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Abstract Water resources systems are associated with a

variety of complexities and uncertainties due to socio-

economic and hydro-environmental impacts. Such com-

plexities and uncertainties lead to challenges in evaluating

the water resources management alternatives and the

associated risks. In this study, the factorial analysis and

fuzzy random value-at-risk are incorporated into a two-

stage stochastic programming framework, leading to a

factorial-based two-stage programming with fuzzy random

value-at-risk (FTSPF). The proposed FTSPF approach aims

to reveal the impacts of uncertainty parameters on water

resources management strategies and the corresponding

risks. In detail, fuzzy random value-at-risk is to reflect the

potential risk about financial cost under dual uncertainties,

while a multi-level factorial design approach is used to

reveal the interaction between feasibility degrees and risk

levels, as well as the relationships (including curvilinear

relationship) between these factors and the responses. The

application of water resources system planning makes it

possible to balance the satisfaction of system benefit, the

risk levels of penalty and the feasibility degrees of con-

straints. The results indicate that decision makers would

pay more attention to the tradeoffs between the system

benefit and feasibility degree, and the water allocation for

agricultural section contributes most to control the financial

loss of water. Moreover, FTSPF can generate a higher

system benefit and more alternatives under various risk

levels. Therefore, FTSPF could provide more useful

information for enabling water managers to identify

desired policies with maximized system benefit under dif-

ferent system-feasibility degrees and risk levels.

Keywords Fuzzy random value-at-risk � Decision
analysis � Uncertainty modelling � Water resources � Multi-

level factorial design

1 Introduction

In water-resources system planning, uncertainties exist in

many system components and parameters due to different

kinds of complexities involving social, economic, envi-

ronmental, political and technical factors (Loucks et al.

1981; Brink et al. 2008; Jing et al. 2016; Chalh et al. 2015;

Kong et al. 2015a). For example, the economic parameters

(e.g. net benefit, penalty and water loss rate during trans-

portation) and the stream conditions (e.g. stream flow) may

exhibit extensive uncertainties resulting from temporal–

spatial variations in socio economic and natural systems

(Marques et al. 2005; Khan and Valeo 2016; Mishra et al.

2016; Lv et al. 2010). These uncertainties in term of

information quality have placed numbers of difficulties in

exploring appropriate water allocation strategies in water

resources systems.
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Inexact optimization methods have been developed for

helping decision makers manage water resources in more

efficient and environment-friendly manners under uncer-

tainties (Verderame et al. 2010; Li et al. 2008; Beraldi

et al. 2000; Nematian 2016). The interval mathematical

programming, the fuzzy mathematical programming and

the stochastic mathematical programming are the primary

inexact optimization techniques for tackling uncertainties

in water resources system planning (Huang et al. 2006;

Li and Huang 2008, 2009; Karmakar and Mujumdar

2006; Singh 2012; Aggarwal and Hanmandlu 2015). For

example, the inexact two-stage stochastic programming

(ITSP) method proposed by Huang and Loucks (2000)

has received amounts of attentions. The advantage of

ITSP is that corrective actions could be undertaken by

decision makers after a random event has taken place.

Housh et al. (2013) investigated a limited multi-stage

stochastic programming (LMSP) method, which could

reduce computation for optimization problems under

uncertainty through identifying and classifying decision

nodes. Fan et al. (2015) developed a generalized fuzzy

two-stage stochastic programming (GFTSP) method and

applied it to tackle uncertainties presented as probability

distributions, fuzzy sets, as well as fuzzy random vari-

ables. Solutions generated through the GFTSP method

could reflect the fluctuating ranges of decision alterna-

tives under different plausibilities. These optimization

methods mainly concentrated on dealing with uncertain-

ties presented as intervals, fuzzy sets and random num-

bers. However, water-related activities are often

associated with many potential risks due to the limited

water-resource availability, the diversity of management

methods, and the restriction of financial loss etc.

Therefore, identification and quantification of risks

associated with different water management alternatives

are desired.

Therefore, this study aims to develop a factorial-based

two-stage programming with fuzzy random value-at-risk

(FTSPF) for tackling the dual uncertainties and revealing

the resulting risks as well as the interaction among

parameters. The proposed FTSPF integrates the interactive

two-stage stochastic fuzzy programming method (ITSFP),

the fuzzy random value at risk (FVaR) and multi-level

factorial analysis into a framework: (a) FTSPF will be

proposed for dealing with multiple uncertainties in water

resources management, (b) FVaR will then be introduced

to reveal the risk resulting from the fuzziness and ran-

domness, and (c) the multi-level factorial design (MFD)

will be employed to identify the main factors and their

interaction on the decision alternatives and the associated

risk values.

2 Modeling

2.1 Interactive two-stage stochastic fuzzy

programming

Allocating water resources to multiple water users efficiently

is quite necessary due to limited availability of freshwater. An

inexact two-stage stochastic programming (ITSP) model can

be applicable to generate water allocation plans for decision

makers in an interval and random environment (Huang and

Loucks 2000; Wang and Huang 2011). In an ITSP model, the

water allocation target to each water user could be regulated

based on the regional water resources planning policies (Li

et al. 2010). The purposes of these policies are: (1) to promote

the sustainable planning of regional water resources, (2) to

address utilization and protection of regional water resources

(Otago Regional Council 2014). The ITSP approach can also

deal with uncertainties presented as intervals and random

variables in both objective function and constraints. However,

there are two disadvantages in ITSP. One is that ITSP can

hardly reflect the vague information from the subjective

estimations (Wang and Huang 2011). The other is that some

parameters anddecisionvariablesmaynot be characterizedby

merely one uncertainty quantification approach due to severe

complexities in water resources management. These dual or

multiple uncertainties cannot be treated through the ITSP

method. In order to address the above issues, an interactive

two-stage stochastic fuzzy programming (ITSFP) approach

for water resources planning was proposed by Wang and

Huang (2011):

Maximize ~f� ¼
Xm

i¼1

~B�
i X

�
i �

Xm

i¼1

~C�
i

Xn

j¼1

pjY
�
ij

 !
ð1aÞ

Subject to:

Xm

i¼1

X�
i � Y�

ij

� �
1þ 1� xð ÞE~c�

1 þ xE~c�

2

� �

�xE
~q�j
1 þ 1� xð ÞE~q�j

2 ; 8j (1b)

Y�
ij �X�

i �X�
imax; 8i; j ð1cÞ

Y�
ij � 0; 8i; j ð1dÞ

where ~f� denotes the objective function value; Xi
± and

Ximax
± denote the water allocation target and maximum

allowable water allocation, respectively; Yij
± denotes the

water shortage; ~B�
i and ~C�

i denote the net benefit and

penalty of net benefit, respectively; ~c� denotes the water

loss rate during transportation; ~q�j denotes the available

water resources; E
~c�

1 and E
~c�

2 denote the lower and upper

bound for the expected value of water loss rate during
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transportation ~c�, respectively; E
~q�j
1 and E

~q�j
2 denote the

lower and upper bound of the expected value of available

water resources ~q�j , respectively; i(i = 1, 2, …, m) is the

index for water users; j(j = 1, 2, …, n) is the index for the

probability pj; and x is the feasibility degree which means

the degree of constraint feasibility. An interval number is

defined as an interval with known upper and lower bounds

but unknown distribution information (Kong et al. 2015b).

