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Abstract Synthetic streamflow data is vital for the energy

sector, as it feeds stochastic optimisation models that

determine operational policies. Considered scenarios

should differ from each other, but be the same from a

statistical point of view, i.e., the scenarios must preserve

features of the original time series such as the mean,

variance, and temporal dependence structures. Tradition-

ally, linear models are applied for this task. Recently, the

advent of copulas has led to the emergence of an alterna-

tive that overcomes the drawbacks of linear models. In this

context, we propose a methodology based on vine copulas

for the stochastic simulation of periodic streamflow sce-

narios. Copula-based models that focus on single-site

inflow simulation only consider lag-one time dependence.

Therefore, we suggest an approach that incorporates lags

that are greater than one. Furthermore, the proposed model

deals with the strong periodicity that is commonly present

in monthly streamflow time series. The resulting model is a

non-linear periodic autoregressive model. Our results

indicate that this model successfully simulates scenarios,

preserving features that are observed in historical data.

Keywords Periodic vine copula-based model � Non-linear
models � Copula models for stationary time series �
Stochastic streamflow simulation

1 Introduction

A unique characteristic of the Brazilian Electricity Sector is

that most energy is generated by hydroelectric power

plants. This means that planning is a tremendous challenge,

owing to the uncertainty associated with hydrological and

rainfall regimes.

The operation is centralised, and is usually determined

by computational platforms based on stochastic program-

ming. Streamflow scenarios are one of the primary inputs

of these platforms. Hence, models capable of simulating

realistic scenarios are crucial for the successful operation

of the system.

Linear time series models belonging to the Box and

Jenkins family are commonly employed for the stochastic

simulation of streamflows (see Salas et al. 1980; Jimenez

et al. 1989; Pereira and Souza 2014; Souto et al. 2014;

Ursu and Pereau 2016).

In general, such models adopt simplifying assumptions,

modelling only linear effects. Sharma and O’Neill (2002)

described the disadvantages of these models, such as lim-

itations in representing non-standard probability distribu-

tion functions or restrictions in modelling non-linear

dependencies between current and previous flow values.

Streamflow data routinely is not normally distributed.

Therefore, the Gaussian assumption that is implicit in these

models may not be appropriate. Moreover, for the simu-

lation of scenarios via Monte Carlo methods, the Gaussian

assumption produces sampled values in the range

(�1;1), which does not ensure that all generated sce-

narios will be positive. Transformations of the original data

may overcome these drawbacks, but according to Hao and

Singh (2011) this may introduce some bias into the simu-

lated scenarios.
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Recently, with the advent of copulas, an alternative type

of model has emerged. Owing to their flexibility, copulas

have been applied to describe various phenomena in

hydrology (see Grimaldi and Serinaldi 2006; Song and

Singh 2010; Song-Bai and Kang 2011; Zhang et al. 2013;

Xu et al. 2017). In terms of the simulation of streamflow

scenarios, Lee and Salas (2011) were the first to apply

bivariate copulas to model the temporal dependence of

yearly streamflow time series. They studied the properties

of such a series, and performed a case study for the Nile

River.

Hao and Singh (2012) proposed a method using copulas

and the entropy principle to construct a model for monthly

streamflow simulation. The marginal distributions were

obtained using entropy methods, whereas the bivariate joint

distributions of two adjacent months were estimated via

bivariate copulas. The authors also proposed an alternative

version, by inserting an aggregated variable so that

trivariate copulas were required.

Zachariah and Reddy (2013) developed an entropy-

copula-based model for the simulation of monthly inflows

of the Hirakud Dam, India. They employed a bivariate

Gumbel-Hougaard copula to model the time dependence

between two consecutive months. Similarly, Kong et al.

(2015) proposed a maximum entropy Gumbel-Hougaard

copula method for the simulation of monthly scenarios of

the Xiangxi River, China.

Li et al. (2013) estimated a conditional joint distribution

between two adjacent months, conditioned on covariates

such as climatic variables or aggregated flow variables. The

temporal dependence was captured via bivariate condi-

tional copulas. The results were satisfactory, although the

authors highlighted the limitations of the model in repro-

ducing time lags greater than one.

