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Abstract Application of artificial neural network (ANN)

models has been reported to solve variety of water resources

and environmental related problems including prediction,

forecasting and classification, over the last two decades.

Though numerous research studies have witnessed the

improved estimate of ANN models, the practical applica-

tions are sometimes limited. The black box nature of ANN

models and their parameters hardly convey the physical

meaning of catchment characteristics, which result in lack of

transparency. In addition, it is perceived that the point pre-

diction provided by ANN models does not explain any

information about the prediction uncertainty, which reduce

the reliability. Thus, there is an increasing consensus among

researchers for developing methods to quantify the uncer-

tainty of ANN models, and a comprehensive evaluation of

uncertainty methods applied in ANNmodels is an emerging

field that calls for further improvements. In this paper,

methods used for quantifying the prediction uncertainty of

ANN based hydrologic models are reviewed based on the

research articles published from the year 2002 to 2015,

which focused on modeling streamflow forecast/prediction.

While the flood forecasting along with uncertainty quan-

tification has been frequently reported in applications other

than ANN in the literature, the uncertainty quantification in

ANN model is a recent progress in the field, emerged from

the year 2002. Based on the review, it is found that methods

for best way of incorporating various aspects of uncertainty

in ANN modeling require further investigation. Though

model inputs, parameters and structure uncertainty are

mainly considered as the source of uncertainty, information

of their mutual interaction is still lacking while estimating

the total prediction uncertainty. The network topology

including number of layers, nodes, activation function and

training algorithm has often been optimized for the model

accuracy, however not in terms of model uncertainty.

Finally, the effective use of various uncertainty evaluation

indices should be encouraged for the meaningful quantifi-

cation of uncertainty. This review article also discusses the

effectiveness and drawbacks of each method and suggests

recommendations for further improvement.

Keywords Artificial neural network � Forecasting �
Hydrologic models � Prediction � Uncertainty

1 Introduction

Modeling hydrologic processes help in effective decision

making for the management, planning and operational

aspects of water resources. The mathematical modeling

with improved accuracy considering various components

of watershed is not a simple task as it contains various

levels of variability in the space and time, consequently

which leads the hydrologic processes to be highly non-

linear and complex in nature. Till date, a plethora of

hydrologic models have been developed and reported in the

literature, that include the complex physically based dis-

tributed models (Jayakrishnan et al. 2005), conceptual

models (Kitanidis and Bras 1980), simple linear regression
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(Schreiber and Kincaid 1967) and non-linear data driven

models (Cobaner 2011). Despite the physics and concep-

tual hydrologic models has an advantage of capturing the

actual physics of the system entirely or partly, the scarcity

of data in most of the regions is a major issue that limits the

application of these models. In contrast, the regression

based models can be developed with limited available

information either using simple liner regression or non-

linear data driven models based on the complexity of the

process. Several types of data driven models have been

proposed, in which the artificial neural network (ANN)

models have gained significant attention owing to their

simplicity in the model development and it produces

acceptable level of accuracy in the model prediction (Ci-

takoglu 2015). The ANN models, in general are charac-

terized as universal approximation functions mainly used

for deriving the unknown relationship between the vari-

ables of interest. There is a progressive development

towards improving the performance of ANN models.

Consequently, various research studies have been reported

for developing different approaches for determining model

inputs, architecture, sophisticated training algorithms, cri-

teria for the model training, and so on across diverse fields.

All these efforts have made ANN as an alternate promising

modeling tool in water resources and environmental stud-

ies. Hence, the application of ANN for predicting and

forecasting of water resources variables have been well

established in last two decades.

Despite the improved prediction, the major criticism that

ANN models experience are (a) lack of transparency

(Abrahart et al. 2010), (b) the model parameters hardly

explain the physical mechanism of the underline processes,

(c) the stochastic nature of ANN model reproduce no

identical results unless carefully designed (Elshorbagy

et al. 2010a, b). It is also reported that the point prediction

of ANN models has limited value owing to the variability/

uncertainty in the system being modeled (Kasiviswanathan

et al. 2013), which necessitates the quantification of

uncertainty. However, the quantification of uncertainty in

ANN is still a challenging task owing to its parallel com-

puting architecture, which consequently limits the appli-

cation in solving the real world problems.

