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Abstract Multi-regression, hydrologic sensitivity and

hydrologic model simulations were applied to quantify the

climate change and anthropogenic intervention impacts on

the Lower Zab River basin (LZRB). The Pettitt, precipi-

tation-runoff double cumulative curve (PR-DCC) and

Mann–Kendall methods were used for the change points

and significant trend analyses in the annual streamflow.

The long-term runoff series from 1979 to 2013 was first

divided into two main periods: a baseline (1979–1997) and

an anthropogenic intervention period (1998–2013). The

findings show that the mean annual streamflow changes

were consistent using the three methods. In addition, cli-

mate variability was the main driver, which led to

streamflow reduction with contributions of 66–97% during

2003–2013, whereas anthropogenic interventions caused

reductions of 4–34%. Moreover, to enhance the multi-

model combination concept and explore the simple average

method (SAM), Hydrologiska Byrans Vattenbalansavdel-

ning (HBV), Génie Rural a Daily 4 parameters (GR4J) and

Medbasin models have been successfully applied.

Keywords Climate change � Human-induced impacts �
Hydrologic sensitivity analysis � Multi-model combination

technique � Multi-regression � Runoff simulation

1 Introduction

1.1 Background

Alterations in streamflow as a result of climate change

linked with the anthropogenic interventions have long been

the main focus of hydrological studies (Guo et al. 2014;

Jiang et al. 2011). Generally speaking, the climate change

is considered as the focal factor changing precipitation

patterns. However, anthropogenic interventions have

affected the water resources temporally and spatially. The

impacts of these two factors on streamflow are sensitive,

particularly in semi-arid and arid geographical regions,

which resulted in serious environmental degradations and

water crisis (Zhang et al. 2001; Miao et al. 2011; Chang

et al. 2015). Hence, assessing factors that impact on

alterations of river flow have drawn considerable concerns.

A growing number of studies focus on evaluating the

ratio of climate change and anthropogenic interventions on

basin streamflow (Jiang et al. 2011; Wang et al. 2012; Ye

et al. 2013; Guo et al. 2014; Jiang et al. 2015; Mao et al.

2015; Cheng et al. 2016; Huang et al. 2016). Such impacts

vary based on geographical region; accordingly, they are

commonly explored at a regional scale such as on sub-

basin or basin scale. For instance, Ma et al. (2008) pre-

dicted that climate variability accounted for over 64% of

the reduction in average yearly streamflow, mainly as a

result of precipitation decline.

The impacts of anthropogenic interventions and climate

variability can be quantified through adopting the follow-

ing steps: firstly, determining the change points in climatic

data since it would influences the results in assessing other

factors (Cheng et al. 2016). Specifying such points can be

achieved by using statistical methods such as the Mann–

Kendall trend analysis (M–K) (Chen and Xu 2005; Kahya
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and Kalayci 2004; Mao et al. 2015), the Pettitt’s analysis or

the precipitation-runoff double cumulative curve technique

(Jiang et al. 2011; Guo et al. 2014; Vaheddoost and Aksoy

2016). Accordingly, the hydrological years before the

alteration are considered as a baseline, then the impact of

the climate change period can be isolated from the baseline

period. The second step is to apply methods that determine

the climate change effects. Hence, the reminder of the

effects is then attributed to other factors such as land use

land cover, direct withdrawal of water from surface or

subsurface flow for municipal, industrial production and

irrigation purposes, and other different purposes which are

considered as anthropogenic interventions (Zhao et al.

2010).

In order to identify the impacts of climate variability and

anthropogenic interventions on streamflow, a large number

of methodologies have been proposed (Li et al. 2007; Ma

et al. 2008; Miao et al. 2011; Wang et al. 2012; Guo et al.,

2014; Chang et al. 2015; Cheng et al. 2016). The rainfall-

runoff model simulation is usually considered as the most

widely spread method (Futter et al. 2015; Jiang et al. 2011;

Jones et al. 2004; Zhang et al. 2001). For example, Li et al.

(2007) suggested a framework to predict the mean runoff

sensitivity on precipitation and potential evapotranspira-

tion. The technique was then employed to evaluate the

anthropogenic interventions and climate change impacts on

streamflow (Li et al. 2007; Zhang et al. 2001). However,

some modernistic endeavours have been developed to

address this environmental issue using linear regression

analysis (Li et al. 2007; Zhao et al. 2010).

A rainfall-runoff simulation is an estimated explanation

of the problematical hydrologic phenomena that happen in

the environment. Such model is a potentially powerful tool

to solve practical hydrological challenges. In addition, the

model is considered as an effective method for under-

standing the complex water cycle processes.

Rainfall-runoff models have advanced from empirical

models to conceptual ones and thus to distributed models.

Hydrological estimation accuracy has improved over time.

However, there are often diverse modelling uncertainties

such as model parameters as well as data and model

structural errors (Jiang et al. 2014). Uncertainties in

hydrological modelling have been studied previously

(Ajami et al. 2007; Duan et al. 2007; Vallam et al. 2014;

Zheng et al. 2014). Zheng et al. (2014) demonstrated that

hydrological model parameter uncertainties have great

impacts on the model simulation results. The uncertainties

in model simulation during wet periods are relatively

higher than those during dry periods.

Numerous rainfall-runoff models are available, and each

model describes the processes of hydrological events.

There is currently no single model that can describe the

principles of basin rainfall-runoff covering all conditions.

Therefore, multi-model approaches depend on the results

of several models, and can improve the accuracy of

hydrological prediction through a reduction of the model

structure uncertainty.

This study focuses on applying a simple multi-model

approach to perform streamflow simulations and uncer-

tainty analyses. As a representative case study, the Lower

Zab River basin (LZRB), which is considered one of the

important basins in the northern part of Iraq, contributing

to the flow rate of the Tigris River (Fig. 1). In addition,

there are four other basin regions, which are the Diyala,

Khabur, Upper Zab (Greater Zab) and Uzem. Over the past

few years, the northern area of Iraq has been severely

impacted by climatic variations, water shortage, drought

phenomena and some casual flood events. Droughts have

negatively impacted the wide range of areas in the studied

region. However, floods only sometimes happened over the

winter season due to of heavy rainfall and the lack of dams

and artificial drainage networks, which result in socio-

economic damages in the region (Sen et al. 2012; Al-An-

sari 2013; Saeedrashed and Guven 2013; Al-Ansari et al.