Jeong and Lee (2015) employed the approach proposed

by Lee and Salas (2011) associated with a periodic Markov

Chain to simulate seasonal intermittent streamflows. They

applied bivariate copulas to estimate the joint distribution

between two subsequent months.

The copula-based models outlined above have focused

on modelling lag-one time dependence. For this reason, the

main goal of the present paper is to propose a methodology

based on high dimensional copulas for the stochastic sim-

ulation of periodic streamflow time series. Our approach

allows the model to consider lags that are greater than one.

Moreover, our approach accommodates the periodicity that

is commonly present in hydrologic data. The resulting

model can be understood as a (non-)linear periodic

autoregressive model of order p, where the orders, as well

as the copulas, alternate according to the period.

The proposed model was tested using the streamflow

time series of the Manso River. A Monte Carlo study

demonstrates that the model can successfully capture the

time dependence structure. In addition, an analysis of

scenarios indicates that the model is capable of simulating

streamflow data such that historical features observed in

the original time series are preserved.

This paper is organised as follows. Section 2 briefly

introduces the concept of copulas and vine copulas. Sec-

tion 3 describes the proposed methodology, and Sect. 4

presents the case study. Finally, in Sect. 5 we present our

conclusions.

2 Copulas

Consider a joint density function f ðy1; . . .; ydÞ of d random

variables Y ¼ ðY1; . . .; YdÞ. A simple and intuitive way to

understand copulas is to think of a multivariate distribution

F as a composition of a copula C and marginals distribu-

tions F1; . . .;Fd. In fact, this statement traces back to

Sklar’s theorem (see Sklar 1959), who formally stated that

if F is a d-dimensional distribution function with margins

F1; . . .;Fd , then there exists a copula C : ½0; 1�d ! ½0; 1�
such that for all y ¼ ðy1; . . .; ydÞ 2 Rd,

Fðy1; . . .; ydÞ ¼ CðF1ðy1Þ; . . .;FdðydÞÞ: ð1Þ

In terms of a multivariate density function, f ðx1; . . .; xdÞ
is written as

f ðy1; . . .; ydÞ ¼ c1;2;...;dðF1ðy1Þ; . . .;FdðydÞÞ
Yd

i¼1

fiðyiÞ; ð2Þ

where c1;2;...;dð�Þ is a d-variate copula density.

If the marginal distributions are continuous, then the

copula C is unique. This theorem is of practical relevance,

because it says that it is possible to build multivariate

distributions by modelling the marginal components sepa-

rately from the dependence structure (represented by the

copula C).

Copulas can represent any type of association. They are

not restricted to the usual linear dependence represented by

correlations, as they are sufficiently flexible to model any

kind relationship between variables. For a broad discussion

regarding the dependence structures and some fallacies

relating to correlations, see McNeil et al. (2010).

2.1 Vine copulas

Until a few years ago, major advances regarding copulas

mainly occurred in the bi-dimensional case. Hence, the

number of bivariate copulas, as well as their flexibility

regarding dependence structures, is considerably high. On

the other hand, in higher than three dimensions, the number

of d-dimensional copulas is limited. Moreover, these copulas

usually possess restrictions, making their use less attractive.
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A pair-copula construction (PCC) provides an alternative

to constructing d-dimensional copulas. This was first con-

sidered by Joe (1996), and subsequently addressed by Bed-

ford and Cooke (2001, 2002) and Aas et al. (2009). A PPC

can be viewed as a decomposition of a multivariate density

function f into a set of conditional and unconditional

bivariate copulas and marginal densities. This enables the

construction of d-dimensional copulas that incorporate all

the flexibility of bivariate copulas (see Aas et al. 2009).

