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Abstract Reservoirs are the most important constructions

for water resources management and flood control. Great

concern has been paid to the effects of reservoir on

downstream area and the differences between inflows and

dam site floods due to the changes of upstream flow gen-

eration and concentration conditions after reservoir’s

impoundment. These differences result in inconsistency

between inflow quantiles and the reservoir design criteria

derived by dam site flood series, which can be a potential

risk and must be quantificationally evaluated. In this study,

flood frequency analysis (FFA) and flood control risk

analysis (FCRA) methods are used with the long reservoir

inflow series derived from a multiple inputs and single

output model and a copula-based inflow estimation model.

The results of FFA and FCRA are compared and the

influences on reservoir flood management are also dis-

cussed. The Three Gorges Reservoir (TGR) in China is

selected as a case study. Results show that the differences

between the TGR inflow and dam site floods are significant

which result in changes on its flood control risk rates. The

mean values of TGR’s annual maximum inflow peak dis-

charge and 3 days flood volume have increased 5.58 and

3.85% than the dam site ones, while declined by 1.82 and

1.72% for the annual maximum 7 and 15 days flood vol-

umes. The flood control risk rates of middle and small flood

events are increased while extreme flood events are

declined. It is shown that the TGR can satisfy the flood

control task under current hydrologic regime and the

results can offer references for better management of the

TGR.

Keywords Design flood � Inflow flood � Dam site flood �
Hydrologic change � Three Gorges Reservoir

1 Introduction

Flood is one of the most common and severest disasters in

the world and also a major constraint to the social and

economic actions (ICOLD 2006; Kussul et al. 2008; Uddin

et al. 2013; Poussin et al. 2015; Gao et al. 2015; Kwon and

Kang 2016). A large number of hydraulic projects have

been built to control flood disasters, mitigate flood loss and

protect lives and properties of people, of which the most

significant ones are reservoirs. Reservoirs are widely

regarded as one of the most efficient measures for inte-

grated water resource management and development and

usually have comprehensive benefits such as flood con-

trolling, hydropower generation, water supplies for agri-

cultural, industrial and municipal uses (Liu et al. 2013;

Chen et al. 2016).

Nowadays, people have turned their attention from the

benefits to the impacts of hydraulic projects as environ-

mental protection is raised into the international agenda.

Graf (2001) stated that the construction of reservoir will

significantly change the natural hydrologic regime of the

basin. Many other studies also show that reservoirs have

major impacts on river hydrology through changes in the

timing, magnitude, frequency of low and high flows, and

result in hydrologic regime differing significantly from the

natural flow regime (Magilligan and Nislow 2005; Graf

& Shenglian Guo

slguo@whu.edu.cn

1 State Key Laboratory of Water Resources and Hydropower

Engineering Science, Hubei Provincial Collaborative

Innovative Center for Water Resources Security, Wuhan

University, Wuhan 430072, China

2 China Yangtze Power Co., Ltd, Yichang 443000, China

123

Stoch Environ Res Risk Assess (2018) 32:419–433

https://doi.org/10.1007/s00477-017-1401-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-017-1401-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-017-1401-4&amp;domain=pdf
https://doi.org/10.1007/s00477-017-1401-4


2006; Jung et al. 2015). With the construction of dams, part

of upstream basin is submerged into water and the original

riparian lands lose the ability for flood regulation, which

will ultimately change the flood generation and concen-

tration process of the upstream basin (Gregory 2006).

Batalla et al. (2004) analyzed the impacts of dams on

downstream hydrologic regime in the Ebro river basin, and

found that the 2 and 10-day flood volumes both have

reductions over 30%. Lajoie et al. (2007) studied the

impacts of dams on a month time scale and revealed the

flood magnitude, duration, frequency, skewness and kur-

tosis are all altered at different degrees. Lu et al. (2011)

used linear regression method to compare the inflow and

dam site flood series of Zhelin reservoir and found that the

inflow peak discharge and daily mean discharge are larger

than the dam site ones while the 3 days flood volumes

show no obvious difference. However, the linear method is

unable to describe the nonlinear characteristics of hydro-

logic events well. Duan et al. (2016) studied the impact of

cascaded-reservoirs group on flow regime in the middle

and lower reaches of the Yangtze River and predicted that

the downstream regime will further alter in the future.

Considering the differences between inflow and dam site

floods, Federal Emergency Management Agency (FEMA

2013) indicated that the inflow design flood is the flood

hydrograph entering a reservoir, which should be used to

design a specific dam and its appurtenant structures,

especially spillway and outlet works capacity. Neverthe-

less, the available inflow flood series are usually very short

in practice, commonly 30–80 years and even less for new

built reservoirs. Hence in practical projects, dam site flood

series are widely utilized to offer dominant references for

the reservoirs’ design criteria since inflow flood series are

unavailable before reservoir’s construction. The inconsis-

tency between reservoir’s design criteria and the inflow

flood features can be significant during flood season.

Taking the Three Gorges Reservoir (TGR) as an example,

the maximum observed flood peak discharge at Yichang

station (the TGR’s dam site) is 70,600 m3/s since 1877,

while two TGR inflow peak discharges (70,000 m3/s

occurred on July 20, 2010 and 71,200 m3/s occurred on

July 24, 2012) have been recorded after the TGR’s

impoundment, which brought great concern and numerous

queries about the TGR’s design criteria from the public.

Therefore, it is very urgent and necessary to quantify the

differences between the dam site and inflow floods, and

further evaluate the design criteria derived from annual

maximum flood series at dam site.