2014; Devi et al. 2015). To date, the LZRB runoff has

significantly declined during recent water years as reported

by various studies (Chen and Xu 2005; Saeedrashed and

Guven 2013). Anthropogenic interventions such as dam

and reservoir constructions, irrigation and drainage sys-

tems, land use and land cover alterations in addition to

climate change have been considered to be the main rea-

sons for the decline in the LZRB runoff (Bozkurt and Sen

2012; Bozkurt et al. 2015). An evaluation of the relative

contributions of anthropogenic interventions and climate

change to streamflow alteration in the LZRB has not been

performed, yet.

1.2 Rationale, aim, objectives and significance

Land use and land cover have been demonstrated univer-

sally to be the main factors impacting on river basin flow

(Li et al. 2007; Huo et al. 2008; Miao et al. 2011; Wang

et al. 2012; Guo et al. 2014; Chang et al. 2015). However,

detailed assessments on the long-term change in stream-

flow to the LZRB and the distinct contribution of anthro-

pogenic interventions and climate change have not been

reported upon. The main target of the current study is to

answer the following question: To what extent do anthro-

pogenic interventions and climate change impact on the

alteration of runoff within the LZRB? The answer depends

on three of the most commonly accepted runoff simulation

methods applied in this study, which are the Medbasin,

GR4J and HBV models. Accordingly, the objectives of the

study are as follows:

• To analysis the basin streamflow temporal variations;
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• To detect critical change points and trends of annual

basin streamflow;

• To understand the main driving factors for the recorded

streamflow alterations;

• To assess the relative contributions of climate change

and anthropogenic interventions such as land use

change, reservoir construction and in-channel damming

on basin streamflow; and

• To evaluate how the accuracy of multi-model simula-

tion is influenced by the seasonal variations of hydro-

logical processes, and the accuracy level of individual

member models.

The models applied (Sect. 2.5) have different structural

assumptions and data requirements. They were selected to

ensure that they cover a wide range of possibilities to

maximise the benefits obtained from combining their out-

puts. The results of this study can be used for regional

water resources evaluation and utilisation as well as

managing benchmarks by shading light on the abrupt

changes and trends of historical hydrological data for the

whole studied geographical region and similar ones else-

where. In the next section available data and methods are

introduced, followed by various runoff simulation

approach descriptions. The obtained results are then dis-

cussed, and key conclusions are drawn.

2 Available data and methods

2.1 Representative case study

The Lower Zab River (also known as Little Zab River and

Lesser Zab River) is one of the main tributaries of the

Tigris River in the Erbil governorate in the north-east of

Iraq. The basin is divided between Iraq and Iran with a total

area of 19,846 km2. About 75% of this area is located in

Iraq. The entire length of 370 km covers areas between the

south-east and south-west of Iraq on one side and north-

western Iran and northern Iraq on the other side before

joining the Tigris near Fatha city, which is located about

220 km north of Baghdad (Tsakiris et al. 2007). The river

and its tributaries are located between latitudes 36�500N
and 35�200N, and longitudes 43�250E and 45�500E (Saee-

drashed and Guven 2013; Seibert and Vis 2012) as shown

in Fig. 1. The considered river basin is situated in a semi-

arid to arid climate zone. The annual precipitation within

Fig. 1 Locations of the selected meteorological stations
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the basin is approximately 720 mm. The current study is

restricted to the basin upper part with an overall drainage

area of 14,924 km2.

This research examines the daily flow rate for the

hydrological years between 1979 and 2013 at Dokan sta-

tion, which is considered as a key hydrometric gauging

station (latitude 35�5300000N and longitude 44�5800000E).

The considered area has suffered from drought in recent

years. The water year 2008 was the driest. The Lower Zab

River has relatively high flows during summer due to

releases of water from the Dokan reservoir to supply the

agricultural industry and urban users.

2.2 Data collection and analysis

Daily meteorological data from seven stations with eleva-

tions ranging from 319 to 1536 m (Table 1) were available

for the period between 1979/1980 and 2012/2013. The data

were assigned to the watershed and subsequently adjusted

to the average elevation of the watershed. The collected

information comprises daily streamflow data accessible for

Dokan station (latitude 35�5300000N and longitude

44�5800000E) for a duration of 35 years. The representative

sub-basin area for this part of the study is 14,924 km2. The

data were obtained from the Ministry of Agriculture and

Water Resources in the Kurdistan region of Iraq (personal

communication).

ArcGIS 10.3 has been used for meteorological and

hydrological station location projections, Thiessen network

computations and river basin delineation. Table 1 reveals

the latitude, longitude and elevation of the meteorological

stations covering the studied basin. Additionally, statistical

analyses for the daily meteorological and hydrological

data, including trend analysis, monthly and annual average

values, corrections and gap filling, were performed using

the Statistical Program for Social Sciences (SPSS) 20. The

Pettitt test has been performed using XLSTAT, which is an

add-in for Excel. Table 2 reveals Mann–Kendall test

findings for the key meteorological variables. The estima-

tion of potential evapotranspiration PET (mm) was

accomplished based on the Food and Agriculture Organi-

zation Penman–Monteith standard method (Allen et al.

1998), which was calculated depending on the reference

evapotranspiration ETo (mm) calculator version 3.2 (FAO

2012).

In order to achieve an accurate estimation of the spatial

distribution of rainfall, it is necessary to use interpolation

methods. The weighing mean method is often considered

as the most important one for engineering praxis. This

method assigns weights at each gauging station in pro-

portion to the basin area, which is closest to that station. To

set up the method, the following steps have been accom-

plished using ArcGIS. The creation of a shapefile of the

named watershed polygons as a function of the land cover

image has been achieved by downloading the relevant

information from the Global Land Cover Facility.

This step was followed by the creation of two shapefiles.

The first one is the basin border polygon, while the second

one is the point shapefile that represents meteorological

stations. Each point representation is linked to a value of

the long-term precipitation. A Thiessen network was cre-

ated to estimate the area of each station polygon (ai). This

has been achieved depending on the following: (a) con-

necting the adjacent stations with lines; (b) constructing

perpendicular bisectors of each line, and (c) extending the

bisectors and applying them to form polygons around each

station. Table 3 lists the station addresses with corre-

sponding average precipitation and potential evapotran-

spiration and the sub-area sizes.

