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Abstract We review the origin and the meaning of the term

seismomatics. In doing, this historical and recent seismicity

of Chile is discussed. Moreover, the papers appearing in the

special issue on seismomatics are briefly reviewed.
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1 Introduction

The term seismomatics born at the homonym conference

which took place in Valparaiso, Chile, from 5th to 9th of

January 2015 at the Technical University Federico Santa

Maria. The organizers, Emilio Porcu, Patricio A. Catalán

and Ronny Vallejos, invited eminent scientists from dis-

ciplines as diverse as seismology, oceanography, tsunamis,

mathematics, physics, and statistics, from all around the

world. The main objective was to enable and promote

communication amongst disciplines having different lan-

guages, but a common objective: understanding the struc-

ture of certain classes of natural and antropogenic events,

that given the circumstances, could become catastrophes.

The main goal of seismomatics is to create a common

framework where mathematics and statistics cover a spe-

cial role at the service of applied branches explicitly

interested in certain classes of catastrophes. Special

emphasis was put on earthquakes, tsunamis, floodings, and

air and water pollution. These events are of special

importance for Chile. In fact, as it turned out, 2015 would

later become one of the worst years in Chilean history in

terms of disasters due to natural events for Chile, when

flash floodings, volcanic eruptions and an earthquake and

tsunami took place throughout the year, affecting thou-

sands of lives and causing major economic impact. It is

clear that science must supply the backbone to improve

disaster preparedness, mitigation and response, and help it

become more resilient. However, as we shall see in this

special issue, the problem is far from being a local one, and

is indeed relevant all over the world.

In particular, the role of statistics in this case is to

introduce the paradigm of space-time uncertainty (proba-

bilistic models) into fields which have been typically

characterized by deterministic approaches. So far, there

seems to be little interaction between above disciplines. In

the case of earthquakes, for instance, Kagan points out that

theoretical physics has largely failed to explain and predict

earthquakes occurrences. Among various points he high-

lights, the following is especially attractive to space-time

statisticians: the intrinsic randomness of earthquake

occurrence needing the use of stochastic point processes

and appropriate complex statistical techniques.
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Clearly, an improved interaction between these com-

munities will offer the key for a better assessment and

prediction of earthquakes occurrences, magnitude distri-

butions, focal mechanisms (these last being extremely

difficult to theorize). Moreover, when an earthquake takes

place under the ocean surface, it can trigger a tsunami.

Here, more details about the earthquake are required, for

instance, not solely where the earthquake occurs but also

how the crust is displaced, see e.g. Power and Downes

(2009) for a review. One approach to address this problem

is to develop logic trees to establish a Probabilistic Tsu-

nami Hazard Assessment (e.g. Geist and Parsons 2006;

Annaka et al. 2007; González et al. 2009). However,

concentration of slip can dramatically change the tsunami

response, see e.g. Geist and Dmowska (1999), Geist

(2002), and Geist and Lynett (2014) for an overview. Much

is needed to be done to improve its characterization during

the event itself, but perhaps more importantly, for future

events. These efforts have increased over the last few

years, especially when the influence of the slip distribution

of the earthquake is taken into account to develop synthetic

but realistic tsunami inundation and/or runup scenarios

(Løvholt et al. 2012; Power and Downes 2009; Power et al.

2007; Reese et al. 2007; Davies et al. 2015). For example,

the detailed information gathered during the Tohoku-Oki

Earthquake and Tsunami has allowed testing the predictive

capabilities of these synthetic models Goda et al.

(2014, 2015), Fukutani et al. (2015). Nevertheless, despite

these advances, operational implementations of these

methods are still under research and sometimes a much

simpler approach is being used to account for this uncer-

tainty. For example, Power mentions that a simple majo-

ration approach has been used in New Zealand for

operational purposes, and a similar approach has been put

in practice in the recently developed tsunami warning

system in Chile, where a larger magnitude earthquake is

considered when assessing the tsunami hazard. Hence, a

clear research opportunity is present. It must be noted that

this is true not only for earthquakes and tsunamis, as

similar considerations can be made for other fields, such as

oceanography (see Combes et al. 2015; Shaffer et al. 1999;

Hormazabal et al. 2004; Wainwright et al. 2015). In con-

clusion, we believe it is time to join these communities, as

a starting point for common frameworks, paradigms and

methodologies for a better assessment of these phenomena.