Flood frequency analysis (FFA) and flood control risk

analysis (FCRA) methods are widely used in reservoir

design and management. The FFA is a useful tool for

describing flood features and a major hydrological method

for design flood estimation (ICOLD 2003). The results of

FFA are traditionally most evident in the design of major

engineering structures such as dams, which are often rep-

resented by a series of quantiles (Bao et al. 1987; Tofiq and

Guven 2014; Lázaro et al. 2016; Bezak et al. 2016). The

FCRA is a method for quantifying the possible flood risk of

hydraulic projects. Risk is often measured by both the

probability of the event and the seriousness of the conse-

quences (Plate 2002). As for the definition of flood control

risk, there are different opinions such as the reservoir level

above a critical level (e.g., the risk of dam overtopping or

reaching the check flood level) and the reservoir release

exceeds a critical discharge (Tung and Mays 1981). There

have been many methods established for risk analysis in the

field of hydrology and hydraulics, which can be generally

classified into three categories: (1) Direct integration

method (Jonkman et al. 2003; Hall et al. 2003); (2) Struc-

tural reliability analysis methods, including mean value

first-order second-moment (MFOSM) method, advanced

first-order second-moment (AFOSM) method and advanced

checking-point (JC) method (Ganji and Jowkarshorijeh

2012; Chen et al. 2013; Goodarzi et al. 2014; Huang et al.

2014; Kim et al. 2015); (3) Sampling based methods, such

as Monte Carlo simulation method and Latin hypercube

sampling method (Kucherenko et al. 2015; Liu et al. 2011;

Schiozer et al. 2015; Huang et al. 2016). Owing to the

complexity of the inflow distribution, the model and

parameter uncertainties, the Monte Carlo method are the

most reliable method and benchmark for risk analysis

(Turgeon 2005). With the computer performance improving

faster and faster, the large computation burden of applying

Monte Carlo method can be solved to a large degree.

Reservoir inflow flood series can be estimated and

simulated by either hydrologic models or statistical meth-

ods. The underlying assumption of hydrologic models is

that the model calibrated with the observed recordings are

good enough for simulating flood hydrographs with pre-

cipitation series and the basin properties as input (Requena

et al. 2016). Hydrologic models can be classified into two

categories, lumped and distributed, resting with if the

parameters are spatially distributed or not. Sherman (1932)

proposed a unit hydrograph model to estimate runoffs with

precipitation data. Wood et al. (1992) derived the variable

infiltration capacity model by adding the soil layers of

Xinanjiang model (Zhao 1992). Liang et al. (1992) used a

multiple inputs and single output (MISO) model to simu-

late the runoffs at Yichang station, China. Garcia-Bartual

(2002) developed artificial neural networks for short-term

river flow forecasting. More recently, a lot of distributed

physically-meaningful models have been developed with

wider availability of distributed data products (Ewen et al.

2000; Kowen 2000; Liu and Todini 2002; Vivoni 2003;

Guo et al. 2009; Cea and Rodriguez 2016). Another

approach for flood series estimation is via statistical
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models. Since this method is purely mathematical, some

argue that it makes little contribution for understanding the

physical mechanism of hydrologic phenomena (Katz et al.

2002). However, previous researches show that this method

is efficient and thus widely used in practice (Clarke 1979;

Clarke 1980; Moog et al. 1999; Nelsen 1999; Wang 2001;

Elsanabary and Gan 2015). The statistical method is usu-

ally applied to extend flood series by identifying its sta-

tistical relation with longer records of precipitation or

hydrologic records of nearby stations. Clarke (1979) used

two correlation models to extend annual stream flow

records with precipitation data subject to heterogeneous

errors. Hirsch (1982) compared four extending methods

(regression, regression with noise and maintenance of

variance extension type I and II) and found the second

maintenance of variance extension (MOVE) method per-

formed best and could overcome the shortage of underes-

timating variance. Moog et al. (1999) combined the MOVE

method with Box–Cox transformation to improve accuracy

in estimating order statistics of flow rate. Wang (2001)

introduced a two-site joint probability approach for the

transfer of flood information between two stations. By

extending flood series, long flood series are obtained which

can meet the data requirement of the FFA and FCRA

methods with high return periods (Saad et al. 2015).

Recently, the copula theory introduced by Sklar (1959)

provides a new approach for hydrologic data extension.

Copula is a cluster of functions that connects multivariate

probability distribution to their one-dimensional marginal

distributions (Zhang and Singh 2006; Li et al. 2016). Since

copula can overcome the shortcomings of traditional multi-

variate distributions, such as the assumption of a linear

relation between the variables involved and that all the

variables must have the samemarginal distribution (Requena

et al. 2016), it has been widely used in hydrologic multi-

variate analysis. Ganguli and Reddy (2013) assessed flood

risks using trivariate copula on Delaware catchment, USA.

Chen et al. (2015) used copula to simulate multisite monthly

and daily streamflow and found the simulated series can

preserve the spatial correlations among different stations.

Chang et al. (2016) attempted to assess drought risk by using

a copula-based method with an integer index inWeihe basin,

China. Duan et al. (2016) applied bivariate FFA in theHuaihe

basin and indicated that copula is a flexible and viable tool for

quantifying the flood risks. As for flood series extension,

Requena et al. (2016) delivered a method of combing a

hydrologic model and a copula-based model, and results

showed that their method can extend the flood series well.

Although researchers have well recognized the differ-

ences between inflow and dam site floods, its influence on

flood risk management is seldom considered. In this study,

we focus on identifying the differences between inflow and

dam site flood series based on the FFA and FCRA methods.

A multiple inputs and single output (MISO) model and a

copula-based model are proposed to estimate and extend

inflow flood series. The remainder of this paper is orga-

nized as follows. Section 2 gives a brief introduction of the

TGR basin and presents the data used in this study. Sec-

tion 3 shows the main methodologies. Section 4 gives

results and discussions on the case study of the TGR. The

final section displays the conclusions of this study.