Rainfall and potential evapotranspiration values for each

gauging station were multiplied by the area of each poly-

gon ai (km2). The next step required the computation of the

average values of the average precipitation Pm (mm) and

average potential evapotranspiration PETm (mm) by

Table 1 Overview of basin station locations

Station name Longitude (�) Latitude (�) Elevation (m)

Kirkuk 44.40 35.47 319

Chem-Chamal 44.83 35.52 701

Sulymanya 45.45 35.53 885

Halabcha 45.94 35.44 651

Makhmoor 43.60 35.75 306

Salahddin 44.20 36.38 1088

Erbeel 44.00 36.15 1088

Soran 44.63 36.87 1132

Mahabad 45.70 36.75 1356

Sachez 46.26 36.25 1536

Table 2 Station addresses with corresponding average precipitations

and the sub-area sizes

Station ID Sub-area (km2) Ava Pb (mm) Ava PETc (mm)

Sulymaniya 4479.57 772 1989

Mohabad 2593.31 886 920

Soran 1463.30 813 1433

Chem-Chamal 2827.46 738 2075

Sachez 1182.79 462 1550

Salahddin 1641.07 652 2058

Halabcha 735.60 585 980

a Average
b Precipitation
c Potential evapotranspiration
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summing up all values obtained from the previous step and

dividing the corresponding number by the total basin area

according to Eq. (1). Stations are distributed both inside

and outside basin polygons (Fig. 1). Only one average

value M per station has been provided to keep the proce-

dure simple.

Mm ¼
Pn

i¼1 ai �MiPn
i¼1 ai

ð1Þ

where Mm is the average value of the basin precipitation

P (mm) or PET (mm), ai (km2) is the meteorological sta-

tion area, and Mi (mm) is the average value of the station

polygon M.

Furthermore, the ratios of the long-term average

monthly precipitation to the long-term average annual

precipitation for the studied hydrologic year period, which

started from October, are listed in Table 3. Data analysis

outcomes show that the accumulated precipitation over the

wet months, which are from October to May, accounts to

nearly 99.5% of the entire yearly precipitation. However,

the aggregated precipitation during the dry months, which

are from June to September, contributes to just about 0.5%

of the total precipitation.

2.3 Potential evapotranspiration estimation

The FAO Penman–Monteith method is primarily applied to

estimate ETo as indicated in Eq. (2).

ETo ¼
0:408 � Rn � Gð Þ þ c� 900

Tmþ273
u2 � es � eað Þ

Dþ c� 1 þ 0:34 � u2ð Þ ð2Þ

where ETo (mm/day) is the reference evapotranspiration,

Rn (MJ/m2/day) is the net radiation at the crop surface,

G (MJ/m2 9 day) is the soil heat flux density, c (kPa/�C) is

the psychrometric constant, Tm (�C) is the mean air tem-

perature, u2 (m/s) is the wind speed at 2-m elevation, es
(kPa) is the saturation vapour pressure, ea (kPa) is the

natural vapour pressure, es-ea (kPa) is the saturation

vapour pressure deficit, and D (kPa/�C) is the slope vapour

pressure curve.

2.4 Analysis of trends and change points

The normality of meteorological and hydrological datasets

was investigated with the Kolmogorov–Smirnov analysis

as a first step before conducting change tests using

Table 3 Long-term average

monthly to long-term annual

precipitation ratios

Station name Percentage of long-term annual precipitation ratio

October November December January February March

Kirkuk 4.94 13.41 16.89 17.83 16.96 16.56

Chem-Chamal 5.17 13.14 16.53 17.48 16.91 16.21

Sulymanya 4.53 12.16 16.42 18.63 17.42 16.83

Halabcha 3.87 10.92 16.33 18.01 19.01 17.55

Makhmoor 6.78 13.11 15.66 17.09 15.56 17.11

Salahddin 4.09 12.18 15.82 18.10 18.14 16.92

Erbeel 5.87 12.93 15.91 17.27 16.53 16.48

Soran 5.04 12.19 13.78 13.91 15.62 16.66

Mohabad 5.88 11.91 14.26 15.76 16.19 16.65

Sachez 4.17 11.27 15.27 16.80 17.04 17.94

Station name Percentage of long-term annual precipitation ratio

April May June July August September

Kirkuk 9.06 4.09 0.17 0.00 0.00 0.10

Chem-Chamal 9.92 4.38 0.13 0.00 0.00 0.12

Sulymanya 9.75 4.05 0.10 0.00 0.00 0.11

Halabcha 10.64 3.39 0.12 0.02 0.00 0.14

Makhmoor 9.53 4.73 0.17 0.00 0.00 0.25

Salahddin 10.82 3.70 0.10 0.00 0.00 0.13

Erbeel 10.26 4.31 0.18 0.00 0.00 0.26

Soran 14.74 6.91 0.73 0.08 0.11 0.23

Mohabad 12.26 6.32 0.41 0.07 0.05 0.25

Sachez 11.20 5.78 0.25 0.05 0.01 0.22
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statistical techniques. Depending on these tests, most

meteorological and hydrological data series applied in this

research do not follow a normal distribution at a signifi-

cance level p of 0.05. Regarding the non-normal distribu-

tion attributes of datasets utilised in the current research,

two widespread distribution-free non-parametric tech-

niques (Pettitt test and Mann–Kendall (M–K) analysis)

were applied to identify the variations of streamflow, pre-

cipitation, mean air temperature and potential evapotran-

spiration time series in the LZRB. The former was utilised

for identifying monotonic trends or slow trends, whereas

the latter was applied to identify sudden changes in the

average level. A brief description of these two tests can be

found below.

Firstly, for trend detection in the considered datasets, the

Mann–Kendall analysis was considered. The M–K analysis

is a distribution-free technique for evaluating if there is a

monotonic upward or downward trend of the considered

parameter over time (Dahamsheh and Aksoy 2007; Seibert

and Vis 2012). A monotonic downward (upward) trend

indicates that the parameter consistently decreases (in-

creases) during the studied time period. However, the trend

might or might not be linear. The M–K analysis can be

applied instead of a parametric linear regression test, which

can be used to analysis if the slope of the computed linear

regression line is different from zero. The regression test

requires that the residuals from the fitted regression line are

normally distributed. Such an assumption is not required by

the M–K test, which is a non-parametric distribution-free

test. For more details about the M–K test, readers may refer

to previous studies (Robaa and AL-Barazanji 2013; Seibert

and Vis 2012).

Secondly, the Pettitt test has been applied for change

point identification. Change point identifications are con-

sidered as important in the analysis of runoff datasets for

the purpose of studying the impacts of anthropogenic

interventions and climate change. The Pettitt test is a dis-

tribution-free method to calculate the existence change

points for the average of a time series, if the specific

change time is unidentified. This analysis has been com-

monly applied to assess alterations in hydrological and

weather data (Velázquez et al. 2011; Zhang et al. 2001).

The PR-DCC can illustrate the consistency of runoff and

precipitation data (Jiang et al. 2011). In general, the curve

is a straight line. A variation in the trend of the curve could

deduce that the properties of streamflow or precipitation

have altered. The PR-DCC technique might be applied to

test homogeneity of hydrological data and is often seen as

an efficient tool for the detection of the hydrological sys-

tem variations as a result of anthropogenic interventions

(Huo et al. 2008; Velázquez et al. 2011; Zhang et al. 2001).