As noted by Cobb and Watson (1980) (see also Mateu

and Porcu 2016), statistical analysis of catastrophes seems

a paradoxical term, because statistical models do not, as a

rule, contain degenerate singularities, and catastrophe

theory is generally perceived as a purely deterministic

branch of differential topology. Apparently, a stochastic

approach can give a non negligible contribution to a better

analysis and assessment of catastrophic events. This

direction is apparently taken in the book by Woo (1999),

which has an impressive list of mathematical and proba-

bilistic approaches to be taken for several types of catas-

trophes, which certainly includes extreme values theory.

Last but not least, forecasting catastrophes is a fundamental

aspect, but the word forecast should be taken with much

caution, and we refer to Geller et al. (1997) for a very

interesting discussion.

2 Earthquakes in Chile

Chile has been continuously exposed to the consequences

of large earthquakes. Their impact is profound: since 1900,

earthquakes are responsible for more than 97% of human

casualties—over 50,000—and 87% of economic damage

due to disasters of natural origin. Written record of earth-

quakes began in mid-1500s with the arrival of the Spa-

niards; since then, a magnitude 8 or more earthquake has

taken place every dozen of years, as an average. More than

ten events with magnitude around 8 or larger have taken

place in this part of world in the last 100 years. Three

events with M[ 8 have taken place only in the last six

years. Historical records of local damage, reports of tsu-

nami heights recorded in Japan and recent paleoseismo-

logical studies have evidenced several earthquakes of this

sequence with magnitudes close to 9 and above. Among

them is the 1960 event, the largest earthquake ever recor-

ded since the beginning of instrumental seismology with

computed magnitude (Mw) of 9.5. This is the consequence

of the large relative plate convergence rate (6.5 cm/yr)

between the Nazca and South American plates.

Several seismogenic zones are recognized in Chile

based on the analyses of large earthquakes, the hypocentral

locations earthquakes large enough to be recorded at tele-

seismic distances, and studies of smaller earthquakes car-

ried out with recent permanent and temporary local

networks:

a) Nazca South America coupling region. Large thrust

earthquakes at shallow depths, because of their relatively

high frequency of occurrence, are responsible for most of

the damage recorded in history. They are located along the

coast from Arica (18Â�S, the northernmost extreme of

coastal Chile) to the triple junction at Taitao Peninsula

(46Â�S). These events take place as a result of the con-

vergence of the Nazca beneath the South American plate at

about 6.5 cm/yr. Farther south, there are no records of large

earthquakes as a result of the approximately 1.8 cm/yr

subduction of the Antarctic plate beneath the South

American plate. A fundamental tectonic difference

between the regions north and south of the triple junction is

that the Chile Ridge has been recently subducted therefore

relatively young lithosphere is being subducted south of the
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triple junction. With magnitudes that can exceed eight,

these events are usually accompanied by notable coastal

elevation changes and, depending on the amount of sea-

floor vertical displacement, by catastrophic tsunamis. Their

rupture zones extend down to 45–53 km depth (Tichelaar

and Ruff 1991) and their lengths can reach well over one

thousand kilometers. The hazard due to these large events

is well recognized and understood. Return periods for

magnitude 8 (and above) events are of the order of 80–130

years for any given region in Chile, but about a dozen years

when the country is considered as a whole. Mega-thrust

earthquakes seem to have much longer return periods, of

the order of a few centuries for any given region (Cifuentes

1989; Barrientos and Ward 1990). Recent paleoseismo-

logical studies carried out in southern Chile indicate

recurrences of the order of 300 yr for these very large

earthquakes (Cisternas et al. 2005; Moernaut et al. 2014).

