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Abstract Natural hazards have the potential to trigger

complex chains of events in technological installations

leading to disastrous effects for the surrounding population

and environment. The threat of climate change of wors-

ening extreme weather events exacerbates the need for new

models and novel methodologies able to capture the com-

plexity of the natural-technological interaction in intuitive

frameworks suitable for an interdisciplinary field such as

that of risk analysis. This study proposes a novel approach

for the quantification of risk exposure of nuclear facilities

subject to extreme natural events. A Bayesian Network

model, initially developed for the quantification of the risk

of exposure from spent nuclear material stored in facilities

subject to flooding hazards, is adapted and enhanced to

include in the analysis the quantification of the uncertainty

affecting the output due to the imprecision of data available

and the aleatory nature of the variables involved. The

model is applied to the analysis of the nuclear power sta-

tion of Sizewell B in East Anglia (UK), through the use of

a novel computational tool. The network proposed models

the direct effect of extreme weather conditions on the

facility along several time scenarios considering climate

change predictions as well as the indirect effects of external

hazards on the internal subsystems and the occurrence of

human error. The main novelty of the study consists of the

fully computational integration of Bayesian Networks with

advanced Structural Reliability Methods, which allows to

adequately represent both aleatory and epistemic aspects of

the uncertainty affecting the input through the use of

probabilistic models, intervals, imprecise random variables

as well as probability bounds. The uncertainty affecting the

output is quantified in order to attest the significance of the

results and provide a complete and effective tool for risk-

informed decision making.

Keywords Risk analysis � Enhanced Bayesian Networks �
Epistemic uncertainty � Stochastic models � Imprecise

probabilities � Climate change � Spent fuel

1 Introduction

The potential of natural hazards to trigger simultaneous

failures and, in worse cases, technological disasters [com-

monly known as Natech accidents (Krausmann and Bar-

anzini 2012)] has progressively nourished the concern of

both the scientific community and the public opinion,

contributing to increase the awareness toward the intrinsic

vulnerability of technological installations to the effect of

extreme weather conditions. The gravity of such issues is

borne out by projections available on the future trends of

global climate, which are expected to lead to an intensifi-

cation of extreme events. This growth of the risk seems to

interest particularly coastal areas as a result of the com-

bination of global sea level rise and the predicted increase

of extreme wind and rain events: this arises the risks of

flooding along shorelines, threatening numerous techno-

logical installations which are been long located on the

coast (Evans 2004; Levy and Hall 2005). Several studies

already confirm the correctness of these forecasts: a
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significant increase in heavy precipitation for the twentieth

century has been observed on both global and local scales

(Trenberth et al. 2007; Maraun et al. 2008). According to

the work of Seneviratne et al. (2012), this trend is consis-

tent with the estimated consequences of anthropogenic

forcing and is expected to endure in the near future: most

geographical areas are not only predicted to be subject to a

significant increase of the overall frequency of heavy pre-

cipitation, but are also expected to experience higher

severity, with a larger proportion of extreme events over

the totality of the occurrences (Trenberth et al. 2007).

Focusing on a local scale, the number of days with pre-

cipitations over 25 mm are expected to increase up to a

factor of 3.5 during the winter in the central and southern

regions of UK by 2080 (MetOffice 2014). The changes in

atmospheric storminess are predicted to affect, together

with the increase of mean sea level, the occurrence of

extremes in coastal high water levels (Wu et al. 2016).

Also in this case the predictions are corroborated by current

observations: data collected over ten years (from 1993 to

2003) have shown an average growth rate of 3.1 mm/year

for mean sea level (Bindoff et al. 2007). Finally few

studies, even if dealing with strong uncertainty, seem to

suggest a local upward drift in extreme winds (Rauthe et al.

2010) and winter wind storms (Pinto et al. 2007). In

addition to this, the significant increase of utilisation

experienced by coastal areas over the twentieth century

contributes to increase the risks associated with the

occurrence of flooding along shorelines. This trend is

expected to endure through the current century with a

coastal population estimated to grow of a factor between

1.5 and 4.3 by 2080 (Nicholls et al. 2007): the large and

growing presence of communities and industrial facilities

in coastal areas contributes to widen the hazardous areas

and the related risks, including the increase of Natech

accident occurrence. This suggests the need for mitigation

measures to enhance both the robustness of existing

installations and the design standards for new and more

reliable systems. Due to the delicacy of safety issues in the

nuclear sector and in light of past events, the nuclear

industry must play a key role in the research of new

solutions to efficiently tackle the current and future risks

posed by natural hazards (Weightman et al. 2011).

The analysis of the vulnerability of nuclear facilities to

external hazards, such as those represented by weather

extremes, are still few and mainly focused on the reactor

safety (Musolas et al. 2015). Less concerns are generally

addressed to the spent fuel ponds (SFP, referred as pools in

American English) which still have the potential to trigger

dramatic accident scenarios in the case of exposure of the

spent fuel stored. According to the Nuclear Regulatory

Commission, this event, even if unlikely to occur, would

have high-impact consequences, eventually causing one or

more zirconium fires in the facility (Collins and Hubbard

2001). It is hence essential to focus on the reliability of

these systems for a more accurate assessment of the vul-

nerability of nuclear installations and the identification of

effective risk mitigation measures.