As an auxiliary method for the change point detection in

the precipitation and runoff series, the PR-DCC method

was used in the current study.

By using change point test and trend analysis, the

streamflow dataset is divided into a baseline period dataset

and an anthropogenic interventions period dataset (Jiang

et al. 2011). In this study, the Pettitt’s test for change point

identification of the streamflow time series is tested for re-

approval of the change points identified using PR-DCC.

Depending on the separated periods, the impacts of

anthropogenic interventions and climate change on

streamflow can be divided by using streamflow simulation

methods as outlined in the next section.

2.5 Rainfall-runoff simulation methods

2.5.1 Hydrological model descriptions

For the purposes of planning, designing or management of

river discharges, rainfall-runoff models have been used

widely to acquire streamflow data since such data are not

easily available. These models comprise of a series of

equations that endeavour to mimic the diversity of the

interrelated events, which participate in hydrological pro-

cess. The hydrological models might be categorised based

on many criteria such as procedure description, solution

mechanism and scale. Various categories are applied in the

literature, for example, lumped and distributed models,

continuous-time and event-based models as well as con-

ceptual and black-box models (Tigkas and Tsakiris 2004;

Aksoy et al. 2016).

For the simulation of basin runoff depending on a set of

weather parameters, the current research utilised three of

the most commonly used conceptual models, which are the

Medbasin rainfall-runoff, GR4J and HBV rainfall-runoff

models (Tabari and Taalaee 2011; Tigkas et al. 2012). The

Medbasin model integrates the two lumped hydrological

models Medbasin-D and Medbasin-M for daily (D) and

monthly (M) data, respectively, with tools for forecasting

different climatic variations and drought scenarios. The

Medbasin-M model is based on two calibration parameters,

the total capacity of the soil storage Smax (mm) and the

coefficient of deep percolation C. The monthly delay factor

a adjusts the distribution of the monthly runoff (Tigkas and

Tsakiris 2004). A favourable computation of Smax (mm)

can be accomplished by Eq. (3). Monthly precipitation P

(mm) and PET (mm) data are utilised as input data for the

rainfall-runoff modelling process.

Smax ¼ 25:4 � 1000

CN
� 10

� �

ð3Þ

where Smax (mm) is the total capacity of the soil storage

and CM is the curve number that is based on many factors
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such as land use and land cover, previous moisture con-

ditions in the basin and soil infiltrability.

The GR4J is a daily-lumped four parameter rainfall-

runoff model that is used both for precipitation and

potential evapotranspiration data as input for meteorolog-

ical variables. The model belongs to the family of soil

moisture accounting models, and shows a good robustness

in comparative studies and was also extensively tested for

various climatic regions including the USA, Australia and

France. The model calibration is relatively simple because

of the low number of parameters (Perrin et al. 2003).

The HBV is an example of a semi-distributed conceptual

model simulating daily discharge depending on daily

rainfall and air temperature and monthly estimates of

potential evaporation as input. Air temperature data are

used for calculating snow accumulation.

As a first step for simulation of runoff, the rainfall-

runoff models were calibrated depending on the recorded

dataset of the baseline period. Subsequently, the usual time

series of streamflow was rebuild for the anthropogenic

period. After that, the anthropogenic intervention impacts

on streamflow have been estimated through subtracting the

recorded streamflow from the rebuild streamflow as shown

in Eq. (4).

DRanthropogenic ¼ Ra � Rar ð4Þ

where DRanthropogenic (mm/month) indicates the change in

mean annual runoff as a result of the anthropogenic inter-

ventions effect, Ra (mm/month) refers the observed runoff

of the anthropogenic intervention period, and Rar

(mm/month) is the rebuild runoff series for the anthro-

pogenic interventions period.

2.5.2 Simple average method

The simple average technique is considered the simplest

method of combining the results of many single hydro-

logical models (Ajami et al. 2006; Duan et al. 2007;

Velázquez et al. 2011). An equal weight is assigned to the

results of all of the considered models. This method can

produce estimates that are better than those of the single

models. The accuracy of the SAM method depends mainly

on the number of models involved and on the actual esti-

mating capability of the specific models included. The

combined predicted streamflow R from N hydrological

models can be computed by Eq. (5).

RSAMt
¼ 1

N

XN

j¼1

Rsimi;t
ð5Þ

where RSAMt
is the multi-model streamflow simulated by

SAM at time t, N is the number of models under

consideration and Rsimi;t
is the model streamflow simulation

for i model and t time.

2.5.3 Method of hydrologic sensitivity analysis

The analysis of hydrologic sensitivity might be defined as

the ratio variation in average streamflow in response to the

average P and PET variations in an annual time step

(Velázquez et al. 2011). The basin water balance can be

expressed with Eq. (5). The change of DS (mm) can rea-

sonably be neglected on the average yearly time scale. It

follows that DS can be set as zero for a lengthy time period

(i.e. 10 water years or more) (Guo et al. 2014; Jiang et al.

2014). Long-term average yearly actual evapotranspiration

AET (mm) can be predicted by Eqs. (5) and (6) according

to Zhang et al. (2001).

P ¼ E þ Rþ DS ð6Þ

where P (mm) is precipitation, E (mm) represents evapo-

transpiration, R (mm) is streamflow, and DS (mm) is basin

water volume change. According to Zhang et al. (2001),

long-term average annual actual evapotranspiration (AET)

can be calculated as shown in Eq. (7).

E

P
¼ 1 þ x� a�1

k

1 þ x� a�1
k þ ak

ð7Þ

where E (mm) is evapotranspiration, P (mm) is precipita-

tion, w is the coefficient of the available water for plants

related to the vegetation type (Zhang et al. 2001) and ak
i is

defined in Eq. (8).

aik ¼
P12

j¼1 Pij
P12

j¼1 PETij
i ¼ 1 to N and j ¼ 1 to 12 ð8Þ

where ak
i is the initial value (ak) of RDI index; Pij (mm) and

PETij (mm) are precipitation and potential evapotranspi-

ration of the j-th month of the i-th year; and N is the overall

number of years for the available data set.

The values of ak match both the gamma and the log-

normal distributions in various positions for various time

scales for which they were examined, previously (Tigkas

et al. 2012). Note that x is the coefficient of plant-available

water as a function of the crop type (Zhang et al. 2001).

The parameter x can be calibrated with the support of the

annual long-term AET estimated from Eqs. (7) and (8).