In general, any multivariate density function can be

decomposed as

f ðy1; . . .; ydÞ ¼ f ðydjy1; . . .; yd�1Þ � f ðyd�1jy1; . . .; yd�2Þ
� � � f ðy1Þ: ð3Þ

According to Aas et al. (2009), the conditional densities

in Eq. (3) can be written in terms of copula densities using

the general expression

f ðy=vÞ ¼ cy;vjjv�j
ðFðyjv�jÞ;Fðvjjv�jÞÞ � f ðyjv�jÞ; ð4Þ

where cy;vjjv�j
ð�; �Þ is a bivariate copula density, v is a d-

dimensional vector, vj is one component of v, and v�j is a

vector equal to v excluding the jth component.

For example, in the three dimensional case (see Aas

et al. 2009), one possible pair-copula construction of the

joint density function f ðy1; y2; y3Þ is
f ðy1; y2; y3Þ ¼ f1j2;3ðy1jy2; y3Þf2j3ðy2jy3Þf3ðy3Þ

¼ c1;2ðF1ðy1Þ;F2ðy2ÞÞc2;3ðF2ðy2Þ;F3ðy3ÞÞc1;3j2

ðF1j2ðy1jy2ÞF3j2ðy3jy2ÞÞ
Y3

i¼1

fiðyiÞ:

ð5Þ

Joe (1996) demonstrated that the conditional distribution

functions, i.e., the arguments of the conditional copula, can

be obtained recursively by applying

FðyjvÞ ¼
oCy;vjjv�j

ðFðyjv�jÞ;Fðvjjv�jÞÞ
oFðvjjv�jÞ

: ð6Þ

When v is a scalar and v and y are uniform, e.g., y ¼ u1
and v ¼ u2 with u1; u2 �U½0; 1�, Eq. (6) assumes the form

w ¼ hðu1; u2; h12Þ ¼ F1j2ðu1ju2Þ ¼ C1j2ðu1ju2Þ

¼ oCu1;u2ðu1; u2; h12Þ
ou2

:
ð7Þ

Equation (7) is known as the h-function. The second

argument is the conditioning variable, and h12 denotes the

set of copula parameters. More details can be found in Aas

et al. (2009). Furthermore, it is possible to define the in-

verse h-function; that is,

u1 ¼ h�1ðw; u2; h12Þ ¼ F�1
1j2ðwju2Þ ¼ C�1

1j2ðwju2Þ; ð8Þ

where w is uniformly distributed.

Aas et al. (2009) derived conditional copulas for some

commonly employed bivariate copulas. Joe (2014) pre-

sented a comprehensive list of h-functions and inverse

h-functions.

The inverse h-function plays a pivotal role in the sim-

ulation process, in that the algorithms for sampling from a

PPC are based on the inverse transformation procedure. For

further details, see Mai and Scherer (2012).

For the purpose of organising the PCCs, Bedford and

Cooke (2001, 2002) proposed a graphic model named the

regular vine (R-vine model). Broadly speaking, this con-

sists of a nested set of trees V ¼ ðT1; . . .; Td�1Þ, where the

edges in Tj are nodes in the tree Tjþ1. Moreover, two edges

in Tj are only joined by an edge in Tjþ1 if these edges share

a common node, as described by Kurowicka and Cooke

(2006). Figure 1 illustrates an example of an R-vine with

three variables. This particular tree structure, where each

node in T1 has a degree of at most two, is known as a

D-vine.

Copulas have been applied to model multivariate dis-

tributions. In particular, in cases where the number of

variables is high, the use of vine copulas is fairly common.

In addition, copulas are useful for modelling the temporal

dependence of a time series. For example, see Chen and

Fan (2006), Mendes and Aı́ube (2011), Mendes and

Accioly (2014), Brechmann and Czado (2015), Smith

(2015) and Joe (2014), and references therein.

Joe (2014) presented some copula formulations of a

univariate stationary time series. According to his work,

these formulations extend the Gaussian models, thereby

allowing the modelling of non-linear effects. In particular,

a Markov order p time series represented via a copula can

be understood as a non-linear version of the Gaussian

autoregressive model AR(p). The general form of a Mar-

kov order one series is yt ¼ gðet; yt�1Þ, where fetg is a

T1 : 1 2 3
c1,2 c2,3

T2 : 1,2 2,3
c1,3|2

Fig. 1 Example of a three-dimensional D-vine
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sequence of independent and identically distributed ran-

dom variables and fytg is a sequence of observed random

variables. Here, ei is independent of yj for j\i. For p� 2,

the general form assumes that yt ¼ gðet; yt�p; . . .; yt�1Þ.
This means that yt is only dependent on the past by way of

the most recent p observations.