For example, x± = [x-, x?] = {t 2 x|x- B t B x?} is an

interval number which can have the lower bound (mini-

mum value) x- and the upper bound (maximum value) x?.

A fuzzy boundary interval is defined as an interval with

fuzzy random variables as upper and lower bounds (Wang

and Huang 2011). For example, ~x� and ~xþ are fuzzy ran-

dom variables, corresponding to the lower and upper

bounds of a fuzzy boundary interval ~x�, respectively.
The ITSFP method can generate solutions under dif-

ferent feasibility degrees through considering the balance

between the feasibility degrees of model constraints and

acceptability of system benefits. However, the associated

risk in the resulting solutions can hardly be revealed by

ITSFP. The decision makers may also want to measure the

risk of financial loss when the promised allocation targets

are not reached. Moreover, the interaction among param-

eters and the corresponding effects on the system benefits

cannot be reflected by ITSFP.

2.2 Fuzzy random value-at-risk

Value-at-risk (VaR) is a single, summary statistical mea-

sure of the possible losses on random events (Linsmeier

and Pearson 2000; Engle and Manganelli 2004; Yamout

et al. 2007; Katagiri et al. 2014; Moazeni et al. 2015). It

was first used to characterize the risk value by major

financial firms in the late 1980s. For a given risk level

b 2 (0, 1], the corresponding b VaR (i.e. VaRb) is the

threshold at which the probability of a loss exceeding the

threshold is equal to 1 - b (Jabr 2005; Piantadosi et al.

2008; Quaranta and Zaffaroni 2008; Mohammadi 2014;

Kim et al. 2015). VaR makes it possible for decision

makers to set the probability of a loss and then to find the

corresponding threshold, vice versa.

According to Liu (2007; 2009) and Jin (2009), FVaR for

the risk at a probability level b can be expressed as follows

(see Fig. 1):

nFVaRðbÞ ¼ inf x M n� xf g� bj½ � ð2Þ

where n is the fuzzy random variable; b is the risk level;

MðKÞ is an axiomatic uncertain measure proposed by Liu

(2007), which can express the chance at which uncertain

event K 2 L occurs; L is a r-algebra over a nonempty set C.

FVaR is a good statistical measure for decision makers

to characterize the risk value in a fuzzy random environ-

ment. Therefore, it can be widely used in water resources

planning problems containing the vague information from

subjective estimations.

2.3 Multi-level factorial design

MFD is a method which cannot only reflect the interaction

among parameters, but also make it possible to study the

relationship (including curvilinear relationship) between

the design factors and the response (Montgomery 2001).

Different from the common two-level factorial design,

MFD is the 3k factorial design. It consists of k factors and

each factor has three levels. Three levels including low,

medium and high are denoted as l-1, l0 and l?1, respec-

tively. The simplest design in the 3k system is the 32 design

which can be used to explore the interaction between these

two factors and the relationship between the factors and the

response. In order to illustrate the concept of interaction, a

regression model representation of the 32 system of designs

could be written as (Montgomery 2001):

y ¼ a�1 þ a0x1 þ a1x2 þ a01x1x2 þ a00x
2
1 þ a11x

2
2 þ e ð3Þ

where y is the response, a’s are parameters need to be

determined, x1 and x2 represent the two factors, and x1x2
represents the interaction between two factors. The addi-

tion of a third factor level allows the relationship between

the response and factors to be modeled as a quadratic

(Montgomery 2001). Therefore, the 32 design could be a

possible choice in this study to pay attention to the cur-

vature in the response function.

2.4 Factorial-based two-stage programming

with FVaR method

The ITSFP method has an advantage that it can deal with

dual uncertainties in both objective function and

Fig. 1 Fuzzy random value-at-risk (FVaR)
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constraints (Wang and Huang 2011). However, the risk

about the second-stage penalty is not considered when the

promised allocation targets are not reached. Moreover, the

effects of factors and the interactions among different

factors are not identified in the ITSFP model. In order to

solve these problems, FVaR and MFD will be integrated

into the ITSFP framework, which leading to a factorial-

based two-stage programming approach with fuzzy random

value-at-risk (FTSPF) method.

Maximize ~f� ¼
Xm

i¼1

~B�
i X

�
i �

Xm

i¼1

~C�
i

Xn

j¼1

pjY
�
ij

 !
ð4aÞ

Subject to:

Xm

i¼1

X�
i � Y�

ij

� �
1þ 1� xð ÞE~c�

1 þ xE~c�

2

� �

�xE
~q�j
1 þ 1� xð ÞE~q�j

2 ; 8j (4b)

n�FVaR
Xm

i¼1

~C�
i

Xn

j¼1

pjY
�
ij

 !
; b

 !
� s ð4cÞ

Y�
ij �X�

i �X�
imax; 8i; j ð4dÞ

Y�
ij � 0; 8i; j ð4eÞ

where s is the maximum acceptable loss set. In this model,

Eq. (4c) is an inexact FVaR constraint which indicates that

n�FVaR
Pm

i¼1
~C�
i

Pn
j¼1 pjY

�
ij

� �
; b

� �
associated with high-risk

events are constrained to a value Bs. The FTSPF model

can effectively allocate the available water resources to

multiple users under multiple uncertainties, provide trade-

offs among the satisfaction of system benefit, the risk level

of water loss and the feasibility degree of constraints, and

identify the effects of factors as well as their potential

interactions on system benefits.

The framework of FTSPF model is shown in Fig. 2.

FTSPF can hold several advantages in water resources

management: (a) it can deal with multiple uncertainties

including dual uncertainties; (b) it can provide tradeoffs

among the satisfaction of system benefit, the risk level of

water loss and the feasibility degree of constraints; (c) it can

reveal interactions of factors on the decision alternative and

curvature in the response function. Therefore, water

resources allocation strategies under different feasibility

degrees and risk levels can be generated for decisionmakers.

2.5 Solution method

There are two difficulties in solving FTSPF model (4). One

is transformation of the FVaR constraint which is a adaption

of a value-at-risk method into the fuzzy random environ-

ment. The other one is the dual uncertainties exist in the

parameters and decision variables, which makes the FVaR

constraint as well as the FTSPF model more difficult to be

solved. In order to overcome these difficulties, a solution

algorithm is developed (Fig. 3 gives the detail process).

Step 1 Decompose the inexact FVaR constraint (i.e.