Precipitation perturbations and potential evapotranspiration

can result in water balance alterations. Through consider-

ing a hydrologic sensitivity analysis, the average yearly

streamflow alteration as a result of climate change can be

predicted using Eq. (9) (Jiang et al. 2011).

DRclimate ¼ b� DPþ c� DPET ð9Þ

where DRclimate (mm/month), DP (mm) and DPET (mm)
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indicate variations in streamflow, precipitation and poten-

tial evapotranspiration, respectively; b and c are the

streamflow coefficients of sensitivity to precipitation and

potential evapotranspiration in this order, which can be

expressed by Eqs. (10) and (11) (Li et al. 2007).

b ¼ 1 þ 2a�1
12 þ 3xa�1

12

1 þ a�1
12 þ x a�1

12

� �2
� �2

ð10Þ

where b is the streamflow coefficient of sensitivity to

precipitation, a12 is the 1/annual dryness index and w is the

coefficient of available water for plants related to the

vegetation category (Zhang et al. 2001).

c ¼ � 1 þ 2xa�1
12

1 þ a�1
12 þ x a�1

12

� �2
� �2

ð11Þ

where c is the streamflow coefficient of potential evapo-

transpiration, w is the coefficient of plant-available water

related to the vegetation category (Zhang et al. 2001) and

a12 is the 1/annual dryness index.

2.5.4 Multi-regression method

In this method, streamflow is integrated with P and PET at

a monthly time scale for the baseline time period as shown

in Eq. (12). Based this equation, the natural streamflow of

the anthropogenic interventions can be expressed as shown

in Eqs. (13) and (14).

Rb ¼ aPb þ bPETb þ c ð12Þ

where Rb (m3/s) refers to the baseline period observed

streamflow; Pb (mm) and PETb (mm) represent the pre-

cipitation and potential evapotranspiration of the baseline

period; and a, b, and c are three constants predicted using

least-square regression analysis.

Ra ¼ aPa þ bPETa þ c ð13Þ

where Ra (mm/month) expresses the reconstructed

streamflow for the anthropogenic intervention period; Pa

(mm) and PETa (mm) represent the anthropogenic inter-

vention period precipitation and potential evapotranspira-

tion, respectively; and a, b, and c are three parameters

estimated using least-square regression analysis.

DRanthropogenic ¼ Ra � Ra ð14Þ

where DRanthropogenic (mm/month) indicates the average

annual streamflow alteration owing to the anthropogenic

intervention effects, Ra (mm/month) represents the recor-

ded streamflow subject to anthropogenic intervention per-

iod, and Ra (mm/month) indicates the change in mean

annual runoff due to anthropogenic interventions.

2.5.5 Model evaluation criteria

The root mean square error (RMSE), statistical methods

index of agreement (IoA), correlation coefficient (r), and

coefficient of Nash–Sutcliffe (NSCE (Jones et al. 2004))

were used to assess the model performance (Eqs. (15) to

(18)). Accordingly, the impacts of anthropogenic inter-

ventions and climate change on streamflow can be quan-

tified as Eqs. (15) to (18).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Robsð Þi� Rsimð Þi
	 
2

s

ð15Þ

IoA ¼ 1 �
Pn

i¼1 Robsð Þi� Rsimð Þi
	 
2

Pn
i¼1 Robsð Þi��Robs

�
�

�
�þ Rsimð Þi��Robs

�
�

�
�

	 
2
ð16Þ

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Robsð Þi��Robs

	 

Robsð Þi��Rsim

	 


Pn
i¼1 Robsð Þi��Robs

	 
� 
0:5 Pn
i¼1 Rsimð Þi��Rsim

	 
� 
0:5

v
u
u
t

ð17Þ

NSCE ¼ 1 �
Pn

i¼1 ðRsimÞi � Robsð Þi
	 
2

Pn
i¼1 ðRobsÞi � Robs

	 
2
ð18Þ

where RMSE is the root mean square error (dimension-

less), IoA is the index of agreement (dimensionless), r is

the coefficient of correlation (dimensionless), Robs(i) is the

recorded streamflow (mm/month) at time step i, Rsim(i) is

the predicted streamflow (mm/month) at time step i, Robs is

the average amount of the recorded values (mm/month),

and n is the data point number.

2.5.6 Separation effect framework

The impacts of these two factors on streamflow can be

estimated using the following equations:

DRtotal ¼ Ra � Rb ð19Þ
DRtotal ¼ DRanthropogenic þ DRclimate ð20Þ

Eanthropogenic ¼
DRanthropogenic

DRtotalj j � 100% ð21Þ

Eclimate ¼
DRclimate

DRtotalj j � 100% ð22Þ

where DRtotal (mm/month) is the total change of stream-

flow, Ra (mm/month) represents the streamflow subject to

anthropogenic interventions, Rb (mm/month) refers to the

baseline period observed streamflow, DRanthropogenic

(mm/month) indicates the average annual streamflow

alteration owing to the anthropogenic intervention effects,

DRclimate (mm/month) indicates variations in streamflow,

Eanthropogenic (%) expresses the impact of anthropogenic

interventions on streamflow,|DRtotal| indicates the absolute
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value of DRtotal,.and Eclimate (%) indicates the impact of

climate change on streamflow.

3 Results and discussion

3.1 Long-term meteorological and hydrological data

changes

Long-term trends in hydrological processes are potentially

influenced by changing climate and anthropogenic inter-

ventions (Al-Ansari 2013; Al-Ansari et al. 2014). Investi-

gating such trends might support the identification of

anthropogenic intervention starting points. Yearly mean air

temperature, precipitation, potential evapotranspiration and

streamflow data were analysed applying the M–K test to

detect long-term trends for the time period between 1979

and 2013.

During the last 35 analysed years, the whole LZRB

displayed a rising trend of mean air temperature with a

maximum value of ?0.67 C� for one decade, while a

declining precipitation trend (Fig. 2) with a maximum

decrease of 151 mm per decade was noted. The LZRB

yearly precipitation is around 720 mm. The maximum

precipitation (1222 mm) was recorded for 1987/1988,

while the corresponding minimum (250 mm) was assigned

to 2007/2008 (Fig. 2). The mean annual precipitation

changed spatially from 56 mm at Kirkuk station to

1369 mm at Sulymaniya station. The upper basin had

higher precipitation values than the lower one.

An evident trend of air temperature increase during the

last half century led to a significant increase in the potential

evapotranspiration for the entire LZRB. Based on the trend

analysis (Table 4), the increase in PET rate was 39 mm per

decade. With an average value of 1065.3 mm, the

computed potential evapotranspiration for the basin chan-

ged from 962 mm in 1982/1983 to 1110 mm in 2007/2008

(Fig. 2).