Last large examples of this type of earthquakes have been

the M ¼ 8.8, 2010 Maule, M ¼ 8.2, 2014 Iquique and the

M ¼ 8.4, 2015 Illapel earthquakes.

b) Intermediate-depth earthquakes. Large intermediate-

depth (60–200 km) tensional as well as compressional

events within the subducting Nazca plate are a common

occurrence. A suite of large magnitude events (M around 8)

has been reported to occur at depth between 80 and 100

km, all of them associated with extensional faulting: M ¼
7.8 January 1939 (Beck et al. 1998), M ¼ 8.0 December

1950 (Kausel and Campos 1992) and the M ¼ 7.7 June 13,

2005 (Peyrat et al. 2006) earthquakes. The latter, based on

aftershock distribution and GPS deformation data, is

reported to have taken place along a 60 km by 30 km sub-

horizontal plane with maximum displacements of the order

of 6 m. The 1950 and 2005 events took place in northern

Chile (near the cities of Calama and Iquique respectively),

at latitudes 23� S and 21� S, while the 1939 event, the

deadliest earthquake in Chilean history, produced nearly

28,000 fatalities in the region around the city of Chillan

ð36:6 � SÞ. Malgrange and Madariaga (1983) reported a suit

of tensional events of this type within the Nazca plate in

the M7? range, of which the 1965 La Ligua event stands

out for the destruction it caused. Kausel and Campos

(1992) suggest that this type of event apparently feature

high stress drops. On 13 September, 1945, a magnitude 7.1

earthquake took place beneath the metropolitan region of

Santiago; Barrientos et al. (1997) reported a 90-km-deep

focus with extensional type of faulting which generated

0.13g of peak ground acceleration. If this region behaves in

a similar manner as the one further south, Mercalli inten-

sities of the order of VIII or more, considering site

amplification factors- would be reached at Santiago, the

Chilean capital city which concentrates nearly 40% of the

country Â’ s population, should a magnitude 8 take place

underneath, at around 90 km depth. Additionally, complex

stress interaction gives rise to down-dip compressional

events at about 60–70 km depth, closer to the coast. These

events can reach magnitudes over 7, as reported by

Lemoine et al. (2001) and Pardo et al. (2002), in particular

for the very damaging earthquake of October 1997 Puni-

taqui event.

c) Shallow seismicity. Very shallow seismicity (0–20 km)

in a few places within the over-riding plate, such as the

cordilleran region of south-central Chile as a consequence of

the oblique convergence of the Nazca plate. Magnitudes up

to 7.1 have been reported for earthquakes in this region (21

November, 1927). The southern extreme of the continent is

tectonically dominated by the Magellan-Fagnano Fault

System, a left-lateral strike-slip fault resulting from the

relative horizontal displacement of the Scotia and South

American plates at a rate of the order of 7 mm/yr (Thomas

et al. 2003). Two earthquakes ofmagnitude 7 each, separated

by 8 hours, on 17 December 1949, were reported in this

region most likely associated to the Magallanes–Fagnano

Fault System (Klepeis 1994; Smalley et al. 2003, 2007).

Another seismogenic region that has become the subject of

recent studies is located at shallow depths in the Andean

cordillera in the central part of Chile. Godoy et al. (1999)

and Barrientos et al. (2004) carried out structural and seis-

micity studies to understand this shallow active region, in

which the largest known earthquake (less than 10 km depth)

took place on September 4, 1958 (M ¼ 6.9, Lomnitz 1960;

Alvarado et al. 2009). Also, shallow seismicity ðh\20 kmÞ
of relative large magnitude ([5.5) has been recently

observed beneath the Andes main Cordillera at latitudes

19:6� S (Aroma; July, 2001), 35:8� S (MeladoRiver; August,

2004), 38� S (Barco Lagoon; December, 2006) and at 45� S
(Aysen Fiord; April, 2007). All these events show significant

strike-slip component of displacement.

d) Deeper seismicity occurs further to the east, which

can reach up to 650 km depth beneath Bolivia and north-

western Argentina. These events usually present exten-

sional component along the plate downdip. The largest

known earthquake in this region was the Mw ¼ 8.2, 1994

earthquake at 647 km beneath northern Bolivia, which was

reported to be felt in Canada and the U.S.

e) Apart from the seismicity associated to the subducting

East Pacific Rise approximately at latitude 46� S, outer-rise
earthquakes are also present along the subduction margin.

This seismicity -mainly extensional faulting- is observed

seaward beyond the trench. It is particularly evident in

south-central Chile, offshore of the M ¼ 9.5, 1960

ð37:5�� 46 � SÞ and more recently, offshore of the large co-

seismic fault displacement associated with the M ¼ 8.8,

2010 earthquake ð34��37:5� SÞ.The largest aftershock,

Mw ¼ 7.4, of the 2010 sequence, belongs to this type of

earthquake. Farther north, a Mw ¼ 7.0 earthquake of the

same type (extension) took place in April 2001, as well as
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some of the aftershocks of the Illapel 2015 Mw ¼ 8.4

earthquake.