Eq. 4c). For example, ~m� ¼
h

a�n ; b
�
n ; c

�
n ; d

�
n

� �
; aþn ; b

þ
n ;

�

cþn ; d
þ
n Þ
i
is denoted as an interval number with trapezoidal

fuzzy random boundaries. ~m� ¼ a�n ; b
�
n ; c

�
n ; d

�
n

� �
and ~mþ ¼

aþn ; b
þ
n ; c

þ
n ; d

þ
n

� �
are trapezoidal fuzzy random variables,

corresponding to the lower and upper bounds of ~m�,
respectively. The corresponding membership function

k� ~m�ð Þ can be expressed as:

k�ð~m�Þ ¼

x� � a�n
b�n � a�n

; if a�n � x� � b�n

1; if b�n � x� � c�n
x� � d�n
c�n � d�n

; if c�n � x� � d�n

0; otherwise:

8
>>>>>>><

>>>>>>>:

ð5Þ

The inexact FVaR function n�FVaR ~m�; bð Þ is formulated as

follows:

n�FVaR ~m�; b
� �

¼
a�n þ 2 b�n � a�n

� �
b; if b� 0:5

2c�n � d�n þ 2 d�n � c�n

� �
b; if b[ 0:5

8
><

>:

ð6Þ

where the upper and lower bounds of inexact FVaR func-

tion correspond to the upper and lower bounds of ~m� based

on its characters under dual uncertainties. In detail,

n�FVaR ~m�; bð Þ ¼
a�n þ 2 b�n � a�n

� �
b; if b� 0:5

2c�n � d�n þ 2 d�n � c�n

� �
b; if b[ 0:5

8
<

:

ð7aÞ

nþFVaR ~mþ; bð Þ ¼
aþn þ 2 bþn � aþn

� �
b; if b� 0:5

2cþn � dþn þ 2 dþn � cþn

� �
b; if b[ 0:5

8
<

:

ð7bÞ

Step 2 The model (4) can be transformed into two sub-

models by the two-step method. The two-step method is

widely used to solve optimization model under uncertainty,

whose main ideal is transforming inexact model with

interval numbers to two sub-models corresponding to the

upper- and lower- bound objective function value through

analyzing interrelationships among parameters and variables

in the objective function and constraints (Fan and Huang

2012). Let Xi
± = Xi

- ? DXiyi, where DXi = Xi
? - Xi

- and

yi 2 [0, 1]. Model (4) can be transformed into two sub-
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models based on the two-step method, do the following

substeps:

Step 2.1 The sub-model corresponds to the upper bound

of objective function value are formulated as follows:

Maximize ~fþ ¼
Xm

i¼1

~Bþ
i X�

i þ DXiyi
� �

�
Xm

i¼1

~C�
i

Xn

j¼1

pjY
�
ij

 ! ð8aÞ

Subjectto:

Xm

i¼1

X�
i þDXiyi�Y�

ij

� �
1þ 1�xð ÞE~c�

1 þxE~c�

2

� �

�xE
~qþ
j

1 þ 1�xð ÞE~qþ
j

2 ; 8j (8b)

n�FVaR ~m�; bð Þ ¼
a�n þ 2 b�n � a�n

� �
b; if b� 0:5

2c�n � d�n þ 2 d�n � c�n

� �
b; if b[ 0:5

8
<

:

9
=

;� s

ð8cÞ

Y�
ij �X�

i þ DXiyi �Xþ
imax; 8i; j ð8dÞ

Y�
ij � 0; 8i; j ð8eÞ

0� yi � 1; 8i ð8fÞ

where Yij
- and yi are decision variables.

Step 2.2 the sub-model corresponds to the lower bound

of objective function value are formulated as follows:

Maximize ~f� ¼
Xm

i¼1

~B�
i Xi;opt �

Xm

i¼1

~Cþ
i

Xn

j¼1

pjY
þ
ij

 !
ð9aÞ

Subject to:

Xm

i¼1

Xi;opt � Yþ
ij

� �
1þ 1� xð ÞE~cþ

1 þ xE~cþ

2

� �

�xE
~q�j
1 þ 1� xð ÞE~q�j

2 ; 8j

ð9bÞ

Yþ
ij �Xi;opt �X�

imax; 8i; j ð9cÞ

Yþ
ij � Y�

ij;opt; 8i; j ð9dÞ

where Yij
? are decision variables.

Step 3 If the objective function is to be maximized, solve

the sub-model corresponding to f? firstly. Thus sub-model

(8) coupled with transformed FVaR constraint (7) can be

Uncertainty

Inexact Probability
distribution Fuzzy random variables

Regional
policies

Inexact two-stage stochastic programming
(ITSP)

Interactive fuzzy
resolution method

Value-at-Risk
(VaR)

Fuzzy random VaR
(FVaR)

Interactive two-stage stochastic fuzzy
programming (ITSFP)

Factorial-based two-stage programming approach with
fuzzy random value-at-risk (FTSPF)

Multi-level factorial design
(MFD)

Fig. 2 The framework of FTSPF method
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solved, obtaining Yij,opt
- , Xi,opt = Xi

- ? DXiyi,opt and ~fþopt. In

the FTSPF model, the main function of FVaR constraint is

to control the risk level of water loss thus identifying the

optimized water allocation targets (i.e. Xi,opt) (Shao et al.

2011). The optimized water allocation targets have been

determined in sub-model (8). Therefore, the FVaR

Generalized factorial-based two-stage
programming approach with fuzzy random

value-at-risk (FTSPF) model

Decompose the inexact FVaR constraint

Use the two-step method to transform the FTSPF model
into two sub-models

Choose the values of feasibility degrees
and risk levels

11,..., ,...,k n 21,..., ,...,g n

Upper-bound sub-model
under feasibility degree and

risk level

f
k

k

Lower-bound sub-model
under feasibility degree and

risk level

f
k

k

Solve the upper- and lower-bound sub-models,
respectively, and obtain the solutions under and

opt opt optf f ffopt pt opopt o tt ,f f

, , ,, , ,ij opt ij opt ij optY Y Y i j

, , , , ,ij opt i opt ij optA X Y i j

k k

1, kk

1, gg

1k k

Find out the best solutions under different feasibility degrees
given a specific risk level through identifying the highest membership degreeg

11,..., ,...,k n

D x

1g g

Generate corresponding decision alternatives

Analyze the impact of the feasibility degrees , the risk levels
and their interaction on the optimal solutions through multi-level

factorial design.

11,..., ,...,k n

21,..., ,...,g n

˜

˜˜ ˜

˜ ˜

Fig. 3 The solution algorithm

of FTSPF method
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constraint would not be involved in the sub-model (9).