It is noted that number of review articles have addressed

the potential of ANN in hydrologic modeling (Maier and

Dandy 2000; ASCE 2000a, b). The major focus of all these

review articles was pertained to the application of ANN

models for solving variety of problems discussing the

advantages and shortcomings. The review article by Maier

et al. (2010) reported different methods used for the

development of ANN models (i.e. input, model architec-

ture, structure selection, data division and algorithms for

model training) that focused on prediction of water

resources variables in the river system. One of the major

recommendations by them was to continue developing new

methods considering the best way of incorporating the

uncertainty into ANN models. Hence, the main focus of

this review paper is on the different methods applied to

quantify the uncertainty of ANN models, their complexity,

advantages, shortcoming and to suggest further investiga-

tions required, thereby increasing the reliability of these

models. During the initial screening of the articles, it was

found that majority of the study has demonstrated the

uncertainty analysis in ANN models through flood forecast/

rainfall-runoff modeling. Therefore, the scope of this paper

is limited to uncertainty methods applied in ANN based

rainfall- runoff and flood forecasting models. The objective

of this review paper is to analyze the computational effi-

ciency, difficulty of implementation and fulfillment of

statistical assumptions of various methods and to address

the key issues, which require further improvements. A total

of 36 research articles were selected from well-known

international journals spread over the period between 2002

and 2015. While uncertainty analysis of other models than

ANN was in place for long time, the ANN applications

received attention on uncertainty analysis only from the

year 2002 onwards. It may be noted that this article does

not investigate the general aspects of ANN models, such as

analyzing the model performance, selection of model

inputs, architecture etc. For more details on the basics of

ANN model, the readers can refer articles and textbooks

published (Flood and Kartam 1994; Bishop 2004). How-

ever it is important to investigate the influence of varying

the overall ANN architecture in terms of their connection,

activation function, training algorithm on the quantification

of model prediction uncertainty, hence it is discussed in

this review paper.

The remainder of this paper is organized as follows. The

selection of research article for the review based on dif-

ferent combination of search in the database is presented in

Sect. 2. In Sect. 3, a detailed description of different

sources of uncertainty is described. In Sect. 4, the types of

ANN models and their influence on model uncertainty

level are presented. In Sect. 5, different uncertainty esti-

mation methods are assessed based on the results of the

selected 36 papers. In Sect. 6, different evaluation criteria

used for assessing the magnitude of uncertainty is pre-

sented. The summary and recommendations for future

research is outlined in Sect. 7.

2 Overview

The articles reviewed in this paper were selected from

various peer reviewed journals and are presented in

Table 1. It may be noted that the listed journals in Table 1

publish range of hydrology and environmental related
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research papers that are recognized and cited by research-

ers across the world. The papers for the review were col-

lected from various data base that include Scopus,

Thomson Reuters and Google scholar. Different combina-

tions of keywords were used such as ‘‘neural network’’,

‘ensemble’. ‘‘uncertainty’’ and ‘‘prediction/forecast inter-

val’’. Note that there was no mention on the specific year

during the search. However, the applications were limited

to water resources, environmental science and the docu-

ment type was article which resulted in 36 papers which

focused on ANN models applied for flood forecast or

rainfall-runoff modeling.

The selected papers are listed in Table 2 including the

year of publication, details of study area and the method

used to quantify the uncertainty. Figure 1 shows the dis-

tribution of papers published from year 2002 to 2015. It is

clear that the papers published over the year is not evenly

distributed and majority of the papers have been published

in the year 2009 and 2015, that has 9 and 8 articles

respectively.

3 Sources of uncertainty

The uncertainty in hydrologic models is generally distin-

guished into modeling and prediction uncertainty. The

difference between these two uncertainty is that the mod-

eling uncertainty comes from imperfect fit of the model to

the observed values of past, whereas the prediction uncer-

tainty arise from extrapolation error for future variable that

may not follow the modeling uncertainty (Morgan et al.

1990; Krupnick et al. 2006). The modeling uncertainty can

be further classified into different forms based on the

variability arises from model inputs, parameters and struc-

tures which combine together contributes in producing the

prediction uncertainty. The input (measured/forecasted

precipitation in the case of hydrologic models) uncertainty

is mainly due to instrument, measurement and sampling

error. The parameter uncertainty lies in inability to identify

a unique set of best performing parameters. The simplifi-

cation, inadequacy and ambiguity in the description of real

world process through mathematical equation leads to

model structure uncertainty (Shrestha and Solomatine

2008). It is noted that different sources of uncertainty may

produce different magnitude of error and hence suit-

able approach must be developed for better characterizing

and quantifying the uncertainty. Any misleading assump-

tion or ignoring any form of uncertainty might result in over

and/or under estimation of uncertainty at the model output.

The progress towards the improved performance of

model ensuring acceptable level of modeling uncertainty

would enhance the predictability of the model. In the

context of uncertainty in ANN based hydrologic models,

uncertainty quantification of input, parameter and model

structure combine together or individually is of primary

interest, which in turn will have significant impact on

model prediction uncertainty. Different forms of uncer-

tainty investigated by various research articles selected for

this review is illustrated in Fig. 2. It is evident from the

Fig. 2 that the quantification of parameter uncertainty has

Table 1 List of journals selected for the review

S. no Name of journal 2014 impact factor No of papers published

1 Journal of Hydrology 3.053 7

2 Hydrology and Earth System Sciences 3.535 3

3 Hydrological Processes 2.677 4

4 Water Resources Research 3.549 3

5 Environmental Modelling and Software 4.420 1

6 Stochastic Environment Research and Risk Assessment 2.086 3

7 Journal of Hydroinformatics 1.388 3

8 Journal of the American Water Resources Association 1.348 3

9 Journal of Hydrometeorology 3.645 1

10 Water Resources Management 2.600 2

11 Engineering Applications of Artificial Intelligence 2.503 1

12 Natural Hazards Earth System Sciences 1.826 1

13 Journal of Hydrologic Engineering 1.624 1

14 Neural Computing and Applications 1.569 1

15 Physics and Chemistry of the earth 1.477 1

16 Journal of Flood Risk Management 1.119 1
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mostly been reported in 20 numbers of papers. Followed by

