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Abstract Estimation of flood quantiles in ungauged

catchments is a common problem in hydrology. For this,

the log-linear regression model is widely adopted. How-

ever, in many cases, a simple log transformation may not

be able to capture the complexity and nonlinearity in flood

generation processes. This paper develops generalized

additive model (GAM) to deal with nonlinearity between

the dependent and predictor variables in regional flood

frequency analysis (RFFA) problems. The data from 85

gauged catchments from New South Wales State in Aus-

tralia is used to compare the performances of a number of

alternative RFFA methods with respect to variable selec-

tion, variable transformation and delineation of regions.

Four RFFA methods are compared in this study: GAM with

fixed region, log-linear model, canonical correlation anal-

ysis (to form neighbourhood in the space catchment attri-

butes) and region-of-influence approach. Based on the

outcome from a leave-one-out validation approach, it has

been found that the GAM method generally outperforms

the other methods even without linking GAM with a

neighbourhood/region-of-influence approach. The main

strength of GAM is that it captures the non-linearity

between the dependent and predictor variables without any

restrictive assumption. The findings of this study will

encourage other researchers worldwide to apply GAM in

RFFA studies, allowing development of more flexible and

realistic RFFA models and their wider adoption in practice.

Keywords GAM � Regression � Regional frequency
analysis � Nonlinear models � Floods

1 Introduction

Flood is one of worst and costliest natural disasters. For

example, in 2011 alone, the global flood damage was

estimated to be worth $70 billion, plus over 6000 human

deaths (Westra et al. 2014). Many studies have recently

been conducted on various aspects of flooding to reduce

flood damage (e.g. Motevalli and Vafakhah 2016; Kim

et al. 2016; Kovalchuk et al. 2016). Flood estimate is

needed in the design of hydraulic structures and many

environmental and ecological studies, which aim to reduce

the societal impacts of floods. At-site flood frequency

analysis is the most direct method of design flood estima-

tion, which however needs a long period of recorded

streamflow data at the site of interest.

At many locations of interest, recorded streamflow data

is unavailable or of short record length or of poor quality;

and for these situations, regional flood frequency analysis

(RFFA) is generally applied to estimate design floods

(Ouarda et al. 2008a, b; Blöschl et al. 2013). RFFA

essentially consists of two principal steps: identification of

groups of hydrologically similar catchments and develop-

ment of prediction equations (Ouarda 2013). In many

previous RFFA studies, regions were formed based on

geographic or administrative boundaries (IE Aust 1987),

which often lacked in hydrological similarity (Bates et al.
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1998; Chebana and Ouarda 2007). To overcome the limi-

tations of fixed regions, a region-of-influence (ROI)

approach was applied successfully in many studies (e.g.

Burn 1990; Eng et al. 2007; Merz and Blöschl 2005;

Haddad and Rahman 2012; Micevski et al. 2015; Rahman

et al. 2015a, b). In ROI approach, allocation of an

ungauged catchment to pre-defined homogeneous

region(s) is problematic and moreover, model parameters

vary from station to station, and hence practical application

of ROI-based RFFA methods is not straight forward.

There have been number of RFFA studies which com-

pared alternative RFFA methods. For example, Ouarda

et al. (2008a, b) compared four different approaches to

form homogeneous regions using data of 29 stream gaug-

ing stations from several Mexican River Basins. These

include (1) hierarchical cluster analysis that delivered fixed

regions; (2) canonical correlation analysis (CCA) that

allowed formation of regions, or neighbourhoods which are

specific to the site of interest; (3) a modified form of CCA,

which did not require parameter optimization; and (4)

canonical kriging that allowed interpolation of hydrologi-

cal variables in the canonical physiographical space. The

study revealed the advantages of the neighbourhood type of

approach and the superiority of the CCA method. In

another study, Ouarda et al. (2006) compared three flood

seasonality regionalization methods to a flood dataset from

Québec (Canada). Using a leave-one-out (LOO) validation

(Haddad et al. 2013), the seasonality method was compared

with a traditional regionalization approach based on simi-

larities in catchment physiographic data space. It was found

that the seasonality method based on the peaks over-

threshold approach outperformed the traditional regional-

ization approach.