2 Study area and data

2.1 The Three Gorges Reservoir

The Three Gorges Reservoir (TGR) is world-famous as the

largest water conservancy project in the Yangtze River

basin, which is a most social-economically developed area

in China. The TGR is a multipurpose reservoir with several

benefits such as flood control, hydropower generation,

navigation improvement, ecology protection and etc. The

TGR has a contributing area of about 1 million km2, while

its intervening basin is only 5.6 9 104 km2 as shown in

Fig. 1. The annual average discharge and runoff volume at

the dam site are 14,300 m3/s and 4510 9 108 m3, respec-

tively. The total storage capacity of the TGR is

393 9 108 m3, of which 221.5 9 108 m3 is flood control

storage. The flood season of the TGR basin is June–Oc-

tober every year. The TGR started to impound water in

2003 and reached to the normal water level of 175 m in

2010 (MWR 2009; Li et al. 2014).

Yichang station is the control hydrologic station of

upper Yangtze River basin and is 44 km below the TGR

dam site. The records of Yichang station are regarded as

flood series at dam site and used for designing the TGR

project. Three typical flood hydrographs (1954, 1981 and

1982) at dam site were amplified to obtain design flood

hydrographs and then transformed into inflow floods by

Fig. 1 The TGR’s intervening basin
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inverse Muskingum routing method to offer reference for

deciding the construction criteria (Xu et al. 2016).

2.2 Data set

The inflow flood of the TGR consists of three parts as shown

in Fig. 1. They are the mainstream discharge gauged by

Cuntan station, the tributary discharge gauged by Wulong

station and the intervening precipitation runoff. Both the

Cuntan and Wulong stations have gauged flow discharge

data from 1960 to 2013. The precipitation data of 40 rainfall

stations located over the intervening basin are also available

from 1960 to 2013. The Yichang hydrological station was

setup in 1877 and the observed flow discharge data are also

available. The inflow data of the TGR are available from

2003 to 2013. The data sets above have a 6 h time interval,

which are provided and quality controlled by Changjiang

Water Resources Commission (CWRC), the official man-

agement agency of Yangtze River basin.

The reservoir inflow cannot be gauged and needs to be

estimated or extend as previously mentioned. In this study,

the estimation and extension of inflow flood series is divided

into three periods: (1) For the period from 2003 to 2013 after

the TGR’s impoundment, the data sets are used to calibrate

and validate the MISO model. (2) For the period from 1960

to 2002, the upstream hydrologic data and precipitation

recordings of intervening basin are available. The calibrated

MISO model is used to estimate inflow flood series. (3) For

the period from 1877 to 1959, only the dam site flood series

at Yichang station are available. The inflow flood series are

estimated by a copula-based model.

3 Methodology

3.1 Multiple inputs and single output model

The multiple inputs and single output (MISO) model is a

linear modeling technique for flow routing and simulation

on large catchments. The inflow flood series of the TGR

from 2003 to 2013 were simulated by the MISO model

following Liang et al. (1992), in which the TGR’s inter-

vening basin was divided into six sub-basins considering

the spatial distribution of precipitation. The formulation of

the MISO for flood simulation can be expressed as follows:

bQt ¼
X
m1

j¼1

Qc
t�jþ1h1 Dt; jð Þ þ

X
m2

j¼1

Qw
t�jþ1h2 Dt; jð Þ

þ
X
6

p¼1

X

mp

j¼1

1000Ap

dt
Rp;t�jþ1h

ðpÞ
j ð1Þ

where bQt denotes the simulative inflow of the TGR at time

t; Qc
t and Qw

t denote the gauged flood of Cuntan station and

Wulong station at time t, respectively; Ap denotes the area

of the pth sub-basin; dt denotes the time interval of the data

series, which is 6 h in this research; h �ð Þ denotes the

impulse responses of the corresponding input, which rep-

resents the contribution of each input to the streamflow; m

denotes the memory length of the corresponding input,

which is defined as the longest concentration time of each

rainfall input; Rp;t denotes the net rainfall derived by

rainfall-runoff relationship graph method (Fedora 1989) of

the pth sub-basin at time t, the rainfall-runoff relationship

curve for the TGR intervening basin is plotted in Fig. 2,

and the antecedent precipitation index Pa can be updated

using the following equations:

Pa;tþ1 ¼
KðPa;t þ PtÞ Pa;tþ1\Wm

Wm Pa;tþ1 �Wm

�

ð2Þ

where Pa,t is the antecedent precipitation index for tth

period; Pt is the precipitation volume of the tth period; K is

the evaporation reduction index, 0\K\1; Wm is the water

storage capacity of the basin (mm), which is 40 mm for the

TGR intervening basin.

Equation (1) can be transformed into matrix format:

bQt ¼ X � H ð3Þ

where H ¼ h1; h2; h
ð1Þ; . . .; hð6Þ

� �T
; X denotes the input

matrix corresponding to H.

The estimated bH can be computed by the least square

method (Liang et al. 1992):

bH ¼ XTX
� ��1

XTQ ð4Þ

where Q denotes inflow discharge. The parameter m can be

estimated by the trial and error method and should keep

relatively small to avoid model over-fitting.

Fig. 2 Rainfall-runoff relationship curve for the TGR intervening

basin
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Three indexes are chosen for evaluate the MISO’s

model efficiency. They are the Nash–Sutcliffe coefficient

of efficiency (NSCE), the mean relative error of the volu-

metric (RE) and the absolute relative error of flood peaks

(AE). These indexes are calculated by following equations:

NSCE ¼ 1�
P

Qt � bQt

� �2

P

Qt � Q
� �2

2

6

4

3

7

5� 100% ð5Þ

RE ¼
P

Qt � bQt

� �

P

Qt

� 100% ð6Þ

AE ¼
P

Qmax;i � bQmax;i

	

	

	

	

	

	

P

Qmax;i
� 100% ð7Þ

where Qt and bQt are the observed and simulated inflows at

time t, respectively; Q is the mean value of Qt; Qmax;i and

bQmax;i are the observed and simulated peak discharges of

ith year, respectively.