Through solving the sub-model (9), Yij,opt
? and ~f�opt are

obtained. Therefore, the solutions for the entire FTSPF

model (4) are:

~f�opt ¼ ~f�opt;
~fþopt

h i
ð10Þ

Y�
ij;opt ¼ Y�

ij;opt; Y
þ
ij;opt

h i
; 8i; j ð11Þ

A�
ij;opt ¼ Xi;opt � Y�

ij;opt; 8i; j ð12Þ

Step 4 After solving FTSPF, plenty of solutions under

different feasibility degrees of constraints x and risk levels

of water loss b are obtained. The following substeps

(Jiménez et al. 2007) can be used to find out the best

solutions under different feasibility degrees of constraints

given a specific risk level:

Step 4.1 Introducing a fuzzy set ~G with the specified

goal �G and the tolerance threshold G, and the correspond-

ing membership function l ~Gð Þ can be expressed below:

l ~G zð Þ ¼
1 if z� �G
z� G
�G� G

if G� z� �G

0 if z�G

8
><

>:
ð13Þ

Step 4.2 Introducing the index which can indicate the

degree of the satisfaction of ~G under each x-acceptable op-
timal solution (i.e. optimal solution under each feasibility

degree) (Yamout et al. 2007; Jiménez et al. 2007):

K ~G
~f 0 xð Þ
� �

¼
Rþ1
�1 l~f 0 xð Þ zð Þ � l ~G zð Þdz
Rþ1
�1 l~f 0 xð Þ zð Þdz

ð14Þ

where the value of the objective function ~f 0 xkð Þ according
to the feasibility degree xk can be obtained by solving

FTSPF model (4); l~f 0 xð Þ is the membership function (or

satisfaction degree) of ~f 0 xð Þ; and l ~G zð Þ is the satisfaction

degree of ~G. Figure 4 shows the occurrence possibility of

an objective-function value and its satisfaction degree of

fuzzy goal.

Step 4.3 Applying fuzzy decision ~D ¼ ~F \ ~S to obtain

the best solutions under different feasibility degrees of

constraints based on the demand of decision makers

(Bellman and Zadeh 1970):

l ~D x0 xkð Þ
� �

¼ l ~F x0 xkð Þ
� �

� l~S x0 xkð Þ
� �

¼ xk � K ~G ~z0 xkð Þ
� � ð15Þ

where ~F represents a fuzzy set and its membership function

is l ~F x0 xkð Þð Þ; ~S represents a fuzzy set with the member-

ship function shown as l~S x0 xkð Þð Þ; * represents a mini-

mum t-norm which is used to construct the intersection of

two fuzzy sets (Wang and Huang 2011). Thus the final

solution x* to FTSPF can be selected by decision makers

through identifying the highest membership degree

expressed as:

l ~D x�ð Þ ¼ max
xk2M

xk � K ~G ~z0 xkð Þ
� �� �

ð16Þ

Step 5 Analyze the impact of the feasibility degree x, the
risk level b and their interaction on the optimal solutions

through MFD. The geometry of the 32 design can be

showed in Fig. 5. It consists of 32 = 9 treatment combi-

nations, where l-1l-1, l-1l0 and l-1l1 denote the treatment

combinations corresponding to x at the low level but b at

the low, medium and high levels, respectively; l0l-1, l0l0
and l0l1 denote the treatment combinations corresponding

to x at the medium level but b at the low, medium and high

levels, respectively; l1l-1, l1l0 and l1l1 denote the treatment

combinations corresponding to x at the high level but b at

the low, medium and high levels, respectively. After gen-

erating a series of objective function value under each x
and b, jump to Step 4 to determine the optimal solution.

˜

˜

˜

˜

Fig. 4 Occurrence possibility of an objective-function value and its

satisfaction degree of fuzzy goal

1l

1l

0l

0l

1l

1l

1 1l l

1 0l l

1 1l l

0 1l l

0 0l l

0 1l l

1 1l l

1 0l l

1 1l l

Fig. 5 The geometry of the 32 design
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3 Application

3.1 Overview of the study system

The proposed FTSPF method is applied to a case study on

water resources management. The availability water

resources supply is especially important for the reason that

demands from various sectors were increasing rapidly in

recent years (Fan et al. 2015, 2016; Li et al. 2009; Qin et al.

2007). In this study, a region is considered where an

unregulated reservoir supplies water resources to three

water users, including a municipality, an industry concern

and an agricultural sector.

A variety of complexities and uncertainties exist in the

water resources system, such as limited water resources

supply, uncertainties in economic and technical data,

analysis of regional water resources policy and risk anal-

ysis in economic loss. Therefore, it is necessary to generate

appropriate water resources allocation schemes for deci-

sion makers by maximizing the net system benefit under

such complexities and uncertainties. The relevant data of

economic factors and seasonal flow conditions are shown

in Tables 1, 2 and 3. Table 1 provides the net benefit (i.e.

~B�
i ) and penalty (i.e. ~C�

i ) of the water resources system

presented as fuzzy boundary intervals. The net benefits and

penalties of three water users are different from each other.

The Municipality earns the best benefit but pays most to the

penalty when the water allocation targets are not satisfied.

Although the agricultural sector earns the worst benefit, it

pays least to the penalty. The available water resources

from the reservoir are presented in Table 2. The seasonal

flow is divided into four levels (i.e. low, low-medium,

medium and high) corresponding to a certain probability.

Table 3 gives the water allocation targets from the reser-

voir to three water users. For each water user, the maxi-

mum allowable water allocations as well as the water loss

rate during transportation are the same. The water alloca-

tion targets are all presented as intervals.

In this studied water resources system, the water allo-

cation target Xi
± which is promised to water user i is rep-

resented to be the first-stage decision variable. The water

shortage Yij
± to water user i under the stream flow level j is

represented to be the second-stage decision variable.

FTSPF is considered to be a feasible method for generating

optimal solutions under different feasibility degrees of

constraints and risk levels. The water resources system is

complicated, holding multi variables, multi periods,

dynamic and uncertain features. These complexities may

lead to various risks for practical water resources man-

agement strategies. Therefore, the feasibility degrees of

constraints and the risk levels of penalty are selected var-

ious values. In this study, 0.4, 0.5, 0.6, 0.7, and 0.8 are

chosen as the representative values of feasibility degree x,
and 0.5, 0.7, 0.9 and 0.95 are chosen as the representative

values of risk level b.