Under certain conditions, ut ¼ FyðytÞ, with ut �U½0; 1�.
If p ¼ 1, then we have a copula between ut�1 and ut. If

p ¼ 2, then we have Ct�2;t�1;tðut�2; ut�1; utÞ, where the

marginal copula Ct�2;t�1 must be identical to Ct�1;t in order

to ensure stationarity. For p� 2, we have Ct�p;...;tðut�p;

. . .; utÞ, where marginal copulas that correspond to the same

time lag must be the same (see Joe 2014). According to Joe

(2014), one possibility for obtaining a copula that respects

these constraints is to use a D-vine.

Next, we present an example of how a Markov p time

series can be written in terms of pair-copulas. For this,

consider a univariate time series Y ¼ fY1; . . .;YTg, where
the joint density distribution of Y is f ðyT ; . . .; y1Þ. This can
be factorized as

f ðyT ; . . .; y1Þ ¼ f ðy1Þ �
YT

t¼2

f ðytjyt�1; . . .; y1Þ: ð9Þ

Assuming a Markov process of order two, the joint density

becomes

f ðyT ; . . .; y1Þ ¼ f ðy1Þ �
YT

t¼2

f ðytjyt�1; yt�2Þ: ð10Þ

We also know that

f ðytjyt�1; yt�2Þ ¼ ct;t�2jt�1ðutjt�1; ut�2jt�1Þ � ct;t�1ðut; ut�1Þ
� f ðytÞ;

ð11Þ

where utjt�1 ¼ Ftjt�1ðytjyt�1Þ and

ut�2jt�1 ¼ Ft�2jt�1ðyt�2jyt�1Þ. By inserting Eq. (11) into

Eq. (10), we obtain that

f ðyT ; . . .; y1Þ ¼ f ðy1Þ �
YT

t¼2

ct;t�2jt�1ðutjt�1; ut�2jt�1Þ

� ct;t�1ðut; ut�1Þ � f ðytÞ: ð12Þ

For example, if the marginal distributions are Gaussian

and all pair-copulas are bivariate Gaussian copulas, then

Eq. (12) represents a stationary Gaussian AR(2) (see Smith

et al. 2012).

3 Proposed model

In this section, we introduce the proposed periodic

methodology based on a vine copula model. First, let us

assume that yt, with t ¼ 1; . . .; T , is a streamflow time

series with period s (the number of intervals within a year).

Here, N is the number of years, i.e., T=s ¼ N. Hence, we

can rewrite the time index as t ¼ tðr;mÞ ¼ ðr � 1Þsþ m,

where r ¼ 1; . . .;N and m ¼ 1; . . .; s. In a monthly-based

time series, r represents the number of years, while m de-

notes the number of months.

Moreover, let utðr;mÞ ¼ Fmðytðr;mÞÞ and utðr;mÞ�i ¼
Fm�iðytðr;mÞ�iÞ. In this manner, the multivariate distribution

of a specific period m and its d � 1 previous months is

Fmðytðr;mÞ�dþ1; . . .; ytðr;mÞ�1; ytðr;mÞÞ
¼ Cm

t;...;t�dþ1ðutðr;mÞ�dþ1; . . .; utðr;mÞ�1; utðr;mÞÞ:
ð13Þ

The idea behind our approach is to estimate a d-di-

mensional vine copula for each period m, where both the

order and the copulas vary according to the period. Our

methodology has a straightforward relationship with the

periodic autoregressive models (PAR(p), see Salas et al.