The NSCE is a widely used index for evaluating model

efficiency, and a high NSCE value indicates good model

performance. The other two indexes RE and AE represent

the model’s ability for describing flood features, and the

more approximately to zero the better.

3.2 Coupla-based extension model

F
i
ðxiÞ (i ¼ 1; 2; . . .; n) denotes the cumulative distribution

function (CDF) of Xi. According to Sklar’s theorem (1959),

the multivariate distribution function H1;2;...;nðx1; x2; . . .; xnÞ
can be expressed in terms of its marginal and the associated

dependence function:

CðF1ðx1Þ;F2ðx2Þ; . . .;FnðxnÞÞ ¼ H1;2;...;nðx1; x2; . . .; xnÞ
ð8Þ

where C �ð Þ, called the copula function, is uniquely deter-

mined whenever FXi
ðxiÞ are continuous, and captures the

essential features of the dependence among the random

variables.

Let X denotes the dam site series and Y denote the inflow

series. The bivariate copula joint distribution can be

expressed as:

C u; vð Þ ¼ C FX xð Þ;FY yð Þð Þ ð9Þ

where u = FX(x) and v = FY(y) denote the marginal dis-

tribution of X and Y, respectively.

For a given x, the conditional CDF of Y can be expressed

as:

FY jXðyÞ¼
oCðu; vÞ

ou
ð10Þ

And the corresponding conditional probability density

function (PDF) is:

fY jXðyÞ ¼ cðu; vÞfYðyÞ ð11Þ

The most likely condition value of Y is used as the

extension result and can be obtained by maximizing

fY jX yð Þ:
yM ¼ argmaxfY jXðyÞ ð12Þ

where yM is the most likely value of Y conditioned on

X = x.

For a given significance level a, specifically if a ¼ 0:10,

then the 5 and 95% quantiles compose the 90% estimation

interval y1; y2½ � of Y, which is used to describe the uncer-

tainty of the estimation results, i.e.

FY jXðy1Þ¼ 0:05 ð13Þ

FY jXðy2Þ¼0:95 ð14Þ

Different families of copulas have been proposed and

described by Nelsen (2006). Of all the copula families, the

Archimedean family is the most suitable for hydrological

analyses since it’s easy to be constructed and can be

applied to whether the correlation among the hydrological

variables is positive or negative. Three most widely used

one-parameter Archimedean copula functions, including

the Gumbel–Hougaard, Frank and Clayton copulas, have

been applied in hydrologic fields by many authors (Favre

et al. 2004; Zhang and Singh 2006; Salvadori and De 2007;

Timonina et al. 2015; Xu et al. 2016). The PDFs of these

copulas and their parameter a estimated by Kendall cor-

relation coefficient s were listed in Table 1.

The Cramér-von Mises test statistic Sn (Genest et al.

2009) and the Akaike information criterion statistic AIC

(Akaike 1974) were used to select a proper copula function.

Let Ri be the rank of xi among xi,…, xn and Si is the rank of

xi among xi,…, xn, being i = 1,…, n and n the observed

record length. Sn can be written as:

Sn ¼
X
n

i¼1

Cn

Ri

nþ 1
;

Si

nþ 1


 �

� Chn
Ri

nþ 1
;

Si

nþ 1


 �� 2

ð15Þ

in which

Cnðu; vÞ ¼
1

n

X
n

i¼1

H
Ri

nþ 1
� u;

Si

nþ 1
� v


 �

ð16Þ

where Cn is the empirical copula (a non-parametric rank-

based estimator of the unknown copula), Chn is the para-

metric copula with the parameter previously estimated

from the observed data and H xð Þ is the indicator function

of the set X.
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The p value associated to the test statistic Sn is computed

based on the parametric bootstrap technique introduced by

Genest et al. (2009) to formally assess whether the selected

model is suitable. The selected copula should have a lower

value of the statistic Sn relative to an admissible p-value

(i.e. larger than 0.05).

The AIC can be expressed as following Zhang and Singh

(2006):

AIC ¼ n ln MSEð Þ þ 2k ð17Þ

MSE ¼ 1

n� k

X
n

i¼1

xi � bxið Þ2 ð18Þ

where n is the length of data series; k is the number of

model parameters, which is 1 for bivariate Archimedean

copula functions; xi and bxi are the ith observed value and

the corresponding simulated value, respectively. The best

model is the one that has the smallest AIC value.

3.3 Flood frequency analysis

The Pearson Type Three (P3) distribution is recommended

by Ministry of Water Resources of China for hydrological

frequency analysis (MWR 2006; Hong et al. 2015; Xu

et al. 2016). For a given sample series fx : c\x\þ1g,
the PDF of P3 distribution is expressed as:

f ðxÞ ¼ ba

CðaÞ ðx� cÞa�1
e�bðx�cÞ ð19Þ

where a,b and c are the shape, scale and location param-

eters, respectively, Cð�Þ is the Gamma function.

The FFA is normally carried out by fitting an assumed

theoretical PDF to the observed data and then estimate

quantile for a given return period (Vogel and Wilson 1996).

Given exceedance probability p 2 0; 1ð Þ, the corresponding
quantile xp can be calculated by solving the integral

equation:
Z 1

xp

f xð Þdx ¼ 1� p ð20Þ

where f(x) is the PDF of the P3 distribution; xp denotes the

value which is larger than p of the totality. The p value is

determined by the actual demands. For the TGR, four

p values (0.01, 0.1, 1 and 5%), which corresponding to

return periods 10,000, 1000, 100 and 20 years, respectively

are considered in this study.