In relation to the development of regional prediction

equations, the index flood method has been applied widely,

which is dependent on the criteria of statistical homo-

geneity (Hosking and Wallis 1993; Fill and Stedinger

1995; Rahman et al. 1999; Cunderlik and Burn 2006;

Castellarin et al. 2008, Chebana and Ouarda 2009; Wazneh

et al. 2013). In contrast, the quantile regression technique

(QRT) relaxes the criteria of statistical homogeneity. With

QRT both ordinary least squares and generalized least

squares regression methods have been adopted to estimate

regression parameters/coefficients (e.g. Pandey and

Nguyen 1999; Stedinger and Tasker 1985; Rahman 2005;

Griffis and Stedinger 2007; Micevski and Kuczera 2009;

Haddad et al. 2012, 2015; Ouali et al. 2016). Durocher

et al. (2015) proposed a RFFA approach based on

Fig. 1 Location of study catchments in NSW, Australia
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projection pursuit regression (PPR). PPR is a family of

regression models that applies smooth functions on inter-

mediate predictors to fit complex patterns. Results indi-

cated that the procedure is efficient in modelling

nonlinearities and handles efficiently problematic stations.

Durocher et al. (2016) noted that the regression of flood

quantiles in RFFA is often carried out at the logarithmic

scale, which introduces a bias and leads to suboptimal

estimates. They examined the use of spatial copulas to

offer proper corrections in this framework. Spatial copulas

are the formulation of traditional geostatistics by copulas.

Their results showed that spatial copulas can deal with the

problem of bias, are simple to apply and are robust to the

presence of problematic stations. Ouali et al. (2015) pre-

sented a RFFA procedure based on non-linear canonical

correlation analysis (NL-CCA). Their results indicated that

NL-CCA is more robust that most commonly used linear

RFFA procedures and can reproduce efficiently the non-

linear relationshop structures between physiographical and

hydrological variables.

Most of the regression-based RFFA models are based on

linearity assumption. The linear models assume that the

relationship between the dependent variable (e.g. flood

quantile) and the predictor variables (physio-meteorologi-

cal) are linear. Hydrological processes are naturally com-

plex in several aspects including nonlinearity (Chebana

et al. 2014). The linearity assumption in hydrology may not

be satisfied in many cases (for example, larger catchments

behave differently than smaller ones and drier antecedent

catchment state produces relatively smaller runoff than

wetter one). The application of non-linear methods in RFFA

problems is rather limited. A number of studies applied

artificial intelligence based methods to RFFA problems

(e.g. Dawson et al. 2006; Shu and Ouarda 2007, 2008;

Ouarda and Shu 2009; Aziz et al. 2014, 2015, 2016, Alo-

baidi et al. 2015) and these studies have found that non-

linear methods generally outperform the linear ones.

The application of more general non-linear methods

such as the generalized additive model (GAM) (Hastie and

Tibshirani 1986; Wood 2006) has increased in recent years

due to the development of new statistical tools and com-

puter programs (e.g. Wood 2003; Kauermann and Opsomer

2003; Morlini 2006; Schindeler et al. 2009). GAMs have

been applied successfully in environmental studies (e.g.

Wood and Augustin 2002; Wen et al. 2011), in renewable

energy assessment (e.g. Ouarda et al. 2016) and also in

public health and epidemiological research (Leitte et al.

2009; Vieira et al. 2009; Bayentin et al. 2010; Clifford

et al. 2011). There have been numbers of applications of

GAM in meteorology, e.g. Guan et al. (2009) applied GAM

to predict temperature in mountainous regions and Ber-

taccini et al. (2012) applied it to examine the impacts of

traffic and meteorology on air quality.

In hydrology, there have been only limited of applica-

tions of GAM. Tisseuil et al. (2010) applied generalized

linear model (GLM), GAM, aggregated boosted trees and

multi-layer perceptron neural networks (ANN) for statis-

tical downscaling of general circulation model outputs to

local-scale river flows. They found that the non-linear

models GAM, ABT and ANN generally outperformed the

linear GLM when simulating fortnightly flow percentiles.

Morton and Henderson (2008) applied GAM to estimate

nonlinear trends in water quality in the presence of serially

correlated errors. They noted that GAM produced more

reliable results and it could estimate the variance structure

more accurately. In a recent study, Asquith et al. (2013)

applied the generalized additive regression modelling

approach to develop prediction equations to estimate dis-

charge and mean velocity from predictor variables at

ungauged stream locations in Texas. Asquith et al. (2013)

noted that the incorporation of smooth functions is the

strength of GAMs over simpler multilinear regression since

appropriate smooth functions can accommodate otherwise

difficult to linearlymodel components of a predictionmodel.