3.2 Results and discussion

The x-acceptable solutions obtained from the FTSPF model

are shown in Table 4. For each risk level b (i.e. 0.5, 0.7, 0.9

and 0.95), solutions under feasibility degrees 0.4, 0.5, 0.6,

0.7, and 0.8 are obtained. As shown in Table 5, the system

benefits ~f� xð Þ under different feasibility degrees of con-

straints and different risk levels are presented as fuzzy

boundary intervals. For example, under a risk level (i.e. b) of
0.5, the maximum system benefit under a feasibility degree

x = 0.4 would be: ~f� 0:4ð Þ ¼ 140:14; 152:25; 164:36;ð½
176:47Þ; 483:17; 504:08; 524:99; 545:90ð Þ� ($106) and the

minimum system benefit under a feasibility degree x = 0.8

would be: ~f� 0:8ð Þ ¼ 130:33; 142:18; 154:04; 165:89ð Þ;½
468:20; 488:46; 508:71; 528:96ð Þ� ($106). The results

shown in Table 5 indicate that the system benefit gradually

decreases as the feasibility degree increases or the risk level

decreases. This is because that (1) when the risk level b
decrease, the probability of a loss exceeding the threshold

increases, and an increasing economic losses of water must

lead to an decreasing net system benefit; (2) a strong desire

to obtain a higher degree of constraint feasibility will lead to

a lower objective-function value, and vice versa.

Figure 6 gives the optimal water allocation targets

according to the x-acceptable solutions obtained from the

FTSPF model under a set of risk levels. The optimal water-

allocation targets of the municipality as well as the industry

concern would not change when the feasibility degree x
and the risk level b change. But those of agriculture sector

would vary with the changes of x and b.

Table 1 Net benefit and penalty

Net benefit when water allocation target is satisfied Penalty when water is not delivered
~B�
i ($/m3) ~C�

i ($/m3)

Municipal (i = 1) [(82, 86, 90, 94), (101, 105, 109, 113)] [(210, 215, 220, 225), (270, 275, 280, 285)]

Industrial (i = 2) [(41, 44, 47, 50), (60, 63, 66, 69)] [(55, 58, 61, 64), (84, 87, 90, 93)]

Agricultural (i = 3) [(25, 27, 29, 31), (28, 30, 32, 34)] [(43, 47, 51, 55), (64, 68, 72, 76)]
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After obtaining plenty of solutions under different fea-

sibility degrees of constraints and risk levels, the tradeoffs

between the system benefit and feasibility degree of con-

straints would be discussed at the first place in this study.

The results in Table 5 show that a lower feasibility degree

would correspond to a higher system benefit. It means that

the satisfaction degree of objective-function value would

be higher if the feasibility degree of constraints is lower,

and vice versa. Therefore, in order to obtain the suit-

able system benefit based on the demand of decision

makers, the solution method proposed in this study could

be used. Firstly, the membership function of fuzzy goal
~G
� �

under different risk levels can be calculated by using

Eq. (13):

Table 2 Stream flows under

different probabilistic scenarios

(supply)

Flow level Probability (%) Stream flow ~q�j (in 106 m3)

Low (L) (j = 1) 0.120 [(3.3, 3.4, 3.5, 3.6), (4.0, 4.1, 4.2, 4.3)]

Low-medium (Lm) (j = 2) 0.276 [(4.6, 4.8, 5.0, 5.2),(5.5, 5.7, 5.9, 6.1)]

Medium (M) (j = 3) 0.421 [(6.5, 7.7, 8.9, 10.1), (10.2, 11.4, 12.6, 13.8)]

High (H) (j = 4) 0.183 [(14.2, 15.0, 15.8, 16.6), (17.0, 17.8, 18.6, 19.4)]

Table 3 Water allocation

targets from the reservoir to

water users (demand)

Water users

Municipal (i = 1) Industrial (i = 2) Agricultural (i = 3)

Maximum allowable allocation

Ximax
± (in 106 m3) 7.5 7.5 7.5

Water allocation target

Xi
± (in 106 m3) [1.8, 2.4] [2.3, 3.7] [3.0, 5.8]

Water loss rate during transportation

~c� [(0.08, 0.12, 0.16, 0.20), (0.30, 0.34,0.38, 0.42)]

Table 4 x-Acceptable solutions obtained from the FTSPF model

b x Shortage Yij
± (in 106 m3)

Y11
± Y21

± Y31
± Y12

± Y22
± Y32

± Y13
± Y23

± Y33
± Y14

± Y24
± Y34

±

0.5 0.4 0 [2.42, 3.53] 4.47 0 [0.94, 2.45] 4.47 0 0 [0, 4.25] 0 0 0

0.5 0 [2.46, 3.56] 4.39 0 [1.01, 2.50] 4.39 0 0 [0, 4.39] 0 0 0

0.6 0 [2.50, 3.59] 4.14 0 [1.08, 2.55] 4.14 0 0 [0, 4.14] 0 0 0

0.7 0 [2.54, 3.62] 3.87 0 [1.15, 2.60] 3.87 0 [0, 0.42] [0, 3.87] 0 0 0

0.8 0 [2.59, 3.65] 3.59 0 [1.22, 2.65] 3.59 0 [0, 0.62] [0, 3.59] 0 0 0

0.7 0.4 0 [2.42, 3.53] 3.88 0 [0.94, 2.45] 3.88 0 0 [0, 3.66] 0 0 0

0.5 0 [2.46, 3.56] 3.81 0 [1.01, 2.50] 3.81 0 0 [0, 3.80] 0 0 0

0.6 0 [2.50, 3.59] 3.73 0 [1.08, 2.55] 3.73 0 0 [0, 3.73] 0 0 0

0.7 0 [2.54, 3.62] 3.66 0 [1.15, 2.60] 3.66 0 [0, 0.42] [0, 3.66] 0 0 0

0.8 0 [2.59, 3.65] 3.59 0 [1.22, 2.65] 3.59 0 [0, 0.62] [0, 3.59] 0 0 0

0.9 0.4 0 [2.42, 3.53] 3.73 0 [0.94, 2.45] 3.73 0 0 [0, 3.52] 0 0 0

0.5 0 [2.46, 3.56] 3.66 0 [1.01, 2.50] 3.66 0 0 [0, 3.66] 0 0 0

0.6 0 [2.50, 3.59] 3.59 0 [1.08, 2.55] 3.59 0 [0, 0.21] [0, 3.59] 0 0 0

0.7 0 [2.54, 3.62] 3.52 0 [1.15, 2.60] 3.52 0 [0, 0.42] [0, 3.52] 0 0 0

0.8 0 [2.59, 3.65] 3.45 0 [1.22, 2.65] 3.45 0 [0, 0.62] [0, 3.45] 0 0 0

0.95 0.4 0 [2.42, 3.53] 3.70 0 [0.94, 2.45] 3.70 0 0 [0, 3.48] 0 0 0

0.5 0 [2.46, 3.56] 3.63 0 [1.01, 2.50] 3.63 0 0 [0, 3.63] 0 0 0

0.6 0 [2.50, 3.59] 3.55 0 [1.08, 2.55] 3.55 0 [0, 0.21] [0, 3.55] 0 0 0

0.7 0 [2.54, 3.62] 3.48 0 [1.15, 2.60] 3.48 0 [0, 0.42] [0, 3.48] 0 0 0

0.8 0 [2.59, 3.65] 3.41 0 [1.22, 2.65] 3.41 0 [0, 0.62] [0, 3.41] 0 0 0

b is the risk level; and x is the feasibility degree
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l�~G
b¼0:5

zð Þ ¼
1 if z� 176
z� 130

176� 130
if 130� z� 176

0 if z� 130

8
><

>:
ð17aÞ lþ~G

b¼0:5

zð Þ ¼
1 if z� 546
z� 468

546� 468
if 468� z� 546

0 if z� 468

8
><

>:
ð17bÞ

Table 5 Net system benefit

obtained from the FTSPF model
b x Distribution of net system benefit [~f� ($106)]