A crucial point of risk assessment in the nuclear

industry, and more generally in the case of complex tech-

nological systems, is represented by the computational and

theoretical tools available. The models and methodologies

adopted for the analysis should not only be able to depict

the overall mechanisms behind the possible accident sce-

narios, but also provide information useful for long-term

decision making as well as for supporting decision makers

in the case of imminent danger (Cruz et al. 2004). Fur-

thermore, the approach selected should guarantee an ade-

quate representation of the complexity of the system under

study and of the interactions among its subsystems,

allowing the analysis of different scenarios and taking

explicitly into account the uncertainty affecting the input,

with particular regards to climate change projections

(Keller 2009), and its propagation within the model. This

study proposes a multi-disciplinary model for the robust

quantification of the risk exposure of spent nuclear facili-

ties introducing the use of a novel computational tool and

methodology able to take into account the imprecision

affecting the data (through the use of imprecise probabili-

ties) and thus to quantify the uncertainty affecting the

output. The approach adopted is based on the use of

graphical models, namely Bayesian Networks (BNs). This

choice has been dictated by the capability of BNs to tackle

many challenging aspects of the kind of analysis per-

formed: first of all, differently from deterministic methods

which still are widely adopted in industry (Jerome Tixier

et al. 2002), a probabilistic approach such as BNs offers

unquestionable advantages, providing a more realistic and

systematic estimate of risk and safety and including the

uncertainty affecting the initial knowledge in the analysis.

Second, as generally true for graphical models, BNs pro-

vide a common intuitive language easily understandable

and widely recognized regardless the personal background

of the user. This is an essential requirement in view of the

strongly interdisciplinary nature of risk analysis of com-

plex systems subject to natural hazards, which implies the

collaboration of experts from very different fields of sci-

ence and industry (e.g. seismologists, hydrologists, mete-

orologists, process engineers, psychologists, government

officials, emergency managers etc.) (Straub 2005). The

intuitivity of the approach makes BNs an accessible sup-

porting tool for decision makers, who are expected to be

the final users of the type of analysis performed in this

study, and can potentially facilitate the communication of

risk to the public, filling the communication gap existing

between these realities (Sivakumar 2011). Furthermore, in

2734 Stoch Environ Res Risk Assess (2017) 31:2733–2756

123



comparison with more common methodologies such as

fault tree analysis, BNs present several advantages, over-

coming several restrictive assumptions implicit in the fault

tree methodology (e.g., the restriction to Boolean logic),

providing the adequate representation of complex depen-

dencies among components, including uncertainty in the

model and allowing both forward and backward analysis

(Bobbio et al. 2001). In light of this, BNs are particularly

suitable for capturing the complexity of the systems and the

mechanisms behind multiple failures. This allows the

analysts to effectively assess the likelihood of domino

effects within the facility and to fully understand the pos-

sible consequences of simultaneous failures, widely

regarded as the most critical threat posed by natural haz-

ards to technological installations. Third, thanks to the

availability of algorithms for the analytical computation of

inference (i.e. exact inference), BNs are able to handle very

small values of probabilities. This capability plays a crucial

role in the assessment of low probability-high impact

events such as weather extremes and natural hazards.

Finally, BNs offer a consistent framework to coherently

integrate sources of information of very different natures

(e.g. experimental measurements, projections, historical

data, computational models etc) thus to combine empirical

information with mechanical models and engineering

judgement. In particular, thanks to Bayesian statistics

which is the mathematical background of this approach,

BNs allow the inclusion of subjective information, such as

experts opinions, which have an essential role in areas of

research strongly affected by uncertainty and lack of data.

This is the case of natural hazards for which useful his-

torical data are often not available due to the high vari-

ability of both frequencies and consequences.

Nevertheless, traditional BNs are mainly restricted to

the use of discrete probability values which cannot fully

capture the intrinsically aleatory nature of natural events

nor the epistemic uncertainty affecting the data available.

This limitation, as highlighted in previous studies (Tolo

et al. 2016), strongly straitens the ability of the method to

model, with equal effectiveness, the information related to

both natural hazards and technological installations.

A novel approach is proposed in this study in order to

overcome these constraints and provide a complete tool for

decision making support. The method adopted allows to

integrate within the BN framework different kinds of

mathematical models tailored on the features of the vari-

ables involved but also their uncertainty, which has the

potential to undermine the credibility of the results

obtained. Indeed, a meticulous and accurate analysis can-

not disregard the degree of uncertainty affecting the data on

which the decision is based. This kind of information

provides a sort of context for the numerical results

obtained, bounding their significance and hence measuring

the effectiveness and accuracy of the analysis itself. In

other words, the lack of information and hence the igno-

rance regarding a certain process are themselves an

essential part of the information and must be made avail-

able to adequately support risk-informed decisions. The

efficiency of the computational implementation of such

approach, referred to as Enhanced Bayesian Networks

(EBNs), is guaranteed by the adoption of robust and cut-

ting-edge numerical methods borrowed from the field of

structural reliability. Thanks to this, the tool implemented

results suitable for both long-term and near-real time

decision making support.

The method proposed is illustrated in this study through

the implementation of a network for the vulnerability

assessment of nuclear facilities subject to external hazards,

and its application to the Sizewell B nuclear power plant

facility in East Anglia, UK. In more detail, the framework

consists of an Enhanced Bayesian Network which includes

discrete variables as well as intervals, random and impre-

cise random variables (e.g., random variables whose

uncertain parameters are intervals) and probabilistically

bounded parameters. Furthermore it involves secondary

models related to different subjects, from climate change to

human error and coastal reliability issues. Probability

bounds are calculated for several failure events (and dif-

ferent accident scenarios) associated with the exposure of

the spent nuclear fuel stored on site. The results obtained

are discussed in order to demonstrate the advantages and

limitations of the proposed methodology.

2 Methodology

This section aims to give an overview of the theoretical

background of the methodology adopted and to briefly

describe the computational tool implemented for its

application.

2.1 Bayesian Networks

Bayesian Networks (BNs) are statistical models based on

the use of directed acyclic graphs. As any graphical model,

BNs present a double nature: on the one hand, the structure

of the problem under study is reproduced by a graphical

framework, where nodes stand for random variables and

edges represent the causal relationship existing between

two nodes. On the other hand, the strength of the depen-

dencies between variables is expressed through the intro-

duction of Conditional Probability Distributions (CPDs).