Table 1 Descriptive statistics of hydrological and physio-meteorological variables of selected 85 catchments in New South Wales, Australia

Variable Unit Notation Min Mean Max SD

Flood quantile of 10 year return period m3/s Q10 8.48 415.52 2028.36 377.52

Flood quantile of 50 year return period m3/s Q50 15.79 833.35 4306.82 721.81

Catchment area km2 AREA 8.00 351.98 1010.00 281.43

Catchment shape factor – SF 0.26 0.76 1.63 0.21

Main stream slope m/km S10,85 1.54 12.92 49.86 10.80

Stream density km/km2 SDEN 0.52 2.85 5.47 1.10

Percentage of catchment covered by forest % FOREST 0.00 0.51 0.99 0.32

Rainfall intensity (6 h duration and 2 year return period) mm/h I6,2 31.30 45.40 87.30 11.27

Mean annual rainfall mm MAR 626.17 1000.28 1953.23 304.48

Mean annual potential evapotranspiration mm MAE 980.40 1223.69 1543.30 126.30
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In their study, the developed GAM-based non-linear models

were found to provide more accurate prediction. Wang et al.

(2015) modelled summer rainfall from 21 rainfall stations in

the Luanhe River basin in China using non-stationary

Gamma distributions by means of GAM. Galiano et al.

(2015) adopted GAM to fit non-stationary frequency distri-

butions tomodel droughts in south-eastern Spain. Shortridge

et al. (2015) adopted GAM to simulate monthly streamflow

in five highly-seasonal rivers in Ethiopia.

In RFFA, the application of GAM has not been well

investigated. In one study, Chebana et al. (2014) compared

a number of RFFA methods (both linear and non-linear)

using a dataset of 151 hydrometrical stations from Québec,

Canada. They found that RFFA models using GAM out-

performed the linear models including the most widely

adopted log-linear regression model. They noted that

smooth curves in GAM allowed for a more realistic

understanding of the physical relationship between

dependent and predictor variables in RFFA.

GAM allows for the inclusion and presentation of non-

linear effects of predictor variables on response variable. It

is known that catchment rainfall and runoff hydrologic

process is generally non-linear; for example, a larger

rainfall on drier catchment produces smaller runoff as

compared with a wetter catchment. Hence, application of

GAM in predicting flood discharge at ungauged catchments

is relevant. Moreover, GAM adopts nonparametric smooth

functions to link the dependent and predictor variables,

which makes GAM more flexible in capturing relationship

between the dependent and predictor variables. In sum-

mary, GAM allows accounting for possible nonlinearities

in regional flood models that cannot be achieved using

linear models or through simple variable transformations

such as log or power. This study focuses on the develop-

ment and testing of GAM in RFFA and comparison with

other more established RFFA methods. This study uses

data from New South Wales (NSW) State in Australia.

Australian hydrology is known to have a higher degree of

variability and non-linearity, and hence testing the appli-

cability of GAM is worthwhile for Australian conditions,

as done in this study.

Fig. 2 Graphs of validation of the fit of a Q10 for the model GAM (Figure generated with the package in R), b Q50 for the model GAM

(Figure generated with the package in R)
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2 Methods

2.1 Multiple linear regression

A multiple linear regression is used to develop relationship

between a dependent variable, Y and p predictor variables

X1, X2,…, Xp. This can be expressed by for i-th observation

as below:

yi ¼ b0 þ b1xi1 þ b2xi2 þ bjxij þ � � � þ bpxip þ ei ð1Þ

where b0 and bj (j = 1, 2, …, p) are unknown parameters

and ei is the error term associated with i-th observation

(i = 1, 2, …, n), where n = number of observations. The

error term in Eq. 1 is assumed to be normally distributed

Nð0; r2Þ and the model parameters are generally estimated

by the method of least squares. In RFFA, a log-linear

model is widely adopted where both the dependent and

predictor variables are log-transformed in building the

regression model under the assumption that it will achieve

normality of the predictors and linearity between the

dependent variable and predictor variables. Girard et al.

(2004) presented a procedure for the correction of the bias

that results from the use of the log-linear multiple regres-

sion model in RFFA.

