilbert space (RKHS). We

increase the dimension several times to avoid local minimum.

We implement three methods (classical K-means,

RPFD, IRPFD) on some simulated and climatological

datasets. For simulation study, Rand index (RI) and mean

square distance (MSD) of IRPFD is the best in all datasets,

and its average number of iterations (Iter) is the best for the

most datasets. In general, clustering via functional nature is

better than classical K-means (in some dataset classical

K-means is better than RPFD based on RI and MSD). The

running time of classical K-means is less than others

because it uses K-means only one time on raw data. This is

while the running time of IRPFD K-means and RPFD

K-means are the same approximately in the most datasets

(i.e. this is not for all datasets). Thus, IRPFD takes a little

longer time than classical K-means and RPFD to find the

best solution, and it has a smaller Iter than others.

We have used the wavelet kernel that gives a better

reconstruction of signals based on Tikhonov regularization

theory for the most datasets. This kernel also improves the

Iter, RI and MSD of RPFD and IRPFD in the most cases.

For real dataset, we determine the number of cluster

using Wilk’s Lambda which is based on the within-cluster

variance. Since the true clusters of real dataset are

unknown, Rand index is not calculated. For Canadian

temperature and Russian temperature datasets, IRPFD

based on wavelet kernel finds a solution with smallest

MSD and for radar dataset based on the Gaussian kernel.
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Fig. 11 Geographical locations of Russian temperature dataset with

a classical K-means, b RPFD and c IRPFD based on wavelet kernel
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To cluster functional data, we project data onto

RKHS, and we have to determine the suitable parameters

of Mercer kernel and the regularization parameter (in

this paper, we have 4 Mercer kernels). It is not clear

which kernel is appropriate for data before clustering.

Determining a true number of clusters and an optimal

dimension for RP is a hard task. Future research can be

done to present another guideline for kernel parameteri-

zation, detecting the true number of clusters and an

optimal dimension for RP. The proposed method can be

extended to multivariate functional data and spatial data

in future works. The development of fuzzy framework of

the proposed method could be considered in a future

research.
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Fig. 12 a The solution of IRPFD based on wavelet kernel for Canadian temperature dataset, and b the solution of IRPFD based on Gaussian

kernel for radar dataset

Table 7 The details of the

running time for radar dataset
Methods Total running time t.ker t.Ch t.alp t.K

Classical K-means 0.0589

RPFD 0.0845 0.0333 1.8027 �10�4 0.0186 0.0325

IRPFD 0.0842 0.0333 1.8027 �10�4 0.0186 0.0321
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Gonzáleez-Hernández J (2010) Representing functional data in

reproducing kernel Hilbert spaces with applications to clustering,

classification and time series problems. Ph.D. thesis, Department

of Statistics, Unisversidad Carlos III, Getafe, Madrid
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