this, eight numbers of papers have been published for the

input uncertainty. Very few papers have dealt the combi-

nation of different sources of uncertainty while quantifying

the prediction uncertainty of ANN. The heuristic approach

has been proposed in a few of the papers, which relate the

overall prediction uncertainty based on the magnitude of

deviation in the input variables and/or model parameters.

More often, the input uncertainty is analyzed through

sampling multiple realization of inputs either probabilistic

Table 2 Details of paper reviewed

S. no. Author(s) (year) Study area Method used to quantify uncertainty

1. Cannon and Whitfield (2002) British Columbia, Canada Ensemble ANN

2. Jeong and Kim (2005) Geum river basin, Korea Ensemble ANN

3. Khan and Coulibaly (2006) Serpent River and CDD sub basin in SLSJ watershed,

Canada

Parameter

4. Han et al. (2007) Bird creek drainage basin, USA Hueristic based method

5. Srivastav et al. (2007) Kolar basin, India Bootstrap

6. Kim and Kim (2008) Wi-Stream Catchment, Korea Sensitivity analysis

7. Asefa (2009) West-central coast of Florida, USA GLUE

8. Yang and Chen (2009) Wu-Shi basin, Taiwan Self-organizing map and linear transfer

function

9. Boucher et al. (2009a) Leaf river, USA; Serein and Le Gola river France Bootstrap

10. Boucher et al. (2009b) Leaf river, USA; Serein and Volpajola river France Monte Carlo simulation

11. Cullmann et al. (2009) Freiberger Mulde catchment, Germany ANN and process based models (HEC-

RAS)

12. Shrestha and Nestmann (2009) Rhine and Neckar Rivers, Germany Fuzzy

13. Shrestha et al. (2009) Brue catchment, UK Monte Carlo simulation

14. Zhang et al. (2009) Reynold creek, little creek, USA Bayesian

15. Sharma and Tiwari (2009) Upper damodar valley catchment, India Bootstrap

16. Khan and Coulibaly (2010) Serpent River and CDD sub basin in SLSJ watershed,

Canada

Bayesian

17. Tiwari and Chatterjee (2010a) Mahanadi River basin, India Bootstrap

18. Tiwari and Chatterjee (2010b) Mahanadi River basin, India Bootstrap

19. Araghinejad et al. (2011) Red River, Canada; Zayandeh-rud River, Iran Ensemble based approach

20. Zhang et al. (2011) Little River Experimental Watershed, USA Bayesian

21. Alvisi and Franchini (2011) Reno and Sieve river, Italy Fuzzy

22. Tiwari and Chatterjee (2011) Mahanadi River basin, India Bootstrap

23. Zhang and Zhao (2012) Little River and Reynolds Creek Watershed, USA Bayesian

24. Alvisi and Franchini (2012) Reno river basin, Italy Grey NN

25. Artigue et al. (2012) Gardond’Anduze Basin, France Rainfall multiplier

26. Kasiviswanathan et al. (2013) Kolar Basin, India Multi objective optimization

27. Kasiviswanathan and Sudheer

(2013)

Upper white river, USA First order uncertainty analysis

28. Guo et al. (2013) Leaf river watershed, USA Monte Carlo simulation

29. Kant et al. (2013) Mahanadi River basin, India Multi objective optimization and

bootstrap

30. Fleming et al. (2015) English man river, Canada Ensemble ANN

31. Kan et al. (2015) Chengcun, Dongwan and Zhidan, China Ensemble ANN

32. Kim and Seo (2015) Nakdong River, South Korea Ensemble ANN

33. Kumar et al. (2015) Damodar catchment, India Bootstrap

34. Oliveira et al. (2015) Ijuı́ River basin, Brazil Stochastic generation of climate variable

35. Yu et al. (2015) Upper Thames river, UK Monte Carlo simulation

36. Taormina and Chau (2015) Susquehanna and Nehalem rivers, USA Multi objective optimization
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approach (Oliveira et al. 2015; Yu et al. 2015) or fuzzy

approach (Shrestha and Nestmann 2009; Alvisi and Franchini

2011). These realizations would result in different combina-

tions of trained ANN model parameters for obtaining the

variability at the model output or prediction uncertainty. The

parameter uncertainty can be carried out through different

approaches: (a) random initialization of the network weights

for training the ANN model (Boucher et al. 2009b), (b) vary-

ing the training dataset (Srivastav et al. 2007) and (c) per-

turbing the weights of the networks (Kasiviswanathan et al.