These are tensors collecting the numerical parameters of

the network, i.e. the conditional probabilities associated

with the outcomes of any node of the network given an

instantiation of its parents. Conversely, when a node is not
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linked to any parent it is referred as a root of the network

and associated with marginal probability distributions.

With regards to the simple example in Fig. 1, the node X1

can be identify as a root of the network as well as the

parent of X2 and X3, which are also referred to as its

children. BNs satisfy the local Markov condition according

to which values of a variable remain conditionally inde-

pendent of its non-descendants given its parent variables.

The main strength of BNs consists of their capability to

factorize the joint probability over any set of variables

X ¼ fX1;X2; :::;Xng forming the network by simply

exploiting the knowledge available regarding their condi-

tional dependencies. Indeed, according to Bayes’ theorem,

such joint probability can be expressed as:

PðXÞ ¼
Y

i

pðXijpaðXiÞÞ ð1Þ

where pðXijpaðXiÞÞ is the conditional density function of

the node Xi while paðXiÞ denotes possible instantiations of
its parents. Generally, inference with BNs involves the

calculation of the posterior marginal probability for a query

variable. The key feature of BNs consists of updating this

information when new information become available. This

allows not only to update the belief toward a certain event

(and is indeed referred as belief updating) on the basis of

the information gathered but also to take into account

possible what-if scenarios. This is obtained introducing

evidence in the network: for example, the evidence

E ¼ fX3 ¼ x3;1g fixes the values of variables X3, assigning

to it the outcome x3;1. Hence, the distribution for the query

variable X1 given the evidence E over the variables XE ¼
fX1;X3g can be expressed as:

P X1 x3;1
��� �

¼
P X1; x3;1
� �

P x3;1
� ��� ¼

P
XnX1[x3;1 pðXÞP
Xnx3;1 pðXÞ

ð2Þ

Several algorithms, both exact and approximate, are

available in the literature for the extrapolation of proba-

bilistic information regarding one or more query variables

on the basis of the BN structure (process generally known

as inference). Exact inference algorithms (e.g., junction

tree algorithm) are robust and well-established in scientific

literature but generally restricted to the use of crisp values

for the network parameters. This implies the discretization

of continuous random variables, impoverishing the quality

of the information available. Approximate approach is

generally based on simulation techniques (e.g., Markov

chain Monte Carlo methods), allowing to perform infer-

ence on continuous nodes. The main drawbacks of this

option are the computational time required for the simu-

lations and the unknown rates of convergence. Moreover,

approximate inference presents significant limitations in

computing low probabilities of rare events, in particular

with regards to near-real-time inference and decision

analysis (Straub and Kiureghian 2010). Please refer to the

work of Pearl and Russell for a complete overview of

Bayesian Networks (Pearl and Russell 2000).

The first studies on BNs were proposed by Judea Pearl

and date back to the early eighties (Pearl 1985), but the

lack of robust algorithms and computational resources has

initially slowed down the development of this technique.

Conversely, with the rapid establishment of advanced

computer technology, it has attracted large interest in

various sectors of science and engineering (Weber et al.

2012). The attractiveness of this approach in the field of

risk assessment can be attributed to the capabilities of

dealing with very low-probability events (Hanea and Ale

2009), modelling elaborate networks of dependencies (as

those characterizing complex systems) (Khakzad et al.

2013) and, most of all, integrating information of different

nature, from experimental data to expert judgements

(Cheon et al. 2009; Kim et al. 2006). All these aspects

make BNs particularly attractive in the study of natural

hazards and their interaction with technological installa-

tions (Straub 2005; Bayraktarli et al. 2005; Tolo et al.

2014).

2.2 Bayesian Networks Enhanced with system

reliability methods

The adoption of exact algorithms for the computation of

inference on BNs is generally recognised as a more robust

and accurate approach in comparison to approximate

analysis. On the other hand, the restrictions of this kind of

computation, generally limited to the use of crisp proba-

bility values, significantly affect the capability of models to

capture reality and hence the information available. This is

rarely provided in the form of crisp numbers and results

always affected by a certain degree of uncertainty which, if

not adequately integrated in the analysis, can easily lead to

misleading results. To adapt the data available to the use of

exact inference algorithms, a discretization procedure is

required for continuous variables: this inevitably depletes

the quality of the initial information and subsequently the

accuracy of the models. The methodology referred to as

Enhanced Bayesian Network (EBN) allows to bypass this

practice overcoming the limitations of the traditional

approach. It consists of combining BNs with system reli-

ability methods, which are adopted in order to reduce the

initial models, containing both discrete and continuous

X1

X3 X2

Fig. 1 Graphical structure of a

simple Bayesian Network
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variables, to traditional BNs and thus allowing the com-

putation of exact inference. In this study the existent

methodology has been extended to the use of imprecise

probabilities, such as intervals and imprecise random

variables: if such variables are present in the initial net-

work, the reduced model will not be a traditional BN but a

BN including probability bounds. Nevertheless, the prop-

agation of bounds in the network can still be performed

adopting exact inference algorithms (Thöne et al. 1997).

The assumption at the basis of the EBN approach is that

any node child of one or more non-discrete nodes has to be

represented as a function of these variables, hence char-

acterized as domains in the outcome space of its parents.

The computation of the conditional probability value of a

child node can hence be translated into a reliability prob-

lem and solved through the use of well-known system

reliability methods. Such a computation automatically

releases the child node from the causal links which connect

it to its non-discrete parents, allowing the progressive

removal of continuous nodes from the network which

finally would include only discrete variables.