2.2 Generalized additive model

The generalized additive model (GAM) (Hastie and Tib-

shirani 1986; Wood 2006) allows non-linear functions of

each of the variables, while maintaining the additivity of

the model, which is achieved by replacing each linear

component in Eq. 1 bjxij by a smooth non-linear function

fjðxijÞ. A GAM can then be written as:

yi ¼ b0 þ
Xp

j¼1

fjðxijÞ þ ei

¼ b0 þ f1ðxi1Þ þ f2ðxi2Þ þ � � � þ fpðxipÞ þ ei ð2Þ

GAM allows fitting a non-linear function fj to each Xj i.e.

one does not need to manually try out numerous transforma-

tions on each of the predictor variables. Since GAM is an

Fig. 2 continued
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additive model, one can examine the impact of each Xj on

Y individually. In this model, the smoothness of function fj for

the variable Xj is summarized via degrees of freedom. In

GAM, the linear predictor predicts a known smooth mono-

tonic function of the expected value of the response, and the

response may follow any distribution from exponential family

or may have a known mean variance relationship, allowing a

quasi-likelihood approach (Wood 2006).

In GAM, to estimate the smooth function fj a spline is

adopted. A number of spline types are available (e.g.

P-splines, cubic splines and B-splines). In this study, thin

plate regression splines are adopted as they provide fast

computation, do not require selection of knot locations and

have optimality in approximating smoothness (Wood

2003, 2006). Further information on GAM can be found in

Wood (2008) and Chebana et al. (2014).

Fig. 3 Smooth functions of each predictor for a Q10. b Q50
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2.3 Canonical correlation analysis in RFFA

Canonical correlation analysis (CCA) can be used in RFFA

for two sets of random variables: predictor set consisting of

physio-meteorological variables X = (X1, X2, …, Xp) and

dependent variable set consisting flood quantiles Y = (Y1,

Y2, …, Yk), p C k. CCA allows identification of the dom-

inant linear modes of covariability between the sets X and

Y that allows making inference about Y knowing X. Ouarda

et al. (2001) provided step-by-step procedures to imple-

ment hydrologic neighborhoods with the CCA approach for

both the gauged and ungauged catchments. It should be

noted that, in CCA, the original dependent and independent

variables data (which are available in different units of

measurement) are standardized prior to the analysis to

derive canonical variables that are free of scale effects.

Further details on CCA can be found in Ouarda et al.

(2001) and Bates et al. (1998).

Fig. 3 continued
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2.4 Model validation

Each of the developed models is assessed by a leave-one-

out (LOO) validation procedure (Haddad et al. 2013). In

this procedure gauged catchments are in turn considered

ungauged in RFFA. We adopted the following statistical

measures compare different models:

Coefficient of determination: R2 ¼ 1�
Pn

i¼1 ðz i � ẑ iÞ2Pn
i¼1 ðz i � �zÞ2

ð3Þ

Rootmean square error: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðz i � ẑ iÞ2
s

ð4Þ

Relative rootmean square error:

rRMSE ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðz i � ẑ iÞ=z i½ �2
s

ð5Þ

Mean bias: BIAS ¼ 1

n

Xn

i¼1

ðz i � ẑ iÞ ð6Þ

Relativemean bias: rBIAS ¼ 100
1

n

Xn

i¼1

ðz i � ẑ iÞ=z i ð7Þ

where z i and ẑ i are respectively the local (at site) and

regional quantile estimates at catchment i, �z is the local

mean of flood quantile (for a given return period) and n is

the number of catchments in the data set.

3 Data description

The study uses data from 85 streamflow gauging stations in

New South Wales (NSW) State of Australia (Fig. 1). The

selected stations fall within latitudes -28.36 to -37.37�
and longitudes 146.98–153.50�. This part of Australia has

moderate rainfall, with mean annual rainfalls in the range

Fig. 4 Validation of the fit of a Q10 for the model LL (Figure generated with the package in R). b Q50 for the model LL (Figure generated with

the package in R)

130 Stoch Environ Res Risk Assess (2018) 32:123–139

123



of 200–800 mm. The selected stations are situated on

naturally flowing rivers, with no major regulations and

land use changes occurring in the catchments over the

period of streamflow records adopted in this study. These

catchments are small to medium-sized, with catchment

size in the range of 8–1010 km2 (mean: 352 km2).