3 Special issue on seismomatics

The contributions of the special issue on seismomatics can

be divided in two classes: four papers are related to

earthquakes science and community and the remaining

three to spatial models and extremes.

3.1 Earthquake contributions

Two papers in the earthquake class are based on volunteer

data gathered through web services, while the other two are

related to seismic risk mapping.

The contribution of Finazzi and Fassò (2016) is related

to what has been termed above as earthquake community.

In fact considering sensor networks from a social point of

view, they develop statistical tools for earthquake detection

based on a crowdsourced network which uses volunteer’s

smartphones. Intelligence is distributed among a world-

wide spread smartphone app and a central server, which is

capable not only to collect vibration signals from the

community but also to give earthquake early warnings

(EEW) and to establish a communication channel among

the social network members. The statistical detector pro-

posed is based on a Poissonian score function whose per-

formance is analyzed both on realistic Monte Carlo

simulations and three seismic events regarding Santiago

(Chile), Iquique (Chile) and Kathmandu (Nepal).

Cameletti et al. (2016) use crowdsourced questionnaires

regarding earthquakes felt in Italy, and revitalize the use of

Mercalli–Cancani–Sieberg scale in order to model magni-

tude and distance from the hypocentre. From the statistical

point of view, this is done using an ordered probit model,

which fully deploys the qualitative and ordinal nature of

the macroseismic intensity as defined on the Mercalli–

Cancani–Sieberg scale. The result is a new intensity pre-

diction equation (IPE) for Italian earthquakes using the

macroseismic data available through the HSIT survey.

Leveraging on the long experience developed by his

research group at UCLA since 1970’s, Kagan (2016)

considers long term global earthquake forecasting. In par-

ticular he discusses the new forecast model nicknamed

‘‘GEAR’’ for global earthquake activity rate model, which

is an hybrid model taking into consideration both smoothed

seismicity and tectonics. In fact it is based on a high res-

olution map of the Earth surface displacement which, after

converting it to an earthquake rate, is combined with the

maps based on seismicity smoothing.

Siino et al. (2016) use hybrids of Gibbs point process

models to describe the spatial distribution of earthquake

events (with a magnitude 4) in the Hellenic area from 2005

to 2014. In particular they compare an hybrid model based

on a kernel smoothed trend in geographic coordinates with

a hybrid parametric model based on a second-order spatial

polynomial trend and spatial covariates. Since the area is

mainly characterized by microseismic activity, they find

that distance to the nearest volcano is not significant in

explaining the spatial intensity, while, as expected, the

distance to the plate boundary is negatively related to the

conditional intensity.

3.2 Spatial models and extremes

In the second class we have three papers. The contribution

by Arroyo and Emery (2016) focusses on the important

problem of simulating multivariate random fields with

stationary Gaussian increments in a d-dimensional Eucli-

dean space. There are very few contributions in the liter-

ature regarding this issue, and the authors made a

remarkable job. They consider a spectral turning-bands

algorithm, in which the simulated field is a mixture of basic

random fields made of weighted cosine waves associated

with random frequencies and random phases. The weights

depend on the spectral density of the direct and cross

variogram matrices of the desired random field for the

specified frequencies. They also show that the algorithm is

computationally efficient and very accurate.

The contribution by Lenzi et al. (2016) faces the prob-

lem of prediction of wind power and uncertainty quantifi-

cation . They consider two different time scales, using a

hierarchical model where the spatial autocorrelation is set

up through a latent Gaussian field. Specifically, they work

under the INLA framework and compare their results with

classical geostatistical methods.

Finally, the work by Castro and De Carvalho (2016)

considers a density regression model for the spectral den-

sity of a bivariate extreme value distribution. The objective

is to assess how extremal dependence can change over a

covariate. They consider an extension of the Nadaraya–

Watson estimator through a double kernel estimator, where

the usual scalar responses are replaced by mean con-

strained densities on the unit interval. They show their

results for both synthetic as well as real data.
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