Taking into account the example in Fig. 2 and consid-

ering Eq.(1), the joint probability over the discrete vari-

ables D1 and D2 would result:

PðD1;D2Þ ¼
Z

C1

pðD1ÞpðD2jD1;C1Þf ðC1ÞdC1 ð3Þ

where pðD1Þ, pðD2jD1;C1Þ are the probability values

included in the CPDs of D1 and D2 respectively, while

f ðC1Þ is a continuous probability density function associ-

ated with the probabilistic node C1. Since D1 is indepen-

dent from C1 according to the local Markov condition, the

integral of interest can be rearranged as:

PðD2jD1Þ ¼
Z

C1

pðD2jD1;C1Þf ðC1ÞdC1 ð4Þ

In light of the initial assumption, D2 results to be a

function of its non-discrete parent C1 for any instantiation

of the discrete parent D1. In other words, each entry of the

CPD of D2 is defined by a domain Xd2
D2;d1 in the space of C1

given D1 ¼ d1. Hence, Eq.(4) can be further modified

(Straub and Kiureghian 2010):

PðD2jD1Þ ¼
Z

Xd2
D2;d1

f ðC1ÞdC1 ð5Þ

The formulation of the problem obtained in Eq.(5) is

equivalent to that of traditional reliability problems solved

adopting reliability methods.

Indeed, various strategies for the solution of this integral

are available in the literature, such as numerical integration

techniques, Monte Carlo simulations (Hammersley and

Handscomb 1964) and asymptotic Laplace expansions

(Rackwitz 2001). Common approximate solutions largely

adopted in practice are First-Order and Second-Order

Reliability Methods (Hasofer and Lind 1974), which

ensure low computational costs but generally perform

poorly in high dimensional spaces or in the case of strongly

non-linear domains. A range of advanced sampling tech-

niques, such as Importance Sampling, Line Sampling,

Stratified Sampling etc., have been developed quite

recently in order to overcome the limitations of approxi-

mate reliability methods on the one hand, reducing the cost

associated with the traditional MC approach on the other.

2.3 Proposed computational approach

Differently from previous applications of EBN available in

the literature, the methodology has been extended to

include intervals and imprecise random variables within

the framework of the initial network. The aim of the pro-

posed computational approach is to efficiently accomplish

such integration, which implies the resolution of equations

similar to that in Eq.(5) also when non-probabilistic vari-

ables (i.e. intervals and imprecise random variables) are

involved. The field of structural reliability offers a wide

range of numerical strategies suitable for the fulfilment of

this task: in the computational tool implemented, several of

these methods have been selected and fully integrated with

the BN approach. It is worth highlighting that the use of

structural reliability methods is justified merely by the

common numerical configuration of the computation under

study [i.e. identification of conditional probability of nodes

children of non-discrete variables as for Eq.(5)] and the

traditional structural reliability problem, and does not

necessarily imply a conceptual correspondence between

structural reliability and risk exposure quantification. This

introduces two main advantages: on the one hand, the data

available can be captured accurately avoiding the intro-

duction of unmotivated assumptions. This would signifi-

cantly enhance the robustness of the model in comparison

with traditional approaches which force the analyst to

choose, more or less arbitrarily, a precise distribution not

fully justified by the data available. On the other hand, the

explicitly depiction of the imprecision affecting the input

allows tracking the propagation of this latter within the

D1

D2

C1 D1

D2

Fig. 2 Reduction of a simple EBN containing a continuous node to a

BN including only discrete variables, where C1 refers to a continuous

node and D1 and D2 to discrete nodes
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model, quantifying the degree of uncertainty of the output

and providing a crucial information for risk-informed

decision making. In light of this, if the initial network

contains non-probabilistic but continuous nodes, the

reduced network is not a traditional BN containing only

crisp parameters but instead includes nodes whose out-

comes are associated with probability bounds.

The methodology proposed has been implemented in the

general purpose software OpenCossan (Patelli et al.

2012, 2014; Patelli 2016) in an object oriented fashion.

This ensures programming flexibility, computational effi-

ciency and allows to avoid code duplication. OpenCossan

is a collections of methods and tools under continuous

development, coded exploiting the object-oriented Matlab

programming environment. It allows to define specialized

solution sequences including any reliability method. Fur-

thermore, thanks to the strong flexibility, new reliability

methods or optimization algorithms can be easily added.

The computational framework is organized in classes, i.e.

data structures consisting of data fields and methods

together with their interactions and interfaces (Patelli et al.

2012). Objects (i.e., instances of classes) can be then easily

aggregated, forming more complex objects and being

processed according to the related methods in order to

obtain the output of interest. The numerical implementa-

tion associated with this study consists mainly of two

classes: the first of these, Node, provides the basic input of

the graphical model.

According to the nature of the variable represented, four

different categories for the Node type can be identified:

• discrete, including nodes whose CPDs can contain

either exact probability values or probability bounds.

• probabilistic, including continuous nodes whose CPDs

contain stochastic variables or vectors of stochastic

variables;

• bounded, embracing nodes enclosing interval variables;

• imprecise probabilistic, referring to nodes representing

imprecise random variables.

The combination of more Node objects allows the con-

struction of the EnhancedBayesianNetwork object, defined

by its namesake class. These two classes together provide

the graphical and numerical implementation of the

Enhanced Bayesian Network model. Their interaction with

the reliability methods available in the OpenCossan

framework provides the reduction of the initial network to

traditional BNs or BNs including probability bounds,

according to the procedure described previously.