2013). The structure uncertainty of ANN models was carried

out by adding or removing hidden neurons/or hidden layers,

which in general requires very high computational effort

(Zhang et al. 2011) and that could be the plausible reason, only

a few studies have been reported (Fig. 2).

4 Types of ANN and their level of uncertainty

In literature, several variants of neural network models have

been reported (Maier et al. 2010), which in general are

classified into feed forward and recurrent networks. In feed

forward neural network, the information is processed from

input to output layer in one direction, whereas in recurrent

network the information is processed in both directions. The

topology/architecture of the model varies between the types

of network in terms of number of hidden layers/nodes,

activation function and their connections. It is well estab-

lished that the selection of a particular architecture is unique

for the process to be modeled, which subsequently yields

different magnitudes of error/uncertainty while reproducing

the observation in terms of model output. Hence it is

important to analyze different model architecture for their

influence or impact while quantifying the uncertainty.

Among different feed forward ANN architecture, the mul-

tilayer perceptron (MLP) has been frequently used in ANN

based hydrologic models and were reported in 32 papers

that are reviewed. Other ANN architecture has been

reported only in very few studies. For instance, a fuzzy

neural network (Shrestha and Nestmann 2009; Alvisi and

Franchini 2011, 2012; Kant et al. 2013) and recurrent neural

network (Kim and Kim 2008) has received less attention,

hence require further investigation for quantifying the

model prediction uncertainty. The input and output nodes

are problem dependent, however eliminating less sensitive

inputs while training the model reduces the size of the

network, which obviously reduce the number of connection

weights and the level of model parameter/structure and

prediction uncertainty (Kim and Kim 2008).

The number of hidden nodes is responsible for capturing

the non-linearity of the process to be modeled. In most of

the studies, it has been suggested to initialize with less

number of neurons and increase them based on the model

accuracy. These nodes are arranged in the form of layer.

Most of the researchers suggested using single hidden layer

except few (Shrestha and Nestmann 2009; Yu et al. 2015).

The complexity of the network, if required, can be

enhanced by increasing the number of hidden nodes in a

single hidden layer (Neal 1996) without the effect of

overfitting, as it would increase the uncertainty. Most of the

studies, that are considered in this review article suggested

use of trial and error approach to fix the number of hidden

layers and nodes. However, Taormina and Chau (2015)

have suggested the k-fold cross validation to determine the

number of hidden layers based on the complexity of the

dataset in an ensemble framework. Though variety of

training algorithm has been reported in different studies,

the amount of uncertainty related to selection of suit-

able algorithm still requires further investigation. The

Fig. 1 Distribution of papers by year of publication

Fig. 2 Number of papers published based on different sources of

uncertainty
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activation function responsible for modeling the non-lin-

earity needs to be decided in the hidden and output layers.

Most of the studies use sigmoidal and linear function in

hidden and output layers respectively, except a few which

used non-linear activation function in both the layers

(Kasiviswanathan and Sudheer 2013; Oliveira et al. 2015).

Overall, it was found that although different model archi-

tecture, number of hidden layers and nodes and activation

functions are the causes of uncertainty, all these criteria

have been utilized to assess the model accuracy for the

point prediction and not for the model prediction uncer-

tainty. In addition, the general conclusion reported in the

selected articles were that increasing the model complexity

might increase the accuracy of the model, however at the

expense of uncertainty associated with the model predic-

tion. Hence it is suggested to include these approaches for

the quantification of model uncertainty, so that a reliable

model with less uncertainty can be identified.

5 Methods used for estimating the uncertainty
of ANN

The uncertainty methods in general, have been classified

into four different approaches (Alvisi and Franchini 2011)

such as (a) probabilistic based method (b) analyzing the

statistical properties of the errors of the model in repro-

ducing the observed data (c) resampling techniques, gen-

erally known as ensemble methods, or the Monte Carlo

method and (d) fuzzy based method. In this paper, the same

classification has been adopted, however named with

specific terms while describing these methods. Figure 3

illustrates different methods that were developed for esti-

mating the uncertainty of neural network hydrologic

models. It is evident from Fig. 3 that Monte Carlo Simu-

lation (MCS) and bootstrap based approaches (i.e. 9 and 7

papers respectively) have often been reported due to robust

estimation of model prediction uncertainty. All other

approaches such as Bayesian and optimization based

approaches have been reported in at least five numbers of

papers. The fuzzy based approach has been reported only in

two papers. The miscellaneous approach such as first order

uncertainty analysis, generalized likelihood uncertainty

estimation (GLUE), heuristic based approach, sensitivity

analysis and self-organizing map are also reviewed. The

following subsections describe each of these methods

keeping in view of their advantages, shortcomings and

general conclusion drawn in different papers.