1980). The PAR(p) model represents an extension of the

autoregressive model, where both the autoregressive

parameters and the orders change over the periods. Thus,

our model can be viewed as a (non-)linear version of

PAR(p). Mathematically, the PAR(p) model of order p ¼
½p1; . . .; ps� can be defined as

yt � lm
rm

� �
¼

Xpm

k¼1

/k;m

yt�k � lm�k

rm�k

� �
þ at; ð14Þ

where m represents the month (m ¼ 1; . . .; s), lm is the

monthly mean, rm is the monthly standard deviation, /k;m,

is the kth autoregressive parameter of the period m; pm is

the autoregressive order of the period m, and at represents a

series of independent noises with zero average and vari-

ance r2ðmÞa .

3.1 Streamflow simulation based on the periodic

vine copula model

Consider a d-dimensional distribution function F of some

random vector Y ¼ ðY1; . . .; YdÞ, with inverse conditional

distribution functions F�1
ij1;...;i�1ð�jy1; . . .; yi�1Þ for i ¼ 2;

. . .; d. The sampling of new observations y1; . . .; yd from F

can be performed by applying the inverse transformation

procedure. The general approach is based on a sequence of

inverse conditional distributions, and is summarised as

follows. We initially sample wi �Uð0; 1Þ for i ¼ 1; . . .; d,

and we subsequently iterate y1 :¼ w1; y2 :¼ F�1
2j1ðw2jy1Þ;

y3 :¼ F�1
3j1;2ðw2jy1; y2Þ, etc., until yd :¼ F�1

dj1;...;d�1ðwdjy1;
. . .; yd�1Þ. The resulting ðy1; . . .; ydÞ is a sample from F. For

further details, see Joe (2014).

This approach can also be employed to simulate new

observations from a copula, because any conditional dis-

tribution function can be expressed in terms of its copulas.
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This proceeds as u1 :¼ w1; u2 :¼ C�1
2j1ðw2ju1Þ; u3 :¼

C�1
3j1;2ðw2ju1; u2Þ; . . .; ud :¼ C�1

dj1;...;d�1ðwdju1; . . .; ud�1Þ. The
resulting ðu1; . . .; udÞ is a sample of dependent uniform

random variables.

In a streamflow simulation, the only variable in which

we are interested is the simulation of ut conditioned on the

previous d � 1 observations. Assuming that t belongs to a

period m, we have that

ut :¼ C�1
tjt�1;t�2;...;t�dþ1ðwtjut�1; ut�2; . . .; ut�dþ1Þ: ð15Þ

The simulated variable ut �Uð0; 1Þ must be transformed

back to the original scale using the corresponding inverse

cumulative distribution function. The inverse of the con-

ditional copula distribution (Eq. 15) can be written in terms

of h-functions and inverse h-functions, obtained via Eqs. 6,

7 and 8. For more details, see Aas et al. (2009) and Mai

and Scherer (2012).

4 Case study

We tested our approach on a monthly mean inflow ðm3=sÞ
time series, measured at the Manso hydroelectric power

plant. The data was provided by the Operator of the

National Electricity System (ONS). The time period cov-

ered runs from January 1931 to December 2012, totalling

82 complete years. By yt, we denote a realization of the

monthly mean inflow random variable Yt ðt ¼ 1; . . .; 984Þ.
Figure 2 depicts the original streamflow time series (left

hand side). On the right hand side, we observe the same time

series organised according to the months. It is possible to

observe that during drought periods (winter in Brazil, which

occurs in the middle of the year), the average and variance

are considerably smaller than for the wet periods (summer,

at the beginning and end of the year). This reveals the strong

periodicity that is present in these types of time series.

In the copula framework, the first step is to transform the

original data into copula data, i.e., to transform the original

time series y1; . . .; y984 to u1; . . .; u984 �U½0; 1�. For this

task, following an inspection of the data, we decided to

apply the gamma distribution as the marginal model. The

use of the gamma distribution to represent hydrologic data

is also common, mainly because its flexibility and positive

support (see, for example, Lee and Salas 2011; Li et al.

2013; Jeong and Lee 2015). Thus, for each month a gamma

distribution was fitted. The probability density function is

given by:

f ðxja; bÞ ¼ 1

baCðaÞ x
a�1e�x=b; ð16Þ

where x� 0; a is the shape parameter, and b is the scale

parameter. Both a and b are greater than zero.