Several methods, borrowed from the field of structural

reliability, are available in the toolbox for the efficient

solution of Eq.(5). Generally, the nature of the variables

involved, together with the desired degree of accuracy, leads

the selection of the method to adopt. In more detail, four

cases can be easily identified: only probabilistic and discrete

variables involved, only bounded and discrete variables

involved, both probabilistic and bounded variables involved

and, finally, any kind of variable including imprecise random

variables. In the first case Eq.(5) would involve only tradi-

tional probabilistic variables and can hence be efficiently

solved through the use of both traditional or advanced (e.g.,

Line Sampling or Important Sampling) MC methods

(Koutsourelakis et al. 2004) as well as semi-probabilistic

methods such the First Order Reliability method (FORM)

(Kiureghian 2005). In the second case, where the input

consists of discrete and interval variables, the method pro-

posed by Jiang et al. (2011) and based on the use of convex

sets can be adopted. It is opportune to specify that in this case

the result of the computation cannot be considered a proba-

bility value, conversely provides only a coarse information

regarding the possibility of failure. This would lead to

overestimate the probability of the event under study, which

would be assumed as 1 even if the event is only possible and

no more information about its actual likelihood is available.

It is hence highly recommendable to avoid this kind of set-

up. The third case refers to the presence of probabilistic and

interval variables in input and can be computed through the

use of twomethods available in the toolbox: the first refers to

the work of Luo et al. (2009) and is based on the mixture of

sets of continuous probability distributions and convex sets

of intervals on which a nested minimization problem is

computed. The other method available consists of coupling

advanced Monte Carlo methods (i.e., Adaptive Line Sam-

pling) with optimization methods in order to estimate the

lower and upper bounds of the failure probability (Angelis

et al. 2015). Dissimilarly from the previous, this approach

allows for both imprecise probability distribution functions

(i.e., credal sets) and sets of bounded variables. The main

advantage of this approach is the possibility to provide the

probability bounds for the event of interest without approx-

imating the limit state function. Moreover it is largely

applicablewith significant benefits in terms of computational

cost: the efficiency of the strategy is independent of the

magnitude of the failure probability, which is a large

advantage in comparison to traditional approaches such as

directMC, and ensures the feasibility of the computation also

in high dimensional spaces with a limited number of sam-

ples. Furthermore, this latter method is the only one suit-

able for problems involving imprecise random variables

(e.g., probabilistic variables with uncertain but bounded

parameters).

The computation of inference on the reduced network

can be carried out through the use of built-in inference
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algorithms as well as through the interaction of the tool

with the Bayes’ Toolbox for MATLAB (Murphy 2001).

Figure 3 depicts the main structure of the computational

tool implemented.

To sum up, the approach described suggests to process the

implemented models following a two-step procedure: first,

the network containing probabilistic, non-probabilistic,

hybrid and discrete variables is reduced to a BN containing

crisp and interval probabilities through the use of numerical

methods imported from the field of structural reliability; in a

second phase, the inference of the events of interests repre-

sented by the model is performed through the use of tradi-

tional exact inference algorithms. These two stages of the

analysis are associated with different requirements and

hence can be characterized by different computational times.

The reduction of the network can be considered as part of the

model design itself and hence can also not be associated with

particular time requirements. On the contrary, since the tool

is designed to provide both long-term and near real-time

decision making support, the results of inference computa-

tion on the network (e.g. the estimation of the probability

associated with a certain accident scenario) should be pro-

vided within the shortest time possible, offering a valid

support also in case of emergency. The proposed approach,

thanks to the reduction of the network to only discrete and

interval probabilities, reduces the computational costs of

inference without affecting the accuracy of the analysis and

allows the satisfaction of this requirement.

Input

Graphical

Model

Inference

Output

Reduction

Node
+Sname

+Stype

+CPD

+Cparents

EnhancedBayesianNetwork
+Cnodes

+Mdag

+Mcorrelation

+computeContinuousNodes()

+discretizeNode()

+reduce2BN()

Marginal Probability Values

Bayes’Toolbox for Matlab

Bayesian Network
(reduced EBN)

+computeInference()

+introduceEvidence()

Reliability Toolbox
+Monte Carlo Methods

(Probabilistic)

+First Order Reliability Method

(Probabilistic)

+Advanced Line Sampling

(Hybrid)

+FORM with convex set mixed model

(Hybrid)

Fig. 3 Simplified representation of the computational toolbox
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3 Vulnerability analysis of nuclear facilities

The purpose of the model implemented in this work is to

quantify the probability associated to several accident

scenarios and failure events involving a fuel pond subject

to the threat of flooding events, overcoming the limitations

highlighted in a previous study and associated with the

adoption of traditional BNs (Tolo et al. 2016). The draw-

backs of such an approach were mainly linked to the use of

crisp probabilities, which cannot fully represent the alea-

tory and epistemic uncertainty affecting the variables (a

crucial aspect for climate variables and projections); a

further restriction is the impossibility to take into account

correlation among nodes when causal models are not

available for the graphical representation of the depen-

dencies but this information is available only numerically

(e.g., through the estimation of correlation factors from

experimental data). Both these issues are overcome in the

current model: the framework implemented includes

probabilistic, interval and hybrid variables as well as

probability intervals, fully capturing the information

available and its imprecision. Moreover, the method

adopted allows to relax the usual BN constraints regarding

the variables correlation, including it within the structural

reliability analysis when required.

The model proposed takes into account the flood hazard

as main source of risk, estimating its evolution over time in

light of the effect of climate change. Moreover the con-

sequences of eventual human errors and their interaction

with natural hazards are included in the analysis.

Extreme weather events have the capability to affect the

facility on different levels. On the one hand, they threaten

the safety of the installation directly, for instance leading to

accumulation of water in the station, causing the failure of

drainage systems or even preventing the access to the

facility from the outside. On the other, the primary impact

of natural hazards can result in much wider accident sce-

narios, triggering chains of failures within the station (e.g.,

the accumulation of water can lead to flood barriers failure

thus to the unavailability of emergency generators

increasing the possibility of a station black-out).