0.5 0.4 [(140.14, 152.25, 164.36, 176.47), (483.17, 504.08, 524.99, 545.90)]

0.5 [(135.02, 146.81, 158.60, 170.39), (480.95, 501.75, 522.55, 543.35)]

0.6 [(132.79, 144.57, 156.35, 168.13), (476.92, 497.54, 518.16, 538.78)]

0.7 [(131.56, 143.38, 155.20, 167.02), (472.53, 492.97, 513.41, 533.85)]

0.8 [(130.33, 142.18, 154.04, 165.89), (468.20, 488.46, 508.71, 528.96)]

0.7 0.4 [(156.14, 168.99, 181.84, 194.69), (476.74, 497.40, 518.06, 538.72)]

0.5 [(150.93, 163.46, 175.99, 188.52), (474.55, 495.11, 515.67, 536.23)]

0.6 [(144.03, 156.33, 168.63, 180.93), (472.39, 492.85, 513.31, 533.77)]

0.7 [(137.17, 149.25, 161.33, 173.41), (470.27, 490.63, 510.99, 531.35)]

0.8 [(130.33, 142.18, 154.03, 165.88), (468.20, 488.46, 508.72, 528.98)]

0.9 0.4 [(160.10, 173.13, 186.16, 199.19), (475.14, 495.75, 516.36, 536.97)]

0.5 [(154.87, 167.59, 180.31, 193.03), (472.97, 493.47, 513.97, 534.47)]

0.6 [(147.95, 160.43, 172.91, 185.39), (470.82, 491.22, 511.62, 532.02)]

0.7 [(141.07, 153.33, 165.59, 177.85), (468.71, 489.00, 509.29, 529.58)]

0.8 [(134.27, 146.31, 158.35, 170.39), (466.62, 486.81, 507.00, 527.19)]

0.95 0.4 [(161.06, 174.13, 187.20, 200.27), (474.76, 495.35, 515.94, 536.53)]

0.5 [(155.82, 168.58, 181.34, 194.10), (472.59, 493.07, 513.55, 534.03)]

0.6 [(148.89, 161.42, 173.95, 186.48), (470.44, 490.82, 511.20, 531.58)]

0.7 [(142.01, 154.31, 166.61, 178.91), (468.33, 488.61, 508.89, 529.17)]

0.8 [(135.20, 147.29, 159.38, 171.47), (466.25, 486.42, 506.59, 526.76)]

b is the risk level; and x is the feasibility degree
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Fig. 6 Optimized water allocation targets under different feasibility degree x and risk level b (symbol ‘‘Muni, Indu and Agri’’ is abbreviation of

‘‘municipal, industrial and agricultural’’, respectively)
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Equation (17) is the membership function of fuzzy goal
~G
� �

under the risk level b = 0.5. l�~Gb¼0:5
zð Þ shown in

Eq. (17a) corresponds to the lower bound system benefit

and lþ~Gb¼0:5
zð Þ shown in Eq. (17b) corresponds to the upper

bound system benefit. The parameters in Eq. (17) are

supposed based on the maximum and minimum system

benefits under the risk level b = 0.5 which are shown in

Table 5. Therefore, the membership functions of fuzzy

goal ~G
� �

under other risk levels are as follows:

l�~G
b¼0:7

zð Þ ¼
1 if z� 195
z� 130

195� 130
if 130� z� 195

0 if z� 130

8
><

>:
ð18aÞ

lþ~G
b¼0:7

zð Þ ¼
1 if z� 539
z� 468

539� 468
if 468� z� 539

0 if z� 468

8
><

>:
ð18bÞ

l�~G
b¼0:9

zð Þ ¼
1 if z� 199
z� 134

199� 134
if 134� z� 199

0 if z� 134

8
><

>:
ð19aÞ

lþ~G
b¼0:9

zð Þ ¼
1 if z� 537
z� 467

537� 467
if 467� z� 537

0 if z� 467

8
><

>:
ð19bÞ

l�~G
b¼0:95

zð Þ ¼
1 if z� 200
z� 135

200� 135
if 135� z� 200

0 if z� 135

8
><

>:
ð20aÞ

lþ~G
b¼0:95

zð Þ ¼
1 if z� 537
z� 466

537� 466
if 466� z� 537

0 if z� 466

8
><

>:
ð20bÞ

Then, based on the membership functions of fuzzy goal
~G
� �

under different risk levels shown as Eqs. (17)–(20),

values of index K ~G
~f�
� �

can be calculated, presented in

Table 6. They can indicate the satisfaction degrees of fuzzy

goal ~G, and membership grades of the fuzzy decision

variables Yij
± under each x-acceptable optimal solution

~f� xð Þ. Finally, the mean and deviation of membership

grade for fuzzy decision (i.e. �l ~D Y�
ij

� �
and l̂ ~D Y�

ij

� �
) are

calculated in order to find out the best solutions under

different feasibility degrees when the risk level is given.

Table 6 Fuzzy decision under

each x-acceptable optimal

solution

b x K ~G
~f�
� �

K ~G
~fþ
� �

l ~D Y�
ij

� �
l ~D Yþ

ij

� �
�l ~D Y�

ij

� �
l̂ ~D Y�

ij

� �

0.5 0.4 0.854 0.863 0.342 0.345 0.3435 0.0015

0.5 0.702 0.821 0.351 0.411 0.3810 0.0300

0.6 0.664 0.773 0.398 0.464 0.4310 0.0330

0.7 0.630 0.705 0.441 0.494 0.4675 0.0265

0.8 0.594 0.625 0.475 0.500 0.4875 0.0125

0.7 0.4 0.943 0.836 0.377 0.334 0.3555 0.0215

0.5 0.839 0.790 0.420 0.395 0.4075 0.0125

0.6 0.690 0.762 0.414 0.457 0.4355 0.0215

0.7 0.556 0.716 0.389 0.501 0.4450 0.0560

0.8 0.434 0.680 0.347 0.544 0.4590 0.0985

0.9 0.4 0.960 0.830 0.384 0.332 0.3580 0.0260

0.5 0.870 0.778 0.435 0.389 0.4120 0.0230

0.6 0.721 0.746 0.433 0.448 0.4405 0.0075

0.7 0.599 0.722 0.419 0.505 0.4620 0.0430

0.8 0.472 0.676 0.378 0.541 0.4595 0.0815

0.95 0.4 0.964 0.825 0.386 0.330 0.3580 0.0280

0.5 0.876 0.778 0.438 0.389 0.4135 0.0245

0.6 0.746 0.749 0.448 0.449 0.4485 0.0005

0.7 0.608 0.704 0.426 0.493 0.4595 0.0330

0.8 0.483 0.665 0.386 0.532 0.4590 0.0730

The bold value indicates the optimal fuzzy decision of feasibility degree under each risk level