3.4 Flood control risk analysis

The FCRA is implemented by Monte Carlo method with

the flood hydrographs generated by seasonal autoregressive

model. Then the FCRA results are compared with the

TGR’s design risk rates to quantify the differences.

3.4.1 Seasonal autoregressive model

The seasonal autoregressive (SAR) model has been widely

used in hydrologic forecasting and stochastic runoff sim-

ulation (Salas et al. 1982; Modarres 2007; Unami et al.

2010). The SAR model for inflow flood simulation can be

described as follow:

Qt;g ¼ u0;g þ u1;gQt;g�1 þ � � � þ up;gQt;g�p þ et;g ð21Þ

where ui;g denotes the ith auto-regression parameter of the

gth day; Qt;g denotes the tth simulated flood discharge of

the gth day; et;g denotes the error term. The parameter

estimation method of SAR model is not discussed here and

the readers can refer to Modarres (2007).

The typical design flood hydrographs of the TGR were

30 days in length. To make the analysis results compara-

ble, the hydrographs of the TGR’s annual maximum

30 days inflow flood from 1877 to 2013 were selected to

calibrate the SAR model. Totally 106 simulative hydro-

graphs of the TGR’s annual maximum 30 days inflow flood

were simulated by SAR model. The statistics of Q, Cv, Cs

and linear correlation coefficient q were computed to

evaluate the SAR performance. Following Li et al. (2016),

the relative root mean square errors (RRMSE) of each

variable above is computed by:

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X
n

i¼1

xi � bxi

xi


 �2
 !

v

u

u

t ð22Þ

where n denotes the length of the data series; xi denotes the

true values of the variable; bxi denotes the values of the

simulative data. A small RRMSE value usually indicates a

good simulation result.

Table 1 Probability

distribution functions of three

Archimedean copulas

Copula type Probability distribution function* Parameter estimation

Gumbel–Hougaard expf�½ðln uÞa þ ðln vÞa�1=ag s ¼ 1� 1
a

Frank � 1
a ln 1þ e�au�1ð Þ e�av�1ð Þ

ea�1

h i

s ¼ 1þ 4
a

1
a

R a
0

x
ex�1

dx� 1
� �

Clayton max½ðu�a þ v�a � 1Þ�1=a; 0� s ¼ a
aþ2

* u and v denote the marginal distribution of X and Y, respectively
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3.4.2 Flood control risk analysis based on Monte Carlo

method

The SAR simulated flood hydrographs were regulated

referring the TGR’s flood control operation rules issued by

the Ministry of Water Resource of China (MWR 2009).

The highest reservoir water level for each hydrograph was

recorded. The TGR takes compensation operation method

considering the safety of Jinjiang river reach in practice. A

brief introduction of the TGR’s operation rules is as

follows:

1. When the water level of the TGR is less than 171.0 m,

the operation should ensure the water level of Shashi

hydrologic station downstream the TGR less than

44.5 m;

2. When the water level of the TGR is between 171.0 and

175.0 m, the operation should keep the discharge at

Zhicheng hydrologic station less than 80,000 m3/s and

the water level of Shashi station below 45.0 m, under

the assistance of flooding detention facilities;

3. The TGR’s discharge should not excess its discharge

capacity.

The flood control risk of the TGR is defined as the

probability of the reservoir water level excessing a critical

value:

R ¼ Pr ob Z[ Zcð Þ ¼

P
M

i¼1

H Zi [ Zcð Þ

M
ð23Þ

where Zi denotes the maximum reservoir water level of ith

operation trial; Zc denotes the critical reservoir water

levels, which come from the design flood hydrographs of

the TGR; H Zi [ Zcð Þ ¼ 1 when Zi [ Zc, otherwise

H Zi [ Zcð Þ ¼ 0; M denotes the number of Monte Carlo

operation trial times.

4 Results and discussion

4.1 Simulated inflow series by the MISO model

of the TGR

Inflow flood series of the TGR were used to calibrate and

validate the MISO model. The calibration and validation

periods were 2003–2010 and 2011–2013, respectively.

Table 2 shows that the MISO model performs well with its

NSCE up to 98% and very small RE and AE values for both

the calibration and validation periods. Since the stream-

flows of Cuntan station and Wulong station account for up

to 95% of the TGR’s inflow streamflow, the uncertainty of

modelling results mainly comes from the intervening

inflow, which is estimated with the intervening precipita-

tion data.

The TGR’s inflows during 19060–2002 were estimated

by the calibrated MISO model. Since there are not inflow

records before the TGR’s impoundment, the estimated

inflow series cannot be evaluated directly by comparing it

with gauged data. Therefore, the estimated inflows of the

TGR were routed from Qingxichang station (inflow point

confirmed by CWRC) to Wanxian and then to Yichang

station by Muskingum method (McCarthy 1938; Cunge

1969) and compared with gauged flood series at Yichang

station. The routing path can be referred to Fig. 1 and the

parameters of Muskingum equation were listed in Table 3.

The routed and observed flood hydrographs at Yichang

station during flood season of 1981 and 1982 (typical years

for the TGR dam’s design criteria) were plotted in Fig. 3a,

b, respectively.

As Fig. 3 shown, the routed flood hydrograph can fit the

observed flood hydrograph preferably for both years. Also,

the routed hydrographs simulate the magnitude and

occurrence time of flood peaks well. It is also observed in

Fig. 3 that the inflow flood usually have higher and earlier

peak discharge than the dam site flood with the same

precipitation event. By statistically comparing the occur-

ring time of annual maximum inflow and dam site peak

discharges during 1960–2013, it is found that under the

same precipitation condition, the inflow peak discharge

usually appeared 1–2 days earlier than the dam site flood.

In practical flood management work, the decision maker

should notice this variation and make operation decision in

advance.