Streamflow data covers the period of 1930–2011, with

some stations starting as late as 1980. The annual maxi-

mum streamflow record lengths are in the range of

25–82 years (mean 42 years).

In preparing the data set, the initially selected potential

catchments were examined as detailed in Haddad et al.

(2010), Ishak et al. (2013) and Rahman et al. (2015a, b):

gaps in the annual maximum flood series were filled as far

as could be justified (up to 3% annual maximum flood

series data were in-filled by regression), outliers were

detected using the multiple Grubbs-Beck test (Lamontagne

et al. 2013) and error associated with rating curve extrap-

olation was investigated (Haddad et al. 2010) and the sta-

tions with a high rating curve extrapolation were excluded.

Flood quantiles were estimated using the FLIKE soft-

ware (Kuczera 1999; Kuczera and Franks 2015) by fitting

Log-Pearson Type III (LP3) distribution using Bayesian

parameter estimation procedure. Flood quantiles for 2, 5,

10, 20, 50 and 100 year return periods were estimated

based on the fitted LP3 distribution where censoring of the

low flood values was carried out using multiple Grubbs–

Beck test (Lamontagne et al. 2013). It should be noted that

the LP3 distribution provided the best-fit for the study area

among a number of other distributions including GEV-L

moments method (Rahman et al. 2013). In this study,

10 year return period (Q10) and 50 year return period (Q50)

quantiles are adopted to assess the applicability of GAM in

Australian conditions. It is expected that other return

periods will provide similar results to Q10 and Q50.

For the selection of candidate predictor variables, the

variables considered by the similar RFFA studies were

initially examined. It was found that most of the previous

RFFA studies included catchment area and mean annual

rainfall as predictor variables (e.g. Griffis and Stedinger

2007; Shu and Ouarda 2008; Flavell 2012; Haddad and

Rahman 2012). It was found that three previous Australian

studies (Flavell 2012; Haddad and Rahman 2012; Rahman

(2005) adopted design rainfall intensity and

Fig. 4 continued
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evapotranspiration. Percentage of catchment covered by

forest was adopted by many previous studies (e.g. Griffis

and Stedinger 2007; Haddad and Rahman 2012). Main

stream slope was adopted by Flavell (2012) and Griffis and

Stedinger (2007)), evapotranspiration was adopted by

Haddad and Rahman (2012) and Rahman (2005)) and

catchment shape was adopted by Rahman et al. (2015b).

The above eight predictor variables capture the flood

generation and attenuation processes quite well. Catchment

area largely defines the flood magnitude, i.e. the bigger the

catchment area for a given rainfall, the greater is the flood

peak. Rainfall (rainfall intensity and mean annual rainfall) is

themain input to the rainfall-runoff process, i.e. the larger the

rainfall, the higher is the flood for a given catchment area.

Moreover, the higher the main stream slope the greater is the

flow velocity which leads to higher flood peak and a higher

stream density increases drainage efficiency of a catchment

which leads a smaller catchment response time i.e. higher

peak flood. The evapotranspiration is the loss component in

the rainfall and runoff process. Elongated catchment shape

increases the catchment response time and hence a smaller

peak and increased forest cover provides a higher roughness

which reduces flow velocity. Based on the above consider-

ations, these eight predictor variables are selected in this

study (summarised in Table 1).

Catchment area was measured on 1:100,000 topographic

maps. Catchment shape factor was taken as the ratio of the

shortest distance between catchment outlet and centroid

and square root of catchment area. The main stream slope

used in this study excluded the extremes of slope found at

the very upstream and downstream parts of a stream; it was

taken as the ratio of the difference in elevation of the

stream bed at 85 and 10% of its length from the basin

outlet, and 75% of the mainstream length. The slope was

determined from 1:100,000 topographic maps using an

opisometer to measure the stream length. The design

rainfall intensity data was obtained from Australian Rain-

fall and Runoff (ARR) (Ball et al. 2016). The mean annual

areal potential evapo-transpiration data was obtained from

Fig. 5 Plots showing physio-meteorological canonical space (a) and
hydrological canonical space (b)

Fig. 6 rBias and rRMSE as a function of the parameter a
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the Evaporation Data CD published by the Australian

Bureau of Meteorology (BOM). Similarly, the data for

mean annual rainfall was extracted from the BOM CD of

Mean Annual Rainfall. The area covered by forest was

measured on 1:100,000 topographic maps. Stream density

was taken as the sum of all the stream lengths (on a

1:100,000 topographic map) divided catchment area. The

data summary of the selected eight predictor variables is

presented in Table 1.