The model aims to capture an overall picture of the

possible accident scenarios. Three sections can be identi-

fied in the network according to their task: the first one

aims to capture the primary impact of the natural hazards

on the facility and thus models the direct interaction

between the natural events and the technological installa-

tion. It embraces variables related to natural events (e.g.,

extreme rainfall, extreme high tide etc.) which are directly

linked to external subsystems of the facility (e.g., drainage

system, outfall etc.). In light of the aleatory nature of

weather events and the strong influence of epistemic

uncertainty on climate variables predictions, this subset of

the network contains most of the non-discrete variables of

the overall model.

A second section of the network aims to depict the

possible chains of failures internal to the system. Due to the

nature of the technological failures here represented, all the

variables of this subset are of a discrete nature and, more

specifically, boolean. Nevertheless, differently from pre-

vious studies, the numerical frame associated with this

section captures the uncertainty affecting the data available

through the adoption of probability bounds instead of crisp

probabilities. This way, the information available in the

literature (e.g., regarding the failure rate of industrial

machines) is fully represented.

Finally, a third part of the network, gathered from a

previous study (Groth and Mosleh 2011) and integrated in

the overall model, takes into account the probability of

human error which can contribute to the overall growth of

risk. This section, shown in Fig. 13, integrates in the

framework Performance Influencing Factors (PIFs)

enabling analysts to adapt the network to the system under

study in light of event data collection and analysis. How-

ever data limitations have precluded the further develop-

ment of this part of the model, which remains consistent

with the previous model.

The framework proposed is shown in Fig. 4 and consists

of 63 nodes. The marginal probability associated to any

event represented by one or more of the nodes can be

computed, offering an important insight of the failure

mechanisms provoked by the interaction between extreme

weather events and the facility and providing the decision

maker with useful information for long-term as well as

emergency risk management.

In the following, the description of the network and

its application to the real-world case-study of Sizewell

B nuclear power station in East Anglia is presented.

First, a brief description of the facility is proposed,

followed by a detailed description of the natural-tech-

nological interaction and internal failure sections. For

further details on the human error section please consult

the previous study (Tolo et al. 2016). Since each node

of the network is designed to represent a specific event,

if not differently specified, the terms defining each node

and the related event are considered interchangeable

from now on. Earthquakes or extreme winds and other

sources of risks different from flooding fall outside the

area of interest of the current model. In spite of this

restriction and the application to a specific case-study,

the network proposed in this paper can be easily

modified to capture the features of different facilities or

even adapted to enlarge the range of external hazards

included in the analysis.
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3.1 Case-study

The case-study selected for the application of the proposed

model is the nuclear power station of Sizewell B, operated

by EDF and located on the coast of East Anglia in the

county of Suffolk, UK. One of the main reasons behind this

choice is the particularly interesting location of the facility

whose surroundings, according to the flood maps provided

by the Environment Agency Environment Agency (2014),

are subject to the risk of flooding. In addition to this, the

closure of the facility, initially planned for 2035, has been

postponed to 2055 to meet EDF’s strategic target (Houlton

2013): this makes even more crucial to evaluate the impact

of climate change on the risks to which the facility is and

will be subject during its operational life.

Differently from other sites in the UK, such as Magnox

and AGR, the strategy for the Sizewell station consists of

long-term storage of the spent fuel under water and on-site

(Office for Civil Nuclear Security 2004). This clearly sets

high capacity requirements, which have led to the con-

struction of a new dry fuel storage to guarantee the nec-

essary storage volume. Finally, the plan for the

construction of a new power plant on the area adjacent to

the facility under study makes this analysis potentially

useful for further developments and applications.

Sizewell B is currently the youngest of the UK nuclear

power plants and provides approximately 3% of the

overall UK’s power demand. The communication with the

national grid is realized at three different 400 kV nodes,

at Bramford, Norwich and Pelham, to which the on-site

electrical substation is connected. On the south of Size-

well B is located the station of Sizewell A, no longer

operational, while on the eastern side lie the so called

Bent Hills. These are steady sand ridges which reach a

maximum height of 10 m in correspondence of the east

boundary of the station, sloping down to the shoreline:

they act as the sea wall of the station which hence results

100 m distant from the shore. The area surrounding the

station on the other directions is mainly marshland subject

to the risk of flooding. The entry of the nuclear site is

located in correspondence of the access road built at 3.5

m AOD. The spent nuclear fuel is stored together with the

new assemblies under water in a stainless steel pool. The

depth of water at which the fuel is kept ensures the

coverage of the elements for 24 h even in the case of

complete loss of power and then cooling. This is provided

by a cooling system, separate from that of the reactor,

which provides the thermal exchange between the

pumped flow and the seawater (default heat-sink). A

second heat-sink based on an air-cooling mechanism is

also available in case of emergency or failure of the

primary cooling circuit. The availability of electrical

power on-site binds the working order of the cooling

system in the fuel facilities. These are located next to the

reactor building and, as all the other sensible buildings,

are equipped with fire doors which are expected to act as

flood barriers with a design basis of 1 m of water (EDF

Energy 2013). A reservoir with a maximum water level of

13.9 m AOD and an invert level of 6.9 m AOD is also

located on site (Sizewell 2011).

Fig. 4 Overview of the EBN model proposed for the vulnerability

analysis and risk exposure quantification of spent nuclear fuel ponds

subject to the risk of flooding: rectangular-shaped nodes are of the

discrete type, circular-shaped probabilistic, ellipsoidal-shaped

bounded and trapezoidal-shaped hybrid
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3.2 Natural-technological interaction section

The aim of this subset of the network (shown in Fig. 5) is to

model the direct interaction between external events (i.e.,

natural hazards) and the nuclear facility, including its

surroundings. In light of this, the nodes involved in this

section can be categorized according to their task and

consequently the nature of the related variables.