The obtained results indicate that the climate in the

studied region is getting warmer and drier. The annual

precipitation decreased. The yearly average air temperature

increased and the annual runoff depth decreased. These

findings are largely in agreement with previous studies (Al-

Ansari 2013; Al-Ansari et al. 2014; Fadhil 2010; Robaa

and AL-Barazanji 2013).

The coefficient of runoff is expressed as the percentage

of the streamflow compared to the precipitation over a

specific time period, and has been selected to represent the

LZRB hydro-climatic conditions (Fig. 3). The corre-

sponding coefficient of runoff for the entire period of study

was 0.22. A declining trend at a rate of -0.009 per decade

was noted. The decline in the coefficient of runoff (Fig. 3)

indicates that the streamflow yield has become weaker

during the last four decades as estimated previously (Al-

Ansari 2013; Al-Ansari et al. 2014).

3.2 Hydrological variable change point detection

The upstream annual runoff of the LZRB has an average of

169 m3/s for the 35-year hydrological period (1979 to

2013). The minimum was 54 m3/s for the water year

2007/2008. Nearly 436 m3/s were noted as the maximum

for the year 1987/1988 (Fig. 2). Over the studied time

period, mean streamflow runoff of the LZRB exhibited a

significant decline (-0.334 at a = 95%) decline at a rate

of -38 m3/s per decade.

The annual runoff change point series was determined

using the Pettitt and PR-DCC tests. Figures 4 and 5 show the

change point years of the runoff and precipitation time series

for the Pettitt and PR-DCC methods, respectively. The water

Fig. 2 Annual values and

trends of a mean air temperature

and precipitation; and

b potential evapotranspiration

(PET) and runoff in Lower Zab

River basin for the time period

between 1979 and 2014
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year 1997/1998 is considered as a change point for the studied

time series. The obtained results are found to be consistent

with the findings of many other researchers with respect to this

study area. For example, Sen et al. (2012) explained through

an analysis based on NCEP/NCAR reanalysis data that due to

climate change the study region witnessed a statistically

(p\ 0.05) significant shift in the streamflow during the same

period of time. In addition, Bozkurt and Sen (2012) investi-

gated the hydro-climatic effects of future climate change in

the study region using the results of different dynamically

down-scaled GCM (ECHAM5, CCSM3 and HadCM3)

emission scenario (A1FI, A2 and B1) simulations. They found

that the annual surface runoff of the headwater area declined

dramatically by about 25 to 55%).

The aggregate yearly runoff and precipitation shown in

Fig. 5a indicates that before 1997, runoff and precipitation

were relatively regular, but after 1997, the properties of

runoff or precipitation altered. Integrating the PR-DCC

analysis and the Pettitt test, the year 1997 could be seen as

the change point reflecting the impact of both climate

change and anthropogenic interventions on runoff and

precipitation. Accordingly, the period between 1979 and

1997 was considered as the baseline period during which

the anthropogenic interventions impacted on runoff were

less recognisable. In order to fully appreciate the effects of

climate and other influences on streamflow over the two

periods, the variations in the correlation of streamflow and

precipitation were investigated (Fig. 5b).

The period from 1998 to 2013 was seen as the anthro-

pogenic intervention period, and was grouped into three

hydrological sub-periods: 1998–2002, 2003–2008 and

2009–2013. For these hydrological periods, changes in

average yearly streamflow, precipitation, and PET were

estimated (Table 5). During the periods 1998–2002,

2003–2008 and 2009–2013, the mean annual precipitation

declined by -42, -43 and -30%, and the potential

evapotranspiration increased by 4, 3.5 and 1%, whereas

streamflow decreased by -44, -37 and -55% in this

order.

The runoff intra-annual alteration is associated with the

monthly cycle of precipitation, mean air temperature and

catchment water-related non-climatic drivers. In order to

further comprehend the intra-annual availability of

streamflow and precipitation, the mean monthly precipita-

tion and streamflow data between the baseline period

(1979–1997) and the anthropogenic intervention period

(1998–2013) have been compared with each other (Fig. 6).

Noticeable changes in both precipitation and streamflow

were seen for the two considered time periods. The average

monthly precipitation and streamflow between 1998 and

2013 declined compared with the corresponding data for

the baseline period. The decreases were greatest for June,

Fig. 3 Annual runoff coefficient for the 1979–2014 period in Lower

Zab River basin

Table 4 Statistical properties

of the meteorological variables

after applying a non-parametric

test for the decadal change

Station name Mean air temperature (�C) Precipitation (mm) Potential evapotranspiration (mm)

M–Ka P value M–Ka P value M–Ka P value

Kirkuk 0.422** \0.01 -0.553** \0.01 0.420** \0.01

Chem-Chamal 0.345** \0.01 -0.412** \0.01 0.139 0.24

Sulymanya 0.358** \0.01 -0.301** \0.01 0.201 0.09

Halabcha 0.572** \0.01 -0.522** \0.01 0.316** \0.01

Makhmoor 0.462** \0.01 -0.536** \0.01 0.243 0.04

Salahddin 0.452** \0.01 -0.472** \0.01 0.220 0.06

Erbeel 0.351** \0.01 -0.371** \0.01 0.203 0.09

Soran 0.380** \0.01 -0.426** \0.01 0.241* 0.05

Mahabad 0.603** \0.01 -0.573** \0.01 0.525** \0.01

Sachez 0.079 0.50 -0.328** 0.01 0.193 0.10

Negative (-) and positive values indicate the decreasing and increasing trends, respectively

** Correlation is significant at the 0.01 level (2-tailed); and

* Correlation is significant at the 0.05 level (2-tailed)
a Mann–Kendall non-parametric test
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July and August (irrigation season), and were smallest

during the winter months. Hence, the decrease in stream-

flow within the post-alteration period might be due to

basin-related non-climate drivers as indicated in the past

(Al-Ansari 2013; Al-Ansari et al. 2014). The application of

the same statistical methods for a case study in Northern

China was similarly successful (Jiang et al. 2011).

3.3 Calibration and validation

3.3.1 Overview

Over the baseline time period, few anthropogenic inter-

ventions impacted on streamflow within the LZRB.