4 Results and discussion

4.1 GAM model

In the GAM, predictor variables are selected based on a

backward stepwise procedure forQ10 as this is more accurate

than Q50 quantile estimates from at-site flood frequency

analysis (e.g. Q50 is associated with a higher degree of

sampling variability). The predictor variables selected for

Q10 are then used forQ50. Six predictor variables are found to

be statistically significant based on the results of regression

analysis: AREA, I6,2, SF, MAE, SDEN and FOREST. In

building the prediction equation in GAM, the ‘Gaussian

family’ is adopted with ‘identity’ link function as this is the

most common approach. The log-transformed response

variable [e.g. ln(Q10)] is used inmodel building. Figure 2a, b

show the GAM model fitting results for Q10 and Q50,

respectively. It can be seen in these figures that the residuals

forQ10model followmore closely a normal distribution than

that of Q50. The plot of observed values (i.e. flood quantiles

obtained fromat-site flood frequency analysis) closelymatch

with the response values (i.e. predicted by the GAMmodel).

Figure 3a, b show that smoothing functions of the predictor

variables for Q10 and Q50 GAM models, revealing that the

degree of non-linearity in predictor variables AREA, I6,2

and MAE are quite high as compared with the variables SF,

SDEN and FOREST.

The general form of the developed prediction equation

in GAM is given by:

Fig. 7 rBias and rRMSE as a function of the threshold value in ROI

Table 2 Results of the cross

validation with the ‘‘leave-one-

out’’ method

Quantiles GAM CCA ROI LL

R2 Q10 0.657 0.550 0.616 0.596

Q50 0.576 0.405 0.456 0.480

BIAS Q10 -28.09 -58.67 -54.88 -36.10

Q50 -76.99 -154.19 -129.01 -85.64

RMSE Q10 220.62 251.37 232.32 239.69

Q50 468.13 551.07 527.06 518.36

rBIAS (%) Q10 16.87 8.78 8.39 15.08

Q50 13.57 8.10 9.46 17.73

rRMSE (%) Q10 69.92 60.01 57.77 63.32

Q50 60.34 66.35 63.57 70.89

Bold values indicate the best statistics
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Fig. 8 Graphs of the bias, the relative bias and the estimated versus observed values for A Q10 and the models GAM (a–c), CCA (d–f), ROI (g–
i) and LL (j–l). B Q50 and the models GAM (a–c), CCA (d–f), ROI (g–i) and LL (j–l)
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Fig. 8 continued
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lnðQÞ ¼ aþ sðAREAÞ þ sðI6;2Þ þ sðSFÞ þ sðMAEÞ
þ sðSDENÞ þ sðFORESTÞ ð8Þ

4.2 Log-linear model (LL)

In developing the log-linear (LL) models, both the response

variable (Q10 or Q50) and predictor variables are log-

transformed. Predictor variables are selected using a

backward selection procedure. In the LL model, only four

predictors are found to be statistically significant: AREA,

I6,2, SF and SDEN; in contrast, for the GAM model, there

are two additional predictors as can be seen in Eq. 8.

Figure 4a, b show the LL model fitting results for Q10

and Q50, respectively. Here, Q50 model residuals follow

more closely a normal distribution than that of the Q10

model. The plots of response and fitted values for the LL

model (Fig. 4a, b) show a higher degree of scatter as

compared with that of the GAM model (Fig. 2a, b). The

general form of the LL model is given by:

lnðQÞ ¼ b0 þ b1 lnðAREAÞ þ b2 lnðI6;2Þ þ b3 lnðSFÞ
þ b4 lnðSDENÞ ð9Þ

4.3 Canonical correlation analysis (CCA)

A neighbourhood is defined for the target site with the

CCA method. The LL model is used for hydrological

information transfer. The important predictor variables

identified in the LL model are used for both the CCA and

the hydrological information transfer. In CCA, physio-

meteorological variables are AREA, I6,2, SF, SDEN and

the hydrological variables are Q10 and Q50. All the vari-

ables are normalized with the Box-Cox transformation.