4.2 Extension of the TGR’s inflow series by copula-

based model

Three most widely used Archimedean copulas in hydro-

logical analyses were assessed by Cramér-von Mises test

and Akaike information criterion. Based on the observed

dam site flood series and the inflow flood series estimated

by the MISO model, the Sn, p and AIC values of the three

copulas for the annual maximum flood discharge (Qmax), 3,

7, 15 days flood volumes (W3d, W7d and W15d) were listed

in Table 4. The p values were derived by 10,000 para-

metric bootstrap samples. With all the p values larger than

0.05, all three copula functions can pass the Cramér-von

Mises test. Among the three copulas, Gumbel–Hougaard

Table 2 Evaluation indexes of the MISO model

Period NSCE (%) RE (%) AE (%)

Calibration period (2003–2010) 97.88 0.13 2.86

Validation period (2011–2013) 98.58 -0.74 1.30
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(GH) copula has the smallest AIC values, which means GH

copula is the best one under the Akaike information cri-

terion. Therefore, the GH copula is chosen because it has

the advantage of upper tail dependence (Poulin et al. 2007)

and is more suitable for extending inflow series.

The estimated parameters for GH copula were listed in

Table 5 and the comparisons of the empirical plots and

theoretical copula frequency curve of Qmax, W3d, W7d and

W15d were plotted on Fig. 4a–d, respectively. The theo-

retical frequency curves can fit the empirical plots very

well, which indicates an overall satisfactory agreement

between the empirical and theoretical joint CDF. Fig-

ure 5a–d demonstrate the conditional most likely values

and 90% confidence intervals of inflow Qmax, W3d, W7d and

W15d, respectively. Most of the TGR’s inflow floods are

located within the 90% confidence intervals. The interval

width becomes narrow with larger dam site discharges.

Given the dam site values of Qmax, W3d, W7d and W15d, the

inflow Qmax, W3d, W7d and W15d during 1877–1959 were

extended by the most likely values of the PDF conditioned

on dam site values.

4.3 Flood frequency analysis results

The FFA was conducted with the inflow series of the TGR

for 1877–2013. The parameters of the P3 marginal distri-

butions were estimated by L-moment method (Hosking

1990; Yang et al. 2010) based on the TGR’s inflow flood

series from 1877 to 2013. Chi Square goodness-of-fit and

Kolmogorov–Smirnov (K–S) test were performed (Tsai

et al. 2001; Rahman et al. 2010). Table 6 shows that the P3

distributions with the estimated parameters could not be

Table 3 Muskingum parameters for flood routing

Segment Dt (h) C0 C1 C2

Qingxichang–Wanxian 18 0.187 0.430 0.383

Wanxian–Yichang 18 0.325 0.325 0.350

Fig. 3 Comparison of Muskingum Routed and gauged flood hydrographs of Yichang station. a 1981, b 1982
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rejected at the 5% significance level because v2\ v20:05 and
all Dn\Dn,0.95.

Table 7 displays the FFA results of the TGR inflows and

dam site floods. The comparisons of inflow and dam site

theoretical frequency curves for Qmax, W3d, W7d and W15d

were plotted on Fig. 6. The relative bias (RB) values were

calculated to quantify the differences between the FFA

results of inflow and dam site floods, i.e.

RB ¼ xinflow � xdamsite

xdamsite
� 100% ð24Þ

Significant differences can be observed with the RB

values in Table 7. The mean values of inflow Qmax andW3d

have increased by 5.58 and 3.85% relative to the dam site

ones. The differences are significant by t-test (Haynes

2013) at 1% confidence level. However, the mean values of

inflow W7d and W15d decline slightly by 1.82 and 1.72%

than the dam site ones, respectively, and the differences are

neither significant at 5% confidence level by t-test. Results

reveal that the TGR’s inflow floods are larger than the dam

site floods for flood volumes with shorter durations. A

possible explanation of the decreases of long-duration flood

volume (e.g. W7d and W15d) mean values may be that the

impoundment of the TGR has increased the water surface

area and also the evaporation rate of the basin. On the other

hand, the flood concentration velocity of reservoir is faster

than the natural river channel since the flood wave feature

has changed (Li and Singh 1993), which results in positive

RB values of short-duration peak discharge and flood vol-

umes (e.g. W3d). The coefficient of variation Cv reflects

discreteness of the data series. All the Cv values of inflow

flood series are larger than these at dam site ones, which

reflects the TGR’s inflows are more asymmetric in tem-

poral distribution.

Flood disaster is usually resulted by extreme inflow

discharges, thus more attention should be paid to the upper

tails of the frequency curves. Figure 6 shows that the fre-

quency curves have much larger differences on the upper

tails, which are the regions for the design values of the

TGR dam. To further investigate these differences, the

Table 4 Statistics for selection of copula functions

Variable Statistics Gumbel–Hougaard Frank Clayton

Qmax Sn 0.0212 0.0198 0.0237

p 0.8367 0.8489 0.8428

AIC 1021.6 1019.8 1216.4

W3d Sn 0.0179 0.0206 0.0186

p 0.8065 0.8322 0.7987

AIC 280.8 281.1 292.4

W7d Sn 0.0202 0.0233 0.0236

p 0.8652 0.8473 0.8561

AIC 257.6 259.5 265.6

W15d Sn 0.0266 0.0217 0.0304

p 0.8157 0.8369 0.8211

AIC 219.4 228.9 246.3

Table 5 Estimated Kendall’s

Tau and parameter values of

Gumbel–Hougaard copula

Variable s a ¼ 1
1�s

Qmax 0.817 5.46

W3d 0.834 6.02

W7d 0.874 7.94

W15d 0.899 9.90

Fig. 4 Comparison of the

empirical plots and theoretical

copula frequency curve. a Qmax,

b W3d, c W7d, d W15d
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0.01, 0.1, 1 and 5% quantiles of inflow and dam site Qmax,

W3d, W7d and W15d were calculated and compared in

Table 7. Qmax shows the most significant variation among

the four variables with RB values varying from 6.92 to

9.29% relative to the dam site ones. Other inflow quantiles

also increased to different degrees with all the RB values

larger than zero. It can be concluded that the construction

criteria of the TGR derived by dam site FFA results are

generally smaller than the inflow FFA results. This

underestimation seems more evident for extreme flood

events since the 0.01% quantiles had the largest RB values.