5.1 Bootstrap method

In the deterministic modeling approach, it is assumed that

the model parameters are time invariant. However, such an

approach might not always be valid, if the process contains

uncertainty or inherent variability. The bootstrap method

samples different realization of input–output patterns in

order to treat the network parameters (i.e. weights and

biases) as a non-deterministic component. Further, the

variability created in weights and biases are utilized to

quantify the prediction uncertainty. In bootstrap method, it

is assumed that the samples follow the statistical charac-

teristics of population data and also they mimic the random

component of the process to be modelled. The empirical

distribution of model output produced by bootstrap samples

determines the confidence interval. It is also reported that

training multiple neural network from different random

starting points provide a better convergence in parameter

space (Boucher et al. 2009a; Kim and Seo 2015). Different

research reported the potential use of bootstrap to quantify

the uncertainty of ANN (Table 3). Though variety of

bootstrap methods is available, the reported studies used a

random bootstrap method. In the bootstrap method, deter-

mining the number of bootstrap sample is one of the main

factors. However, there is no clear guideline mentioned

fixing the number of bootstrap sample; consequently dif-

ferent studies used different number of bootstrap (Table 3).

It is noted that all these studies report the final model

output by estimating the simple average of ensemble of

ANN models trained individually with bootstrapped sam-

ples. However, the weighted average, probabilistic meth-

ods can still be used to improve the model prediction

(Araghinejad et al. 2011). Please note that the reported

studies considered only the parameter uncertainty of ANN

while estimating the prediction uncertainty. The general

conclusion drawn from these studies state that compared to

deterministic ANN model, the bootstrap based ANN

Fig. 3 Number of papers used different methods for estimating

uncertainty
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produced prediction limit around the mean value that

improves the reliability of the model.

5.2 Bayesian method

The traditional neural network model optimizes the

parameters of ANN model either by maximizing the like-

lihood function of parameter or minimizing the error

function for the best set of parameter. The ANN model

trained in this fashion fits the training data well with rea-

sonable accuracy. However the prediction for the new data

might not necessarily have less error due to over fitting of

the model and this is one of major issue, which discourages

the application of ANN. The impact of over fitting can be

minimized with the Bayesian approach, in which the neural

network parameters are defined as probabilistic distribution

function that take care of uncertainty associated. The

advantage of Bayesian neural network (BNN) integrates

the posterior distribution of network weights to obtain the

predictive distribution of model output (Mackay 1992;

Neal 1996). The initial studies which used Bayesian

method evaluated only a parameter uncertainty in the case

of streamflow prediction (Khan and Coulibaly 2006, 2010).

The comparison with conventional deterministic ANN

approach indicated that the BNN has showed improvement

in the model performance. In addition, the prediction

interval obtained through BNN model indicated the level of

uncertainty, which provides useful information in decision

making. Later the combination of structure and parameter

uncertainty was evaluated under the framework of Baye-

sian method (Zhang et al. 2009). Recently, the combined

effect of input, parameter and structure uncertainty was

analyzed using Bayesian method to show the overall

influence of these uncertainties at the model output (Zhang

et al. 2011; Zhang and Zhao 2012). The general conclusion

from these studies suggested that the interactions between

different uncertainty sources make it difficult to identify

the contribution of individual uncertainty sources. Though

BNN approach produced promising results along with

uncertainty quantification, it suffers from huge sampling

and computational burden and hence limits the practical

application of these methods. Nevertheless, BNNs are the

most appropriate tools to achieve reliable ensemble and

probabilistic hydrologic forecasting (Khan and Coulibaly

2006).

5.3 Fuzzy method

In the fuzzy method, the uncertainty of ANN model can be

analyzed for the model parameters and/or inputs. In such

analysis, the model inputs and/or parameters are repre-

sented as a fuzzy number for defining the variability and to

quantify the prediction uncertainty. The fuzzy method has

an advantage over the probability based methods, since it

does not require any assumption of underlined distribution.

Note that integration of fuzzy with ANN (ANFIS) models

were reported (Chang and Chen 2001; Nayak et al. 2005) to

demonstrate the newer version of ANN model in terms of

improved prediction. However, all these methodology

focused on developing automatic if–then fuzzy rule in

ANN models, which typically provide the point prediction

without any information of model uncertainty. While

analyzing the uncertainty in ANN models, Shrestha and

Nestmann (2009) used fuzzy method to model the stage-

discharge relationship representing the stage as a fuzzy

number. In such procedure, the generated series of fuzzy

inputs were modeled using ANN and then the uncertainty

was estimated. Alvisi and Franchini (2011) quantified the

parameter uncertainty of ANN by representing the neural

parameters as fuzzy number. In this context, it can be

summarized from the reported works that the lower and

upper bounds defined by membership function leads to

establish a confidence/prediction interval of output which

in turn reflects the model prediction uncertainty.