Figure 5 shows the physio-meteorological canonical and

hydrological canonical space obtained from the analysis. In

the optimization of the parameter a controlling the neigh-

bourhood size, no improvement is found in the absolute

error indices (BIAS and RMSE) with the neighbourhood

approach, and hence optimal parameter is found with rel-

ative error indices (rBIAS and rRMSE), as shown in Fig. 6.

The optimal parameter in CCA is found to be 0.32.

Regression model for hydrological information transfer

in CCA is given by:

lnðQÞ ¼ b0 þ b1 lnðAREAÞ þ b2 lnðI6;2Þ þ b3lnðrmSFÞ
þ b4lnðSDENÞ ð10Þ

4.4 Region-of-influence (ROI) approach

In the ROI, regions are delineated in the space of the fol-

lowing physio-meteorological attributes: AREA, I6,2, SF

and SDEN (which are same as the predictors in the LL

model).

The regression model for hydrological information

transfer is given by:

lnðQÞ ¼ b0 þ b1 lnðAREAÞ þ b2 lnðI6;2Þ þ b3 lnðSFÞ
þ b4 lnðSDENÞ

ð11Þ

The Euclidian distance between sites i and j is given by:

Dij ¼
Xp

k¼1

ðXk; i � Xk; jÞ2
" #1=2

ð12Þ

where p is the number of attributes considered, and Xk; i

and Xk; j are the standardized values of the k-th attribute at

sites i and j respectively. A threshold value h is defined for

which all stations with a distance inferior to the target site

are included in the region. No improvement is found in the

absolute error indices (BIAS and RMSE) with the ROI

approach, and hence the optimal threshold is found with

relative indices (rBIAS and rRMSE) (Fig. 7). The optimal

Euclidian distance is found to be 3.6.

4.5 Comparison of methods with leave-one-out

(LOO) validation

The performances of the four methods adopted in this study

(GAM, CCA, ROI and LL) are compared using LOO

validation i.e. each of the selected 85 catchments is

removed in building the model, and then the developed

model is applied to the removed catchment to predict flood

quantiles (Q10 or Q50). Five model performance statistics

are computed for each of the four models using Eqs. 3–7,

and the results are summarised in Table 2.

It can be seen from Table 2 that GAM outperforms the

CCA, ROI and LL models in terms of R2, BIAS and RMSE

values. However, with respect to rBIAS value, ROI and

CCA perform better for Q10 and Q50, respectively. ROI and

GAM perform better with respect to rRMSE for Q10 and

Q50, respectively. Figure 8a, b show the plots of the per-

formance statistics for the four RFFA methods for Q10 and

Q50, respectively. In Fig. 8a, it can be seen that in relation

to rBIAS, the GAM model performs better, for medium to

large catchments, than for smaller catchments. Indeed, all

four methods generally perform better for larger catch-

ments than smaller ones. The plots of predicted and

observed quantiles (i.e. quantiles obtained by at-site flood

frequency analysis) (Fig. 8a, b) show that GAM estimates

generally provide the best match with the observed quan-

tiles. Overall, GAM shows the best performance in LOO

validation among the four RFFA methods compared in this

study.
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It should be noted that ROI approach delivers a rela-

tively homogeneous group of stations and hence generally

outperforms fixed region approach. Here, GAM (with a

fixed region approach) has outperformed the ROI

approach, which clearly highlights the strength of the

GAM. Combining ROI and GAM could lead to the flexi-

bility of the GAM as functional fitting and reducing the

covariates, because of the greater degree of homogeneity of

the ROI regions.

4.6 Predictor variables

In this study, a total of eight predictor variables were

selected as described in Sect. 3. Four of these predictor

variables (AREA, I6,2, SF and SDEN) are found to be

significant in the LL model; however, GAM model has

selected two additional predictor variables (MAE and

FOREST). Two predictor variables (S10,85 and MAE)

have not been selected by any of the RFFA methods con-

sidered here. Among all the selected variables, AREA and

I6,2 have been found to be the most influential ones (based

on standardised regression coefficients), followed by SF

and SDEN. It should be noted that Australian Rainfall and

Runoff recommended regional flood estimation model

contained only three predictor variables (AREA, I6,2 and

SF) (Rahman et al. 2015b). The selection of predictor

variables is generally governed by adopted optimisation

criterion and correlation structure of the predictor variable

set. Generally, a model with the smallest number of pre-

dictor variables is preferred given the model accuracy is

not compromised.