It should be highlighted that only annual maximum 6 h

discharge data series were compared in this study due to

the limitation of gauged data series. Fill (2003) demon-

strated that instantaneous peak discharges may be

considerably larger than 6 h time-averaged ones. The

actual differences between the TGR’s inflow and dam site

instantaneous peak discharges may be more significant.

The inconsistency between inflows of the TGR and design

criteria must be paid attention to when making flood

operation decisions.

4.4 Flood control risk analysis results

Long-term flood series are necessary for applying the

FCRA method based on Monte Carlo method. The SAR

model was established to generate stochastic inflow series

of the TGR. The calculated RRMSE values of Q, Cv, Cs

and q are 0.0006, 0.0075, 0.0966 and 0.0065, respectively.

All the RRMSE values are quite small, which indicate the

SAR model can describe annual maximum 30 days inflow

hydrographs well. As shown in Fig. 7, the inflow series

generated by the SAR model have highly similar statistical

parameters with the TGR’s annual maximum 30 days

inflow hydrographs. 106 inflow hydrographs generated by

SAR model were routed according to the TGR’s operation

rules (MWR 2009; Guo et al. 2011) with an initial reservoir

water of 145 m. The highest reservoir water level of each

hydrograph was recorded and the flood control risk rate

was calculated by Eq. (23).

Table 8 shows that the flood control risks decline for

higher water levels while increase for lower water levels.

Fig. 5 Conditional most likely

values and 90% confidence

intervals of reservoir inflow

flood based on Gumbel–

Hougaard copula. a Qmax,

b W3d, c W7d, d W15d

Table 6 Test results of P3 marginal distribution for flood peak and

volumes

Variables Chi square test K–S Test

v20:05 Chi square statistics, v2 Dn,0.95 Dn

Qmax (m
3/s) 9.488 4.751 0.1162 0.0956

W3d (10
8m3) 12.592 6.583 0.1162 0.0842

W7d (10
8m3) 12.592 6.147 0.1162 0.0912

W15d (10
8m3) 12.592 7.029 0.1162 0.0838
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These results are in accordance with the FFA results in

Table 7. For extreme flood events (e.g. 0.01 and 0.1%), the

highest reservoir water level during the flood operation is

dominated by the long-duration flood volume (e.g. W7d and

W15d). While for middle and small flood events (e.g. 1 and

5%), the dominant factor is the peak discharge or short-

duration flood volume (e.g. W3d). Therefore, when the

mean values of inflow W7d and W15d become smaller than

the dam site ones, the flood control risk for high water level

is also declined. On the contrary, with larger mean values

of inflow Qmax and W3d, the flood control risk is also

increased for low water levels.

It is noticed in Table 8 that among the 106 Monte Carlo

inflow flood operation trails, all the highest reservoir water

levels recorded are below 180.4 m and no overtopping

event occurred, which means that the TGR can satisfy its

design flood control demands and guarantee the dam’s

safety. As for the increase of flood risk at low water level, it

Table 7 Flood frequency

analysis results and

corresponding design quantiles

Characteristic quantities Statistical parameters Design values

Ex Cv Cs 0.01% 0.10% 1% 5%

Qmax/(m
3/s) Dam site 52,000 0.21 0.84 113,000 98,800 83,700 72,300

Inflow 54,900 0.22 0.88 123,500 107,600 90,500 77,300

RB 5.58% – – 9.29% 8.91% 8.12% 6.92%

W3d/(10
8m3) Dam site 130 0.21 0.84 282.1 247.0 209.3 180.7

Inflow 135 0.22 0.88 303.8 264.5 222.4 190.1

RB 3.85% – – 7.69% 7.09% 6.26% 5.20%

W7d/(10
8m3) Dam site 275 0.19 0.67 547.2 486.8 420.8 368.5

Inflow 270 0.21 0.74 573.5 505.4 431.4 373.5

RB -1.82% – – 4.81% 3.82% 2.52% 1.36%

W15d/(10
8m3) Dam site 524 0.19 0.57 1022.0 911.8 796.3 702.2

Inflow 515 0.21 0.63 1061.98 942.0 810.5 705.9

RB -1.72% – – 3.91% 3.31% 1.78% 0.53%

Fig. 6 Comparisons of the

inflow and dam site theoretical

frequency curves. a Qmax,

b W3d, c W7d, d W15d
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can be avoided by non-engineering measures, such as

adjusting the flood operation strategy.

5 Conclusion

The reservoir impoundment changes the flood generation

and concentration conditions of the natural river channel,

which is more obvious and vital for large reservoirs.

Quantification of the risk caused by differences between

inflow and dam site floods can help reservoir administrators

better understand the current hydrologic regime and make

more efficient flood operation strategies.

To better understand the problem above, a case study of

the TGR was explored to quantify the differences between

reservoir inflow and dam site floods. A multiple inputs and

single output (MISO) model and a copula-based model

were proposed to estimate and extend reservoir inflow

series with the longer dam site flood records of the Three

Gorges Reservoir (TGR). Then, the differences between

reservoir inflow and dam site floods are quantified by flood

frequency analysis (FFA) and flood control risk analysis

(FCRA) methods. The main conclusions derived from this

study are as follow:

1. The MISO model and the copula-based extension

method are useful tools for extending reservoir inflow

data series. The MISO model is very efficient to

simulate inflows of the TGR and the most likely inflow

values conditioned on dam site flood can be used to

extend inflow series.