Accordingly, it was treated as a baseline to compute the

climate change impacts and anthropogenic interventions on

streamflow for the non-climate drivers’ period utilising the

considered techniques. Figure 7 displays scatter diagram

relationships between monthly runoff and precipitation for

the time periods 1979–1997 (r = 0.50) and 1998–2013

(r = 0.44). The correlation between monthly runoff and

precipitation for 1979–1997 is better than that for

1998–2013. Additionally, the coefficients of runoff for the

baseline period were more than the ones for the climate

change and anthropogenic intervention periods. The

obtained results demonstrated that the runoff was consid-

erably affected by drought events due to climate change

linked with upstream non-climatic drivers such as river

Fig. 4 Pettitt test for detecting

a change in the annual:

a precipitation; and b runoff

Fig. 5 a Precipitation-runoff

double cumulative curve (PR-

DCC) of annual precipitation

and runoff in the Lower Zab

River basin; b and correlation

between precipitation and

runoff for the two considered

time period

Table 5 Changes in mean

annual precipitation, potential

evapotranspiration and runoff

during recent hydrological time

periods

Duration Unit 1998–2002 2003–2008 2009–2013

Precipitation mm/a 507 496 611

Change in mm/a -83.98 -36.3 -90.9

Relative change in % -42 -43 -30

Potential evapotranspiration mm/a 1106 1088 1064

Change in mm/a -7.79 6.53 -9.51

Relative change in % ?4 ?3.5 ?1

Recorded runoff mm/a 8 9 7

Change in mm/a -2.90 -2.67 -0.96

Relative change in % -44 -37 -55
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regulation, land use changes, water withdrawal and inter-

basin water transfer schemes (Al-Ansari 2013; Al-Ansari

et al. 2014).

3.3.2 The multi-regression equation

Depending on the monthly precipitation and PET of the

baseline period, a multi-regression equation was developed

as indicated by Eq. (23).

R ¼ 0:013 � Pþ 0:0034 � PET � 0:05 ð23Þ

where R (mm) is the monthly streamflow, P (mm) is pre-

cipitation, and PET (mm) represents the potential

evapotranspiration.

Figure 8a, b indicate good promise between monthly

recorded and predicted streamflow data applying Eq. (23)

for the Dokan hydrologic station during the considered

time periods 1979–1997 and 1998–2013, respectively. The

value of the coefficient of correlation was 0.52 at a sig-

nificance level of 0.001. The NSCE coefficient was 0.30.

The obtained measures of performance show that the multi-

regression model might not predicted streamflow precisely.

The natural runoff series was rebuilt after considering the

precipitation and PET of the anthropogenic interventions

period as input. Using the rebuild runoff time series, the

impacts of human activities and climate variability on

streamflow were tested.

3.3.3 Method for the hydrologic sensitivity analysis

The coefficient of plant-available water to crop type w is

the main variable in the hydrologic sensitivity analysis.

This parameter has been calibrated through equating long-

term annual AET computed using Eq. (9) and the baseline

period for the water balance Eq. (1979–1997). Considering

w = 1, the outcomes of yearly AET predicted by Eq. (9)

are acceptable and reasonable (Fig. 9). Thus w = 1 has

been specified for the LZRB. When w is set to 1, the

coefficients of sensitivity values oR
oP

and oR
oPET

(where

R (mm/month) is the monthly streamflow) were 0.0167 and

0.0141 in this order, which indicate that the runoff change

was more subtle to precipitation compared to potential

evapotranspiration.

3.3.4 Method of hydrologic simulation

The calibration time period for the hydrologic model was

1988–1999, while 1979–1986 was the validation period.

The obtained results from the three used models show a

good promise between monthly recorded and predicted

Fig. 6 Average monthly

a precipitation and b runoff for

the baseline (1979–1997) and

the altered periods between

1998 and 2013

Fig. 7 Monthly relationship

between precipitation and

runoff for the a 1979–1997, and

b 1998–2013 periods
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runoff data at the Dokan hydrologic station from 1979 to

1997 (Fig. 10a). Table 6 shows the performance measures

for the calibration and validation time periods using the

GR4J, Medbasin and HBV simulation models. The cali-

brated rainfall runoff model was used to rebuild the

streamflow datasets for the anthropogenic interventions

period between 1998 and 2013 (Fig. 10b) with actual

weather and hydrologic input data. With the rebuild

streamflow dataset of the anthropogenic intervention per-

iod and the corresponding recorded streamflow dataset, it

makes it possible to quantitatively assess the impacts of

non-climate drivers and climate variability on streamflow.

Figures 8b and 10b compared recorded and predicted

streamflow data for the Dokan hydrologic station for the

hydrological years between 1998 and 2013. The impacts of

anthropogenic interventions and climate variability on

streamflow were assessed depending on both the concep-

tual framework and the simulated findings of the various

applied models. The simulation methods provided rela-

tively consistent computations of the mean streamflow

ratio change for the hydrological period between 1998 and

2013 (Table 7). The data show that climate change makes

the greatest impact. These findings are in broad agreements

with previous estimations (Ajami et al. 2006; Al-Ansari

2013).

3.4 Comparison of simple average method

and single model predictions

In order to examine the simple average method perfor-

mance, firstly, a set of numerical experiments were com-

puted using the three hydrological models. Figure 11a

shows the linear regression between observed and simu-

lated runoff for various model predictions regarding the

Dokan hydrological station. Figure 11b reveals that HBV

is the best model in terms of correlation coefficient,

whereas the Medbasin model is the weakest. Then the

SAM has been utilised to estimate the streamflow

(Fig. 11b). Figure 11 reveals that the statistics from the

single model simulations are almost always worse than

those of the SAM, W and B simulations. The results con-

firm that just simply averaging the single model simula-

tions would lead to an enhancement of the simulation level

of accuracies, which is consistent with previous research

Fig. 8 Monthly observed and simulated runoff by multi-regression

method at the Dokan hydrologic station for the a 1979–1997; and

b 1998–2013 periods, respectively

Fig. 9 Scatter diagram and correlation of annual actual evapotran-

spiration (AET) estimated from a water balance equation and

predicted using Eq. (6) for the time period between 1979 and 1997

Fig. 10 Monthly observed and simulated runoff using SAM multi-

model technique at the Dokan hydrological station for the a
1979–1997; and b 1998–2013 periods
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(Ajami et al. 2006; Georgakakos et al. 2004). Hence,

excluding the worst performing model leads to an

improvement of the correlation compared to the single

hydrological model.

Furthermore, hydrological parameters such as flowrate

are known to have a special annual cycle. The hydrologic

model simulation accuracies for different months often

mimic this yearly cycle (Fig. 12), which shows the per-

formance of the individual model simulations for the

studied basin during various months for the two considered

time periods. Figure 12 reveals that a model might perform

well for some months, but poorly for other months, when

compared to competing models.

Accordingly, the use of multi-model simulations leads

to the question of how the accuracy of a single model

influences the accuracy of the results. To address this

question, the best performing model (B) and the worst

performing one (W) were sequentially removed from

consideration. The obtained results are shown in Fig. 13,

which indicates that the inclusion of all the calibrated

models is necessary to obtain consistently good simulation

results. This is because eliminating the best performing

model would actually deteriorate the outcome (Fig. 13b).