5 Summary and conclusions

Hydrological processes are generally non-linear. However,

most of the regional flood frequency analysis (RFFA)

methods assume linearity; in this regard, log-linear model

is one of the most widely used RFFA model worldwide. In

the log-linear model, a log linear relationship between the

dependent and predictor variables is assumed, which

however may not be satisfied in many applications and

generally does not capture the complexity of flood gener-

ation processes involved. The application of more sophis-

ticated non-linear methods such as the generalized additive

model (GAM) has increased in many fields of science and

engineering in recent years to model complex processes.

However, the application of GAM has hardly been made in

RFFA problems except for one or two instances.

This paper develops a GAM-based RFFA model and

compares with three other alternative RFFA models/ap-

proaches (log-linear model, canonical correlation analysis

and region-of-influence approach). The data from 85 New

South Wales catchments in Australia is used in this study.

It has been found that some of the most important predictor

variables in RFFA such as catchment area and design

rainfall intensity are better described by non-linear func-

tions such as thin plate regression splines, allowing a more

realistic understanding of the true relationship between the

dependent and predictor variables. Based on the leave-one-

out validation, it has been found that GAM-based RFFA

model generally outperform the other three RFFA models.

GAM is found to be performing better even without the

neighbourhood/region-of-influence approach. The results

of this study reveal that GAM is a viable modelling option

in RFFA that is easy to implement, and which generally

requires a reduced number of assumptions. The finding of

this study is expected to encourage other researchers

worldwide to apply GAM in RFFA studies.
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Blöschl G, Sivapalan M, Wagener T, Viglione A, Savenije H (2013)

Runoff prediction in ungauged basins: synthesis across pro-

cesses, places and scales. Cambridge University Press, New

York

Burn DH (1990) An appraisal of the ‘‘region of influence’’ approach

to flood frequency analysis. Hydrol Sci J 35(2):149–165

Castellarin A, Burn DH, Braith A (2008) Homogeneity testing: how

homogenous do heterogeneous cross-correlated regions seem.

J Hydrol 360(1–4):67–96

Chebana F, Ouarda TBMJ (2007) Multivariate L-moment homogene-

ity test. Water Resour Res 43:W08406. doi:10.1029/

2006WR005639,1-14

Chebana F, Ouarda TBMJ (2009) Index flood—based multivariate

regional frequency analysis. Water Resour Res 45:W10435.

doi:10.1029/2008WR007490

Chebana F, Charron C, Ouarda TBMJ, Martel B (2014) Regional

frequency analysis at ungauged sites with the generalized

additive model. J Hydrometeorol 15:2418–2428

Clifford S, Low Choy S, Hussein T, Mengersen K, Morawska L

(2011) Using the generalised additive model to model the

particle number count of ultrafine particles. Atmos Environ

45:5934–5945

Cunderlik JM, Burn DH (2006) Site-focused nonparameteric test of

regional homogeneity based on flood regime. J Hydrol

318(1–4):276–291

Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL (2006) Flood

estimation at ungauged sites using artificial neural networks.

J Hydrol 319:391–409

Durocher M, Chebana F, Ouarda TBMJ (2015) A nonlinear approach

to regional flood frequency analysis using projection pursuit

regression. J Hydrometeorol 16(4):1561–1574. doi:10.1175/jhm-

d-14-0227.1

Durocher M, Chebana F, Ouarda TBMJ (2016) On the prediction of

extreme flood quantiles at ungauged locations with spatial

copula. J Hydrol 533:523–532

Eng K, Milly PCD, Tasker GD (2007) Flood regionalization: a hybrid

geographic and predictor-variable region-of-influence regression

method. J Hydrol Eng 12(6):585–591

Fill HD, Stedinger JR (1995) Homogeneity tests based upon Gumbel

distribution and a critical appraisal of Dalrymple’s test. J Hydrol

166(1–2):81–105

Flavell D (2012) Design flood estimation in Western Australia. Aust J

Water Resour 16(1):1–20

Galiano SGG, Gimenez PO, Giraldo-Osorio JD (2015) Assessing

nonstationary spatial patterns of extreme droughts from long-

term high-resolution observational dataset on a semiarid basin

(Spain). Water 7:5458–5473

Girard C, Ouarda TBMJ, Bobée B (2004) Étude du biais dans le
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