b is the risk level; x is the feasibility degree; K ~G
~f�
� �

is the satisfaction degree of fuzzy goal; l ~D Y�
ij

� �
is

the membership grade of the fuzzy decision; �l ~D Y�
ij

� �
is the mean of membership grade for the fuzzy

decision; l̂ ~D Y�
ij

� �
is the deviation of membership grade for the fuzzy decision
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The final fuzzy decision would be the one with the highest

value of �l ~D Y�
ij

� �
. As shown in Table 6, the best choice

under the risk level b = 0.5 is the 0.8-feasibility optimal

solution with a mean of 0.4875 and a deviation of 0.0125;

the best choice under the risk level b = 0.7 is the 0.8-

feasibility optimal solution with a mean of 0.4590 and a

deviation of 0.0985; the best choice under the risk level

b = 0.9 is the 0.7-feasibility optimal solution with the

mean and deviation being 0.4620 and 0.0430, respectively;

and the best choice under the risk level b = 0.95 is the 0.7-

feasibility optimal solution with the mean and deviation

respectively being 0.4595 and 0.0330. A lower feasibility

degree always leads to a higher value of objective function.

However, the 0.4-feasibility optimal solution which is

corresponding to the highest value of objective function is

not the best choice in this study. It indicates the balance

between the system benefit and the degree of constraint

feasibility which should be paid more attention to by the

decision makers.

Table 7 shows the optimized 0.8-feasibility solutions

under b = 0.5 and b = 0.7, and the optimized 0.7-feasi-

bility solutions under b = 0.9 and b = 0.95 obtained from

the FTSPF method. The optimized water allocation targets

and the actual water allocation amount under each risk

level for the three water users could be calculated by letting

Xi,opt = Xi
- ? DXiyi,opt and Aij,opt

± = Xi,opt - Yij,opt
± . And

they can help decision makers maximize the system benefit

under various uncertainties and risk levels. For example,

when the risk level is 0.5, there would be no shortage for

the municipal use under all stream flow levels. Accord-

ingly, the water allocation amount for the municipal use

would be 2.400 (in 106 m3) which equals to the optimized

water allocation target. For the industrial use, the shortages

under the low, low-medium, medium stream flow level

would be [2.586, 3.651] (in 106 m3), [1.220, 2.646] (in

106 m3), and [0, 0.623] (in 106 m3), respectively, but no

shortage happen to the industrial use under the high stream

flow level. Then the water allocation amounts for the

industrial use would be [0.049, 1.114] (in 106 m3), [1.054,

2.480] (in 106 m3), [3.077, 3.700] (in 106 m3) and 3.700 (in

106 m3) under each stream flow level, respectively. How-

ever, there would be no water allocation for the agricultural

use under the low and low-medium stream flow level.

There would be no shortage for the agricultural use under

the high stream flow level. And the water allocation for the

agricultural use under the medium stream flow level would

depend on the realities of situation. It is because the

municipal use could bring about the highest benefit when

its water allocation target is satisfied as well as the highest

penalty when its water allocation target is not satisfied. In

order to achieve the maximum system benefit, the decision

makers would promise more water allocation amount to the

municipal use instead of the agricultural use.

Figure 7 presents optimized water allocation amounts to

the three water users under each risk level b. Eventually,
the values of the optimized system benefit under each risk

level are ~f
�
b¼0:5 0:8ð Þ ¼ 130:33; 142:18; 154:04; 165:89ð Þ;½

468:20; 488:46; 508:71; 528:96ð Þ� ($106), ~f
�
b¼0:7 0:8ð Þ ¼

130:33; 142:18; 154:03; 165:88ð Þ; 468:20; 488:46; 508:ð½
72; 528:98Þ� ($106), ~f

�
b¼0:9 0:7ð Þ ¼ 141:07; 153:33;ð½

165:59; 177:85Þ; 468:71; 489:00; 509:29; 529:58ð Þ� ($106),

and ~f
�
b¼0:95 0:7ð Þ ¼ 142:01; 154:31; 166:61; 178:91ð Þ;½

468:33; 488:61; 508:89; 529:17ð Þ� ($106). As discussed

Table 7 Optimized x-acceptable solutions of the FTSPF model under each risk level b (in 106 m3)

b Water shortage (Yijopt
± ) under a stream flow level of Allocation amount (Aijopt

± ) under a stream flow level of

L Lm M H L Lm M H

0.5 Probability (%) 0.120 0.276 0.421 0.183 0.120 0.276 0.421 0.183

Municipal 0 0 0 0 2.400 2.400 2.400 2.400

Industrial [2.586, 3.651] [1.220, 2.646] [0, 0.623] 0 [0.049, 1.114] [1.054, 2.480] [3.077, 3.700] 3.700

Agricultural 3.591 3.591 [0, 3.591] 0 0 0 [0, 3.591] 3.591

0.7 Municipal 0 0 0 0 2.400 2.400 2.400 2.400

Industrial [2.586, 3.651] [1.220, 2.646] [0, 0.623] 0 [0.049, 1.114] [1.054, 2.480] [3.077, 3.700] 3.700

Agricultural 3.589 3.589 [0, 3.589] 0 0 0 [0, 3.589] 3.589

0.9 Municipal 0 0 0 0 2.400 2.400 2.400 2.400

Industrial [2.545, 3.622] [1.152, 2.597] [0, 0.417] 0 [0.078, 1.155] [1.103, 2.548] [3.283, 3.700] 3.700

Agricultural 3.517 3.517 [0, 3.517] 0 0 0 [0, 3.517] 3.517

0.95 Municipal 0 0 0 0 2.400 2.400 2.400 2.400

Industrial [2.545, 3.622] [1.152, 2.597] [0, 0.417] 0 [0.078, 1.155] [1.103, 2.548] [3.283, 3.700] 3.700

Agricultural 3.483 3.483 [0, 3.483] 0 0 0 [0, 3.483] 3.483

Symbol ‘‘L, Lm, M and H’’ are abbreviations of ‘‘low, low-medium, medium and high’’, respectively
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before, an increasing risk level means the probability of a

loss exceeding the threshold decreasing, which finally leads

to an increasing net system benefit. However, for the

optimal solutions at the same degree of constraint feasi-

bility, the effect of risk levels is only on the allocation of

agricultural section. In detail, a higher risk level leads to a

higher net system benefit achieved by decreasing the

shortage of agricultural section. Therefore, the water allo-

cation for agricultural section is the key to control the

financial loss of water. The decision makes should pay

more attention to water allocation amount to the agriculture

use.