5.4 Monte Carlo simulation method (MCS)

The Monte Carlo simulation method is a probabilistic

based approach which samples different realization of

model inputs or parameters by assigning the ranges and

probability distribution of each variable. The sampling

could be random (Tung and Yen 2005) or stratified (for

example latin hyper cube (LHS)) (Mckay et al. 1979). The

advantage of LHS provides more uniform space—filling

coverage of parameter space which resulted in faster con-

vergence. These samples will then be further used in run-

ning the hydrologic models to estimate the uncertainty of

model outcomes. In the case of ANN models, the ran-

domness may be created in model inputs (i.e. typically in

rainfall) or model parameters through samples (i.e. named

as rainfall multipliers) drawn from the probability distri-

bution functions. The rainfall multipliers are usually

Table 3 Number of bootstrap sample used while considering the

final model

S. no Author (s) (year) Number of bootstrap used

1 Srivastav et al. (2007) 300

2 Sharma and Tiwari (2009) 50

3 Tiwari and Chatterjee (2010a) 50

4 Tiwari and Chatterjee (2010b) 50

5 Boucher et al. (2009b) 50

6 Tiwari and Chatterjee (2011) 200

7 Kumar et al. (2015) 100
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sampled from normal random variate, which tend to

modify the measured inputs during model calibration so as

to evaluate the input uncertainty. For instance, Artigue

et al. (2012) sampled 20 different combinations of rainfall

multiplier randomly with a range between 0.8 and 1.2. The

altered rainfall information was used to train 20 different

ANN models and to quantify the uncertainty of the model

output.

In addition, some of the studies reported the ANN as a

surrogate model or uncertainty processing tool (Shrestha

et al. 2009; Cullmann et al. 2009; Yu et al. 2015). In such

analysis, the parameter uncertainty of conceptual or phys-

ically based model that used MCS was mapped through

ANN model. The prediction limits obtained from the ANN

model is based on the functional relationship between the

hydro meteorological variables and the characteristics of

the model output that follow probability distribution. The

recent developments in the optimization algorithms (shuf-

fled complex evaluation metropolis—SCEM) include the

component of uncertainty while calibrating the model

parameters. The algorithm used Marko Chain Monte Carlo

(MCMC) sampler that can effectively locate the high

probability density region of the feasible neural network

parameter space (Guo et al. 2013).

5.5 Optimization based method

Recently, the application of optimization algorithm in

estimating the uncertainty of ANN models has gained

increasing attention. Despite several sophisticated opti-

mization based search algorithm available, the genetic

algorithm (GA) based optimization technique has been

frequently used. For instance, the GA was integrated with

ANN for identifying the optimal architecture and also to

quantify the prediction uncertainty by combining several

neural networks (Kant et al. 2013). Araghinejad et al.

(2011) used specific function with the consideration of

improving the estimate of the peak and low flow through

ensemble of ANN models. Recently, the ANN model

parameter uncertainty was carried out with the cost func-

tion aiming to reduce/optimize the uncertainty interval at

the model output using the optimization framework. In

contrast to the traditional objective function used for

developing ANN models which provide the point predic-

tion through deterministically optimizing the parameter,

the newly developed objective function optimizes ensem-

ble of models which provides the indication of uncertainty

at the model output (Alvisi and Franchini 2012; Kasi-

viswanathan et al. 2013; Taormina and Chau 2015). The

major difference between the traditional and optimization

based method is that it differs in identifying the ANN

parameters with acceptable level of uncertainty rather train

the model and then quantify the uncertainty. However,

these methods consider only parameter uncertainty of ANN

and hence methods for including other sources of uncer-

tainty should be developed.

5.6 Miscellaneous method

In addition to the methods described in this paper, several

other methods have also been reported in the context of

evaluating the uncertainty in ANN based hydrologic

models and listed as follows:

• Any variation created in the initial seeds of parameters

lead to converge in different combination of parame-

ters. For instance, Boucher et al. (2009b) used an

approach which initialized various combinations of

random seeds of model parameters for obtaining the

variation in final model parameters and to quantify the

prediction uncertainty.

• Han and Kwong (2007) proposed a heuristic based

method to understand the uncertainty in ANN hydro-

logic models. The method estimates the distance

between the input vector at prediction and all the

training data, which provides a valuable indication on

how well the prediction would be, relating to the

uncertainty in the model input, parameters and

structure.

• The sensitivity analysis was reported in some of the

research studies (Kim and Kim 2008). It was carried out

for the purpose of eliminating the uncertainty that

originates from irrelevant input information in ANN

models and thereby enhances the model prediction with

reduced level of uncertainty.

• Yang and Chen (2009) applied a self-organizing map

(SOM) and linear transfer function (LTF) to efficiently

determine the intervals of weights and biases. The

ranges of parameters obtained through this approach

were then used to establish the prediction interval of the

model output. The results indicated that compared to

the conventional ANN model, the proposed approach

produced a narrow interval of model output around the

observed values which better characterize the under-

lined uncertainty.