Node as WindWavePeriod, WindWaveHeight, SwellPe-

riod, SwellHeight, IncidentWaveHeight, IncidentWavePe-

riod, ExtremePrecipitation represent climate variables and

are represented by probabilistic nodes (ellipsoidal nodes in

Fig. 5). Indeed, the aleatory essence of weather phe-

nomenons such as precipitations or sea conditions, are well

depicted by probabilistic variables: large sets of data are

available for the implementation of these models and a

remarkable part of the scientific literature has been dedicated

in the last decades to identify the most suitable distribution

types for the representation of natural events such as wave

conditions. Conversely, failure events such those involving

subsystems of the facility and directly triggered by the nat-

ural events, such as OutfallFailure, DischargeFailure, have

a boolean nature which can be adequately represented

through discrete variables (rectangular nodes in Fig. 5).

Similarly, FloodingSurroundings refers to the failure of

local flooding defences to keep the water level under a value

which can affect the station (i.e., the elevation of the access

roads): also this event has an intrinsic boolean nature and

hence can be represented by a discrete node. In order to map

future risk of flooding, climate change projections regarding

future sea and surge level values (respectively SeaLevelRise

and SurgeTrend) are included in this section. The inner

variability of climate at both global and local scale, regard-

less human influences, together with the incomplete

knowledge of the climate system and the inability to model it

perfectly, make any estimate of future climate conditions

strongly affected by uncertainty. This plays hence a crucial

role in the analysis of future risks when considering the

prediction of future behaviours of such aleatory phe-

nomenons: coherently, the predicted values are generally

inferred from sophisticatedmathematical models which give

spatial and temporal details and provide estimations of the

uncertainty associated with each variable. To fully capture

this information in themodel, the related nodes SeaLevelRise

and SurgeTrend are characterized by interval variables. The

result of the combination of these latter with the probabilistic

distributions of extreme high tide and extreme surge baselines

are imprecise random distributions (trapezoidal nodes in

Fig. 5) which depict the trend of ExtremeHighTide and Ex-

tremeSurge over the time domain analysed. Apart from cli-

mate change projections, interval variables are also adopted

to characterize several structural parameters considered

affected by imprecision (i.e., SeaWallInclination, LocalDe-

fenceHeight, DrainageSystemCapacity, OutfallCapacity,

GrossStationArea, FloorAreaRatio, FloodBarriersCapacity,

HighTideDuration and SeawallLength).

Conversely from the other nodes mentioned, the func-

tion of the discrete nodes TimeScenario and EmissionSce-

nario is quite unique within the model proposed. They can

be considered as selectors for scenarios based on a par-

ticular time of reference and conjectures about the possible

future. This hypothesis, on which the projection inference

Fig. 5 Section of the network modelling the direct effects of natural events on the facility
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itself is based, is enclosed in the so called emission sce-

narios, according to the Special Report on Emissions

Scenarios (SRES) nomenclature (Nakicenovic and Swart

2000). Each of these scenarios characterize a different

possible future on the basis of greenhouse emissions trends

and expected evolution of human activities. All together

these scenarios represent a set of comprehensive global

narratives, or story-lines, that define local, regional and

global socio-economic driving forces of change such as

economy, population, technology, energy and agriculture,

key determinants of the future emissions pathway.

In the current application the node TimeScenario

embraces seven outcome states referring to as many time

slices, according to the projections available: 2010–2039,

2020–2049, 2030–2059, 2040–2069, 2050–2079,

2060–2089 and 2070–2099. The node EmissionScenario

has been restricted to the medium emission scenario (A1B

according to the UKCP09 nomenclature). The assumptions

behind the latter refers to an increasingly flourish economy,

and a significant population growth peaking in 2050 at 8.7

billion and then declining to 7.1 billion in 2100. From a

technological point of view, new technologies are expected

to successfully penetrate the market going along with a

more balanced use of fossil and non-fossil energy sources.

As previously mentioned, the effect of climate change

on the sea conditions is modelled through the connection

between the scenario nodes on the one hand, and the nodes

SurgeTrend and SeaLevelRise on the other. Hence, to each

combination of TimeScenario and EmissionScenario cor-

responds a specific sea level rise interval stored in the node

SeaLevelRise. The SeaLevelRise intervals are defined by

bounds equal to the 5th and 95th percentile of the projected

values. Similarly, the node SurgeTrend takes into account

the predicted trend of surge for the time period of refer-

ence. Also in this case the intervals adopted refer to the 5

and 95th percentile projections bounds. Both the sea level

rise and surge trend projections have been provided by the

UK Climate Projections (UKCP09) MetOffice (2014) up to

2100. The trends given above are combined linearly with

the mean of near-present day extreme surge and extreme

tide baselines (Figs. 6 and 7) to obtain imprecise random

variables for projections of future extreme sea level trends.

The current return values related to the extreme high tide

for the coast of Sizewell have been provided by the

Environment Agency whilst the distribution related to the

ExtremeSurge has been gathered from BODC data refer-

ring to the East Anglia coast (NOC 2015). Variations

related to seasons have not been considered.

Previous studies (Lowe et al. 2009) have shown that it is

reasonable to add mean sea level changes linearly to the

storminess-driven change component around the UK coast.

In light of this, where required (i.e., to compute the prob-

ability associated with the nodes OutfallFailure, Flood-

ingSurroundings, FloodingStationArea), the future extreme

sea level values have been computed as a linear combi-

nation of ExtremeHighTide and ExtremeSurge under the

assumption of independence.