Finally, the copula data is obtained through the proba-

bility integral transform

ûtðr;mÞ ¼ Fmðytðr;mÞjâm; b̂mÞ; r ¼ 1; . . .; 82;

m ¼ 1; . . .; 12;
ð17Þ

where Fm is the estimated gamma cumulative distribution

function of the period m.

Following the transformation, it is vital to check whe-

ther the copula data follows a standard uniform distribu-

tion. This can be achieved by applying the Anderson–

Darling test. The results indicate that the gamma distribu-

tion is a reasonable choice for the monthly marginal

distributions.

Having obtained the copula data, the next step is to

estimate the monthly vine copulas. One question that

emerges is that of how to choose the appropriate dimen-

sion. In our case, we allowed the periodic vine copula to

Time

m
3

s

14
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7
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2
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7

(a)
Months

m
3

s

0 197 394 591 788 984 1 2 4 6 8 10 12
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6
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1

43
7
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2

72
7

(b)

Fig. 2 Manso River.

a Streamflow of the Manso

River. b Periodicity of the

Manso River
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assume a dimension between two and four. This means that

we are constructing non-linear autoregressive models of

order equal to one, two, or three.

To determine these dimensions, we suggest performing

an iterative procedure together with a bivariate asymptotic

independence test (see Genest and Favre 2007). In doing

so, for each month we start with a two-dimensional copula.

In sequence, we estimate a three-dimensional copula, and

check if the conditional copula of ut�2 and ut given ut�1 is

an independence copula by using the independence test. If

it is an independence copula, then we choose the dimension

as two. Otherwise, we increase the dimension to four.

Again, we test if the conditional copula of ut�3 and ut given

ut�1; ut�2 is an independence copula or not. If we have

evidence that Ct�3;tjt�1;t�2 is not a product copula, then we

choose the dimension as four. On the other hand, if we

cannot reject the hypothesis that Ct�3;tjt�1;t�2 is an inde-

pendence copula, then we decrease the order to three.

The idea behind this methodology is that we only need

to check the last tree of the vine. This is equivalent to

testing whether or not the conditional copula

Ct�dþ1;tjt�1;...;t�dþ2 is an independence copula. In other

words, we are analysing the association between ut�dþ1 and

ut, excluding all intermediate effects. Thus, if the variable

ut�dþ1 has no association with ut, then we consider that the

dimensional d does not introduce any additional informa-

tion to explain the temporal dependence.

Regarding bivariate copulas, we allowed our model to

choose between the independence (I), Gaussian (N), Stu-

dent-t (S-t), Gumbel (G), Clayton (C), and Frank

(F) copulas.

The selection of the bivariate copulas was carried out

via the Bayesian information criterion (BIC). Table 1

presents the selected bivariate copulas. The Clayton cop-

ula, which only has a lower tail dependence coefficient,

occurs the most often. Thus, it is possible to affirm that

there is a dependence between lowflows, while the occur-

rence of highflows is more random. In terms of simulation,

this means that small streamflow values are very likely to

be followed by small values. In addition, the high fre-

quency of Archimedean copulas indicates the presence of

asymmetric dependence structures.

Table 2 depicts the selected dimensions of the monthly

copulas. Bivariate copulas are predominant. In fact, the

highest dimensions occurred between May and August,

which coincides with the winter/drought periods in Brazil.

In order to better understand the potential of the esti-

mated model, we performed an in-sample analysis. For

this, we calculated the one step ahead forecast. Unlike

linear models, the forecasts here cannot be obtained ana-

lytically, and for this reason they must be evaluated via

simulation.

For each one step ahead forecast, we simulated 5000

observations, given the past values of the streamflow time

series. The collection of these observations represents the

forecast conditional distribution, which means that the

conditional expectation can be obtained by calculating the

average of these simulations. Figure 3 depicts the original

time series (black line) and the fitted values (one step ahead

forecast—red line).

In addition, we also estimated the monthly residuals,

using the aforementioned forecasts. Figure 4 shows the

autocorrelation function of the residuals based on Ken-

dall’s s coefficient. The autocorrelations are close to zero.