• The first order uncertainty analysis (FOUA) has been

reported to be a promising approach while evaluating

meaningful estimate of model prediction uncertainty by

deriving the first derivative of model functional form

with respect to uncertain variables (i.e. model param-

eter and/or inputs). However, the application of FOUA

remains a challenging task in non-linear models due to

the complex derivatives involved. In the case of ANN

model, it was explored by Kasiviswanathan and

Sudheer (2013) and their results suggested that the
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quantified level of uncertainty was found to be varying

with magnitude of flow as anticipated.

• Several research studies used ensemble of climate

model output while developing ensemble of ANN

models for the purpose of flood forecasting (Cannon

and Whitfield 2002; Fleming et al. 2015; Oliveira et al.

2015). Consequently each ANN model used different

set of predictor variates, so that the overall system

provides a collective forecast error which combines

different sources of uncertainty.

• Asefa (2009) proposed GLUE approach in ANN

models which accounts for uncertainties in model

structure and inputs. The method has an advantage of

systematically characterizing the uncertainty in the

form of non-parametric without explicit consideration

of assuming the distribution of residuals. The likelihood

measure decides the selection of model output and

corresponding model parameters sampled from proba-

bility distribution functions. Further, it suggested

developing methods for updating the likelihood to

improve the model prediction without training the

models. However, the complex computation and

assumption about parameter in the form of probability

distribution functions limit the practical application of

these methods.

6 Evaluation criteria used for quantifying
the uncertainty of ANN

The accuracy of uncertainty evaluation not only depends

on the methods used, however it is also important to con-

vey the information meaningfully in appropriate way. In

general, the magnitude of uncertainty can be evaluated

using graphical representation and/or statistical measures.

The graphical representation such as rank histogram and

reliability diagram (Boucher et al. 2009a) provides infor-

mation of model uncertainty. The visual inspection of

model output variability with a set of upside and downside

prediction (i.e. optimistic and pessimistic values) around

the mean simulation provides overall information of qual-

ity of the model prediction. Despite, the graphical repre-

sentation which provides useful insight about the model

uncertainty assessment, the inter comparison of model

response under different conditions is a difficult task.

Hence, the statistical measures, which are objective and

quantitative in nature, are often employed for ranking

different alternatives. Figure 4 depicts the number papers

which used different uncertainty measure indices while

evaluating the model output uncertainty.

Several uncertainty evaluation measures have been

reported in literature that include (a) average relative

length (ARL) (Jin et al. 2010), (b) average asymmetry

degree (AAD), (c) average deviation amplitude (ADA)

(Xiong et al. 2009), (d) percentage of coverage (POC) and

(e) average width (AW) (Kasiviswanthan and Sudheer

2013). The first three indices are mainly used to evaluate

the asymmetry degree of prediction interval and deviation

from observed values. The remaining two indices measure

the magnitude of prediction interval width and percentage

of observed values that fall within prediction interval.

Although, all these indices measure the quality of the

model prediction uncertainty in terms of quantitative esti-

mate (Alvisi and Franchini 2011), the POC and AW were

reported in seven papers (Fig. 4) as these two indices

reflect the accuracy of the model prediction. In addition,

three papers have employed the continuous rank proba-

bility score (CRPS) (Matheson and Winkler 1976; Hers-

bach 2000) to estimate the quality of the prediction

interval. It measures the distance between the observed and

predicted distribution. Another index called logarithmic

score (Roulston and Smith 2002) is the logarithm of

probability density, which corresponds to observed and

predicted values. The major drawback with this index is

that it does not consider the lower bound and the proba-

bility density becomes zero when the observation falls

outside, which results an infinite value. This could be the

reason that most of the study did not consider this index

while estimating the uncertainty, except few (Boucher et al.

2009b).

It is noted from the reported studies that 24 numbers of

papers did not use any indices to quantify uncertainty, but

rather the uncertainty was described through statistical

indices (i.e. standard deviation, minimum, maximum and

inter quartile range of model output). This suggests further

improvement/research while reporting the magnitude of

uncertainty with proper indices.

Fig. 4 Number of papers used different uncertainty indices
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7 Summary and recommendations for future
research

The absence of uncertainty quantification in the hydrologic

models might produce misleading information, which limits

their practical application especially in planning and man-

agement of water resources. Thus, the meaningful quan-

tification of uncertainty is necessary for understanding

different mechanism, so as to find the best possible way of

reducing it. In the case of ANN based flood forecast models,

the uncertainty quantification using standard procedures as

applied in other hydrologic models are computationally

challenging owing to the parallel computing architecture,

large number of degrees of freedom in their model devel-

opment, subsequently suitable methods for carrying out

uncertainty analysis is still lacking. This motivates

researchers to develop appropriate procedures with suit-

able modifications, assumptions, in order to quantify the

uncertainty of ANN. If sufficient information of uncertainty

is available, the credibility/reliability of forecasting models

would reduce the risk in the decision making (i.e. the design

or operation of hydraulic structures). It is noted that many

review articles reported the advantages of using ANN and

addressed the methodological issues, however not in terms

of uncertainty. Therefore, this review paper would be useful

in understanding the current state of research, research gaps

where further progress is required. Based on the review of

36 research articles, the following recommendations for

future research are made:

1. The clear guidelines should be developed to determine

the number of bootstraps, since different study

reported different number of ensembles. While esti-

mating the model output from the ensemble of neural

network formed by individual ANN models, more

sophisticated methods should be developed to improve

the estimate of prediction rather focusing on simple

arithmetic averaging. The potential of other bootstrap

methods such as moving block bootstrap, circular

block bootstrap, and stationary bootstrap can also be

explored. The study reported bootstrap method con-

sidered only a parameter uncertainty; however

approaches should be developed to include other

sources of uncertainty.

2. The application of Bayesian method could be further

explored to better characterize the influence of each

sources of uncertainty.

3. Since very limited studies focused on employing fuzzy

method, further developments in this area can be

explored integrating fuzzy with ANN models for the

uncertainty quantification. It is also noted that studies

based on fuzzy assume a constant membership func-

tion while generating the lower and upper values of

input or model parameters and hence future study can

focus variable membership level and also methods for

including the structure uncertainty.

4. The application of MCS based method can be further

extended to quantify the uncertainty of ANN, since it is

very robust while analyzing the uncertainty.

5. The FOUA can still be used to demonstrate the

influence of each parameter while estimating the total

prediction uncertainty. It is also suggested that proper

methods should be devised for the input identification

of ANN model through FOUA.

6. The current studies limit quantifying the parameter

uncertainty of ANN using optimization based methods;

hence further methods can be extended to combine

different sources of uncertainty.

7. The uncertainty is often quantified using general

statistical indices such as mean, standard deviation,

minimum and maximum values of model output, thus

the uncertainty measuring indices listed in (Xiong et al.

2009) could be employed and the new indices could be

developed.

8. The selection of network architecture/topology in

terms number of hidden layers/nodes, activation func-

tion have been reported to finalize the initial model

based on the accurate estimate of point prediction/fore-

cast of the model. After fixing the architecture, the

quantification of uncertainty was carried out in major-

ity of the studies. Hence further investigation is

required focusing the level of uncertainty in terms of

reducing the magnitude while developing the models.

In addition, most of the studies in uncertainty quan-

tification of ANN reported the MLP architecture;

however other types such as radial basis functions,

support vector machines can be explored.

Acknowledgements The authors would like to thank two anonymous

reviewers for their insightful comments, which helped improving the

quality of the paper.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical approval This paper does not contain any studies with

human participants or animals performed by any of the authors.

Informed consent For this type of study, formal consent is not

required.

References

Abrahart RJ, See LM, Dawson CW, Shamseldin AY, Wilby RL

(2010) Nearly two decades of neural network hydrologic

1668 Stoch Environ Res Risk Assess (2017) 31:1659–1670

123



modeling. In: Sivakumar B, Berndtsson R (eds) Advances in

data-based approaches for hydrologic modeling and forecasting.

World Scientific Publishing, Hackensack, NJ, pp 267–346

Alvisi S, Franchini M (2011) Fuzzy neural networks for water level

and discharge forecasting with uncertainty. Environ Model

Softw 26:523–537. doi:10.1016/j.envsoft.2010.10.016

Alvisi S, Franchini M (2012) Grey neural networks for river stage

forecasting with uncertainty. Phys Chem Earth Parts A/B/C

42–44:108–118. doi:10.1016/j.pce.2011.04.002

Araghinejad S, Azmi M, Kholghi M (2011) Application of artificial

neural network ensembles in probabilistic hydrological forecast-

ing. J Hydrol 407:94–104. doi:10.1016/j.jhydrol.2011.07.011

Artigue G, Johannet A, Borrell V, Pistre S (2012) Flash flood

forecasting in poorly gauged basins using neural networks: case

study of the Gardon de Mialet basin (southern France). Nat

Hazards Earth Syst Sci 12:3307–3324. doi:10.5194/nhess-12-

3307-2012

ASCE Task Committee on Application of Artificial Neural Networks

in Hydrology (2000a) Artificial neural networks in hydrology. I:

preliminary concepts. J Hydrol Eng 5(2):115–123

ASCE Task Committee on Application of Artificial Neural Networks

in Hydrology (2000b) Artificial neural networks in hydrology. II:

hydrologic applications. J Hydrol Eng 5(2):124–137

Asefa T (2009) Ensemble streamflow forecast: a glue-based neural

network approach. J Am Water Resour Assoc 45:1155–1163.

doi:10.1111/j.1752-1688.2009.00351.x

Bishop CM (2004) Neural networks for pattern recognition. Oxford

University Press, Oxford
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