In order to analyze the impact of the feasibility degree x
and risk level b on the optimal solutions, a multi-level

factorial design can be used in this study. The values of

low, medium and high levels for x as well as b are 0, 0.5

and 1, respectively. The results of the multi-level factorial

experiment are shown in Table 8.

In this study, the final solution is determined based on

the value of �l ~D Y�
ij

� �
. Therefore, it is necessary to explore

the effects of factors to �l ~D Y�
ij

� �
which has direct rela-

tionship with optimal value of objective function. Figure 8
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presents the effects plot for the two factors at three levels.

The points in the effects plot are the mean of �l ~D Y�
ij

� �
at

different levels of factors. It shows that factor x has the

greater effect on the mean value of �l ~D Y�
ij

� �
than factor b.

The mean of �l ~D Y�
ij

� �
would increase from 0 to 0.3148 and

then from 0.3148 to 0.3685. This is because any change of

feasibility degree of constraint would directly affect the

solution of optimization, leading to a considerable varia-

tion in the system benefit.

Figure 9 shows the interaction plot for factor x and

factor b at three levels. It reveals their interactive effect on

the value of �l ~D Y�
ij

� �
which corresponds to optimal system

benefit versus the feasibility degree for each of the three

different confidence levels. The change in the value of

�l ~D Y�
ij

� �
differs across the three levels of x depending on

the level of b. Therefore, it is found that there exists

dependence between effects of x and b. The highest

�l ~D Y�
ij

� �
of 0.3976 would be obtained when x is at its high

level and b is at its low level, implying that the optimal

value of objective function would occur at the point of

highest feasibility degree and lowest risk level. In real-

world water allocation problems, the effect the factors and

their latent interactions are thus identified by using MFD

then could further help make sound decisions of water

allocation in the decision-making process.

3.3 Comparison of FTSPF with ITSFP

FTSPF, described in this study, and ITSFP, proposed by

Wang and Huang (2011), are both methods for water

resources planning problems under dual uncertainties. The

above water resources system is as an example to compare

these two methods.

Based on the relevant data of economic factors and

seasonal flow conditions shown in Tables 1, 2 and 3, the

x-acceptable solutions can be generated by the ITSFP

model shown as Eq. (1). The feasibility degrees x are 0.4,

0.5, 0.6, 0.7 and 0.8, and the corresponding system benefits

are shown in Table 9.

The net system benefits obtained by ITSFP shown in

Table 9 are compared to those obtained by FTSPF shown

in Table 5. In detail, the ITSFP-based values are closest to

the FTSPF-based values under risk level b = 0.5 since the

values obtained by two methods are the same under fea-

sibility degree x = 0.6, 0.7 and 0.8. Moreover, both of the

optimal net benefits generated by ITSFP and FTSPF under

b = 0.5 are ~f� 0:8ð Þ ¼ 130:33; 142:18; 154:04; 165:89ð Þ;½
468:20; 488:46; 508:71; 528:96ð Þ�: Therefore, ITSFP is a

simplified case of FTSPF proposed in this study. On the

other hand, the maximum system benefit obtained from

ITSFP is ~f� 0:4ð Þ ¼ 133:40; 145:20; 156:99; 168:78ð Þ;½

Table 8 Multi-level factorial

experiment and the

corresponding optimization

results

Run Factor Total net benefit ($106)

x b

1 l-1 l-1 [(146.89, 159.63, 172.36, 185.09), (498.12, 519.69, 541.26, 562.83)]

2 l-1 l0 [(161.20, 174.59, 187.99, 201.39), (492.37, 513.72, 535.07, 556.43)]

3 l-1 l?1 [(173.25, 187.20, 201.16, 215.12), (487.52, 508.69, 529.86, 551.03)]

4 l0 l-1 [(133.98, 145.73, 157.47, 169.21), (481.37, 502.18, 523.00, 543.82)]

5 l0 l0 [(135.02, 146.81, 158.60, 170.39), (480.95, 501.75, 522.55, 543.35)]

6 l0 l?1 [(146.74, 159.08, 171.41, 183.75), (476.24, 496.86, 517.48, 538.11)]

7 l?1 l-1 [(127.71, 139.63, 151.55, 163.47), (459.73, 479.62, 499.51, 513.40)]

8 l?1 l0 [(127.71, 139.63, 151.55, 163.47), (459.73, 479.62, 499.51, 513.40)]

9 l?1 l?1 [(127.71, 139.63, 151.55, 163.47), (459.73, 479.62, 499.51, 513.40)]
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485:88; 506:89; 527:90; 548:91ð Þ�, and that obtained from

FTSPF under b = 0.5 is ~f
�
b¼0:5 0:4ð Þ ¼ 140:14; 152:25;ð½

164:36; 176:47Þ; 483:17; 504:08; 524:99; 545:90ð Þ�. The

minimum system benefit generated by ITSFP and that

generated by FTSPF under b = 0.5 are the same. It indi-

cated that the objective function value obtained from

ITSFP is less than and equal to that obtained by FTSPF.

This is because compare to the ITSFP model, the FTSPF

model contains a risk constraint for financial loss of water

shortage, which may results a lower possible total penalties

as well as a higher system benefit. The associated risk

constraint is controlled by the risk level b which could be

adjusted by the decision makers based on their demand and

intention.

4 Conclusion

In this study, factorial analysis and fuzzy random value-at-

risk approaches were introduced into a two-stage stochastic

programming framework to characterize the impacts of

uncertain parameters on water resources planning practices

and the associated risks. The proposed method could deal

with uncertainties with dual and multiple presentations and

tackle problems with respect to tradeoffs among the satis-

faction of system benefit, the risk level of water loss and

the feasibility degree of constraints. The interactions

between feasibility degrees and risk levels and the curva-

ture in the response function could also be revealed by the

proposed method.

In order to demonstrate the applicability of the proposed

method, a case study of water resources planning has been

provided. The results indicated that FTSPF could generate

various plans of water resources allocation under multiple

uncertainties and complexities. In detail, (1) optimal x-
feasibility solutions under each risk level could be deter-

mined, and the system benefit gradually decrease as the

degree of constraint feasibility increase or the risk level

decrease, (2) feasibility degree has the greater magnitude

of the effect upon the final decision than risk level, and the

highest value of objective function is not the most optimal

solution as the balance between the system benefit and the

feasibility degree, (3) the effect of risk levels is only on the

allocation of agricultural section for the optimal solutions

at the same feasibility degree, and (4) there exists depen-

dence between the effects of the feasibility degree and the

risk level. The comparison between FTSPF and ITSFP

showed that FTSPF can generate a higher system benefit

with controlled risk levels. The solution obtained from

FTSPF could satisfy different demands from decision

makers, which has significance in the practical application

of water resources planning problem.
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