Table 1 Copula families
I N S-

t

C G F

2 3 2 7 3 2

Table 2 Selected dimensions
Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Dim. 2 2 3 2 4 4 2 3 2 2 2 2

Time

m
3

s

0 197 394 591 788 984

14
6

29
1

43
7

58
2

72
7 Real values Fitted values 

Fig. 3 Real and fitted values for Manso River streamflow

cFig. 4 Auto-dependence function of residuals. a January. b February.
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The critical values of the independence test (Genest and

Favre 2007) are represented by the dotted lines. In practical

terms, if the autocorrelation lies between these two lines,

then we cannot reject the hypothesis that it is equal to zero.

Thus, we conclude that the proposed model is capable of

modelling the time dependence. Moreover, the proposed

approach appears to be reasonable for the identification of

the orders.

We now present the simulated scenarios obtained from

the estimated periodic vine copula model. We simulated

200 scenarios, each containing 60 months. To initialize the

procedure, we used the most recent year of the historical

time series. The simulation procedure has taken forty-seven

seconds on an Intel�Core(TM) i5-2430M with a CPU of

2.40 GHz and 4 GB of RAM. Our approach was

implemented in R based on the VineCopula R-Package

(Schepsmeier et al. 2015).

Figure 5 shows all the 200 generated scenarios (grey

lines), as well as their monthly averages (blue line) and the

historical average (red line). It can be observed that, the

proposed model was able to represent the strong periodicity

that exists in the data set. Furthermore, we clearly see that

the average of the scenarios practically coincides with the

historical average.

We performed some statistical tests to analyse these

scenarios in more depth. The variables of interest are the

monthly mean, the monthly variance, and the form of the

distribution in each month. For each one of the 60 months,

we verified whether this was statistically equal to the cor-

responding month in the historical record. This analysis

was repeated for all of the 60 simulated periods.

We employed the t-test, the Levene test, and the Kol-

mogorov–Smirnov test. The Kolmogorov–Smirnov test is a

non-parametric test that assesses whether two samples

come from the same distribution.

Figure 6 summarizes the results of these three tests. The

bars represent the p-values of the tests carried out for each

of the 60 periods. The black line indicates the significance

level of 5%. P-values greater than this level indicate that

the null hypothesis cannot be rejected. In practical terms,

these results indicate that the simulated scenarios replicated

the historical features of the observed streamflow time

series. The approval rates were 99% for all three of the

employed tests.

Finally, we demonstrate that the simulated scenarios

replicate the historical time dependence. For this analysis, a

new set composed of 200 scenarios consisting of 100 years

was simulated. For each scenario, we calculated the

monthly Kendall’s s coefficient up to lag five. Figure 7

presents a comparison between the historical values (red

triangle) and the average of the simulated values (blue dot).
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Fig. 5 Simulated streamflow scenarios
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Fig. 6 Statistical tests over the simulated scenarios. a t test. b Levene test. c K–S test

840 Stoch Environ Res Risk Assess (2018) 32:833–842

123



The simulated values are reasonably close to the historical

values for the majority of periods and lags. This allows us

to conclude that the proposed methodology accurately

models and replicates the time dependence.

5 Conclusion

Copula-based models for a single-site stochastic simulation

only consider a lag-one time dependence. For this reason,

the aim of this paper was to propose a new methodology

based on vine copulas, in order to correctly deal with lags

that are greater than one. Our model can be understood as a

non-linear periodic autoregressive model, where the

dimensions and the copulas vary according to the periods.

The copula approach overcomes some drawbacks of the

ARMA models. It does not simulate unrealistic scenarios

(scenarios with negative values), can correctly model non-

linear effects, and is flexible to the point of modelling non-

standard marginal distributions. Unlike the outlined copula

models for hydrologic simulation, our approach can also

model high-order periodic streamflow time series.

An in-sample analysis indicated that the model was able

to accurately model the temporal structure of the Manso

River. Furthermore, an investigation of the generated sce-

narios demonstrated that the proposed model is capable of
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simulating scenarios that preserve features that are

observed in the historical time series.
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