2. The mean values of inflow Qmax and W3d have

increased for 5.58 and 3.85% than the dam site values,

respectively. While the mean values of inflow Q7d and

Fig. 7 Evaluation statistics for

gauged and SAR simulated

inflow series. a Q, b Cv, c Cs,

d q

Table 8 Flood control risk

rates of the critical water levels

for the TGR

Water level (m) Design risk rate % Inflow risk rate % Difference value %

180.4 0.01 – -0.01

175.0 0.1 0.04 -0.06

166.9 1 3.02 2.02

157.5 5 7.17 2.17
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Q15d have declined slightly for 1.82 and 1.72%. All the

inflow design quantiles are larger than the dam site

design quantiles to different degree, among which the

Qmax quantile has the largest variation.

3. Flood control risks have increased about 2% for middle

and small flood events while declined slightly for

extreme flood events. It is revealed that the TGR can

fulfill its flood control task and non-engineering

measures are necessary to respond the increasing

middle and small flood risks, such as adjusting the

operation strategy.
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Lázaro JM, Navarro JÁS, Gil AG, Romero VE (2016) Flood

frequency analysis (FFA) in Spanish catchments. J Hydrol

538:598–608

Li JZ, Singh VP (1993) Celerity analysis of reservoir flood wave

propagation. Int J Hydroelectr Energy 3:001

Li Y, Guo SL, Guo JL, Wang Y, Li TY, Chen J (2014) Deriving the

optimal refill rule for multi-purpose reservoir considering flood

control risk. J Hydro-Environ Res 8(3):248–259

Li TY, Guo SL, Liu ZJ, Xiong LH, Xu CJ, Yin JB (2016) Estimation

of bivariate flood quantiles using copulas. Hydrol Res. doi:10.

2166/nh.2016.049

Liang GC, Kachroo RK, Kang W, Yu XZ (1992) River flow

forecasting. Part 4. Applications of linear modelling techniques

for flow routing on large catchments. J Hydrol 133(1):99–140

Liu Z, Todini E (2002) Towards a comprehensive physically based

rainfall-runoff model. Hydrol Earth Syst Sci 6:859–881

Liu XY, Guo SL, Liu P, Chen L, Li X (2011) Deriving optimal refill

rules for multi-purpose reservoir operation. Water Resour Manag

25:431–448

Liu P, Lin KL, Wei XJ (2013) A two-stage method of quantitative

flood risk analysis for reservoir real-time operation using

ensemble-based hydrologic forecasts. Stoch Environ Res Risk

A 29(3):803–813

Lu YZ, Lu BH, Lu GH, Wang T, Wang W, Zhou XX (2011) Dam site

and reservoir inflow flood series of Zhelin Reservoir. J Hohai

Univ (Nat Sci) 39(1):14–19

Magilligan FJ, Nislow KH (2005) Changes in hydrologic regime by

dams. Geomorphology 71(1):61–78

McCarthy GT (1938) The unit hydrograph and flood routing, Conf.

North Atlantic Div, US Corps of Engineers New London, Conn

Modarres R (2007) Streamflow drought time series forecasting. Stoch

Environ Res Risk A 21(3):223–233

Moog DB, Whiting PJ, Thomas RB (1999) Streamflow record

extension using power transformations and application to

sediment transport. Water Resour Res 35(1):243–254

MWR (Ministry of Water Resources) (2006) Regulations for calcu-

lating design flood of water resources and hydropower projects.

Water Resources and Hydropower Press, Beijing (in Chinese)

MWR (Ministry of Water Resources) of the People’s Republic of

China (2009) Optimal operation rules for the Three Gorges

Reservoir. Beijing (in Chinese)
Nelsen RB (1999) An introduction to copulas. Springer, New York

Nelsen RB (2006) An introduction to copulas, 2nd edn. Springer,

New York

Plate EJ (2002) Flood risk and flood management. J Hydrol

267(1–2):2–11

Poulin A, Huard D, Favre AC, Pugin S (2007) Importance of tail

dependence in bivariate frequency analysis. J Hydrol Eng

12(4):394–403

Poussin JK, Botzen WJW, Aerts JCJH (2015) Effectiveness of flood

damage mitigation measures: empirical evidence from French

flood disasters. Glob Environ Change 31:74–84

Rahman MM, Arya DS, Goel NK, Dhamy AP (2010) Design flow and

stage computations in the Teesta River, Bangladesh, using

frequency analysis and MIKE 11 modeling. J Hydrol Eng

16(2):176–186

Requena AI, Flores I, Mediero Garrote L (2016) Extension of

observed flood series by combining a distributed hydro-meteo-

rological model and a copula-based model. Stoch Environ Res

Risk A 30(5):1363–1378

Saad C, El Adlouni S, St-Hilaire A, Gachon P (2015) A nested

multivariate copula approach to hydrometeorological simulation

of spring floods: the case of the Richelieu River (Quebec

Canada) record flood. Stoch Environ Res Risk Assess

29:275–294

Salas JD, Boes DC, Smith RA (1982) Estimation of ARMA models

with seasonal parameters. Water Resour Res 18(4):1006–1010

Salvadori G, De Michele C (2007) On the use of copulas in

hydrology: theory and practice. J Hydrol Eng 12(4):369–380

Schiozer DJ, Avansi GD, dos Santos AAS (2015) Risk quantification

combining geostatistical realizations and discretized Latin

Hypercube. J Braz Soc Mech Sci 2015:1–13

Sherman LK (1932) Streamflow from rainfall by the unit graph

method. J Hydrol 199:272–294
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