However, excluding the worst performing model would

enhance the monthly runoff (Fig. 13a). This leads to the

conclusion that the accuracy level of a single model can

impact on the overall accuracy of the multi-model com-

bination simulation. This confirms that the application of

the SAM in runoff estimation might produce values that are

Table 6 Performance measures for the calibration and validation

time periods using the GR4J, Medbasin, and HBV simulation models

Model Time period Statistical performance

RMSEa IoAb Rc NSCEd

Medbasin Calibration 2.69 0.96 0.94 88

Validation 5.99 0.66 0.50 83

GR4J Calibration 0.79 0.90 0.82 67

Validation 1.00 0.90 0.84 50

HBV Calibration 0.542 0.99 0.89 80

Validation 0.446 0.99 0.94 50

a Root mean square error
b Index of agreement
c Correlation coefficient
d Nash–Sutcliffe coefficient

Table 7 Climate change and

anthropogenic interventions

impacts on mean annual runoff

(R) during recent hydrological

periods using different rainfall-

runoff simulation methods

Duration Unit 1998–2002 2003–2008 2009–2013

Runoff total alteration mm/a -6.54 -5.52 -8.08

Multi-regression method DRanthropogenic mm/a -1.93 -1.88 -0.97

% -30 -34 -12

DRclimate mm/a -4.61 -3.64 -7.11

% -71 -66 -88

Hydrological sensitivity DRanthropogenic mm/a -1.94 1.41 3.27

% -30 -26 -40

DRclimate mm/a 4.60 4.10 4.81

% -70 -74 -60

Medbasin model DRanthropogenic mm/a -0.29 -0.67 -2.36

% -4 -12 -29

DRclimate mm/a -6.25 -4.85 -5.72

% -96 -88 -71

GR4J model DRanthropogenic mm/a -1.03 -0.72 -0.43

% -16 -14 -5

DRclimate mm/a -5.51 -4.73 -7.65

% -84 -86 -95

HBV model DRanthropogenic mm/a -0.60 -0.14 -3.10

% -9 -3 -38

DRclimate mm/a -5.94 -5.38 -4.98

% -91 -97 -62

SAMa DRanthropogenic mm/a -0.35 -0.23 -0.69

% -5 -4 -8

DRclimate mm/a -6.19 -5.29 -7.39

% -95 -96 -92

a Simple average method
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more precise than the results from the best of the three

considered models, which justifies the implementation of

the multi-model technique in the context of rainfall-runoff

modelling.

Furthermore, there is a considerable change in the

magnitude and timing of the peak discharge occurring

between two time periods (Fig. 13). The monthly discharge

differences between two periods illustrate decreases mostly

in May. The change in streamflow timing is mainly a result

of anthropogenic intervention. The obtained results

regarding the shift in the magnitude and the timing of the

river discharge are consistent with the results obtained

from others within the study area (Cullen and deMenocal

2000; Sen et al. 2012).

4 Conclusions and recommendations

The surface runoff in the LZRB has declined considerably

as a result of climate variability and anthropogenic inter-

ventions. In order to evaluate the impacts of these two

factors on the river flow over the study basin, hydrologic

models simulation, hydrologic sensitivity analysis and

multi-regression have been successfully applied.

The study outcomes indicate that the aggregated pre-

cipitation between October and May, which are the wet

months, accounts for nearly 99.5% of the total annual

precipitation. In contrast, the aggregated precipitation

contributes only to nearly 0.5% of the entire precipitation

during the dry months, which are June to September.

The hydrological periods 1998–2002 and 2006–2008

witnessed a sharp decline in the average precipitation for the

studied basin, which in turn caused a reduction in the

streamflow by more than 80%. This statistically significant

alteration during the non-rainy months attributed to the

influence of both anthropogenic interventions and climate

variability pressure to the upper part of the case study area,

which in turn decreased the watershed storage system

availability. An abrupt change reflecting the climate change

impacts on streamflow was recorded for the year 1997. This

change was due to the rapid anthropogenic developments in

the basin. During the hydrological years between 1998 and

2013, the mean annual runoff declined by 95% compared

with the baseline period from 1979 to 1997.

Fig. 11 Linear regression between observed and simulated runoff: a Medbasin, GR4J and HBV models; b simple average model (SAM),

excluding the best model (B) and the worst model (W) simulation results, for the Dokan hydrological station

Fig. 12 Monthly observed

(Obs) and simulated runoff

using Medbasin, GR4J, and

HBV models at the Dokan

hydrological station for the

a 1979–1997; and b 1998–2013

periods
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Based on the three considered methods for simulating

the anthropogenic interventions and climate change

impacts on streamflow from 1998 to 2013, climate change

was the leading factor for the decline (66 to 97%) of

streamflow. Climate change was the main factor reducing

runoff for the periods 1998–2002, 2003–2008 and

2008–2013. Anthropogenic intervention impacts such as

land use and cover changes, water conservancy project

implications, and soil conservation actions might accu-

mulate or counteract each other simultaneously, and further

research on these challenges is recommended. Further-

more, research findings imply that river alteration, climate

variability and anthropogenic interventions should be

considered for future stream basin managing strategies to

avoid the temporal mismatch between strategies and such

changes.

The simulation outcomes reveal that there is a big

variance in the performance of the considered hydrological

models in simulating the runoff. Simply averaging the

single model simulation would result in consensus multi-

model simulations that are superior to any individual

simulations which confirmed that the SAM multi-model

combination technique is applicable tool to extract the

strengths from different models whereas avoiding the

weaknesses. More sophisticated multi-model combination

approaches can improve the simulation accuracy. This

suggests that further operational hydrologic simulations

should incorporate a multi-model combination strategy.

The multi-model simulation accuracy is associated with

that of the single models. On the one hand, if single model

simulation accuracy is poor in matching measurements,

removing that model from simulation does impact the

accuracy of multi-model simulations very much. On the

other hand, excluding the best performing model from

consideration does negatively impact the accuracy of

multi-model simulation.

The current research is based on the hydrological sim-

ulation of only three models and a total of 35 years of daily

runoff data. More models and larger datasets can enhance

the multi-model combination outcomes, but this needs to

be explored further. Model combination techniques are still

new in hydrology. However, initial findings indicate that

they might be a preferable alternative to individual model

simulation. This study represents a critical step toward

better understanding of the potential effect of climate

variability, anthropogenic interventions and subsequent

drought events on streamflow in the LZRB and similar

other regions with arid and semi-arid climate. The research

outcomes will benefit engineers and policy-makers in

assessing water resources at a basin scale.
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