Also the event ExtremePrecipitation is directly affected

by the time and emission scenario considered. The proba-

bilistic models representing this event have been imple-

mented on the basis of the results of previous studies

(Francis 2011), which provide return periods and the

related uncertainty according to the Season, TimeScenario

and EmissionScenario of reference. Fig. 8 shows the

empirical distribution adopted for the 100-year return

period ExtremePrecipitation expected for the time slice

2030–2059.Also extreme wave conditions are expected to be

affected by climate change hence be dependent on the time

period considered: unfortunately, the studies addressing this

topic and the related projections are strongly affected by

uncertainty and often incongruous due to contradictory data

and limitations of the models adopted (Seneviratne et al.

2012; Leake et al. 2007). For this reason, the nodes related

to wave conditions and the node TimeScenario have been

considered independent. Similarly, also the emission sce-

nario selected is assumed not to affect the wave character-

istics: studies conducted on a local scale on the coast of East

Anglia have highlighted how, in the southern part of the

region, where the station is located, the adoption of different

emission scenarios had only negligible impact on the esti-

mate of the projections for wave conditions (Chini et al.

2010). The same study found offshore extremes not to be

significantly affected by sea level rise, which results negli-

gible in comparison to offshore water depths. As a conse-

quence of this, the scenario nodes and sea state nodes

(WindWavePeriod, WindWaveHeight, SwellPeriod, Swell-

Height, IncidentWaveHeight, IncidentWavePeriod) are not

connected in the network and thus assumed independent.

All the nodes of these section are linked to each other on

the basis of their causal relationships in order to draw a

path of the possible mechanisms of flooding which can

affect the facility. In the current model, these can be

classified in three categories:

1. Surface water flooding

2. River and tidal flooding

3. Sea wave overtopping

The first of this mechanism of flooding refers to the

occurrence of the event DischargeFailure, hence to the

impossibility of discharging water from the station leading

to its accumulation within the facility area. The failure of

the overall discharge system is assumed to occur in the case

of failure of both the station drainage system and outfall.
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The event DrainageSystemFailure is verified when the

amount of ExtremePrecipitation overcomes the capacity of

the drainage system (DrainageSystemCapacity). Similarly,

the station outfall is assumed to fail when the still water

level, i.e. combination of ExtremeHighTide and Ex-

tremeSurge, results higher than the OutfallCapacity.

As a consequence of this simultaneous failure, the

rainfall water is considered to accumulate within the station

perimeter regardless the topological profile of the site. Both

OutfallCapacity and DrainageSystemCapacity are param-

eters assumed to be known with a certain degree of

imprecision and are hence represented by intervals centred

in the systems design basis values. These have been

assumed equal to 300 mm/d for the DrainageSystemCa-

pacity and 5 m for the OutfallCapacity on the basis of the

literature available (EDF Energy 2013). The bounds

adopted for the interval variables are shown in Table 1.

Since the storm surge consists of a meteorologically-

driven component of water level generated by synoptic

variations of atmospheric pressure and wind (Wolf 2009), a

certain relation between ExtremePrecipitation and Ex-

tremeSurge would be expected. In spite of this, studies

focusing on the Eastern British coast stated that it is mainly

precipitation in the northern part of the coast that shows

Fig. 6 Gumbel probability

distribution used as baseline for

ExtremeSurge

Fig. 7 Return period curve used

as baseline for

ExtremeHighTide

Fig. 8 Cumulative probability

distribution for the 100-year

return period of

ExtremePrecipitation for the

time slice 2030–2059
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dependence with daily maximum sea surge, while for the

Anglian coast only low or non-significant dependencies

have been found (probably due to the different tide-surge

interaction). In light of this, in the current study the relation

between ExtremePrecipitation and ExtremeSurge is con-

sidered low enough to be approximated with independence

(Svensson and Jones 2002).

In addition to the surface water flooding, heavy rainfall

and extreme sea level can also lead to other flooding mech-

anisms able to affect the area surrounding the station, such as

river and tidal flooding. The event FloodingSurroundings,

which embraces these two contributions, is assumed to occur

when the water depth reaches the access road level.

The river flooding is mainly due to the interaction

between ExtremePrecipitation and water bodies present in

the area. With regards to the case-study analysed, no

external models have been adopted: this contribution alone

is presumed not able to lead to the FloodingSurroundings

according to previous studies (EDF Energy 2013). Never-

theless, existent models and historical data can be easily

integrated in the network to represent this mechanism and

verify the hypothesis introduced.

Here, the node ExtremePrecipitation is assumed to have

the potential to affect the access road, triggering the event

FloodingSurroundings, only in association with tidal

flooding. This latter is considered to happen when the

combination of ExtremeTide and ExtremeSurge overcomes

the height of the SeaDefencesHeight. This parameter is

represented by a bounded node covering an interval

between 3.88 and 4.12 m. On the contrary, thanks to the

elevation of the site, tidal flooding does not have the

potential to affect the station. Furthermore, the risk of

significant tsunamis on European coasts is generally neg-

ligible (Kerridge 2005).

Dissimilarly, the sea wave overtopping (Fig. 9) of the

station’s sea wall could cause the penetration of sea water

in the perimeter of the facility (Kopytko and Perkins 2011)

and is hence considered the only coastal flooding mecha-

nism able to contribute to the FloodingStationArea event.

The quantification of the risk of flooding from the sea

implies modelling the mechanism of discharge of sea water

within the station perimeter due to the action of sea waves.

This has been realized integrating in the current framework

an EBN model previously developed (Tolo et al. 2015) for

the quantification of sea wave overtopping hazard. The

related sub-part of the network is based on the approach

suggested by Reis et al. (2006) and involves 16 nodes of

the natural hazard section (i.e., SwellHeight, SwellPeriod,

WindWavePeriod, WindWaveHeight, IncidentWavePeriod,

IncidentWaveHeight, SeaWallInclination, ParameterA,

ParameterB, ParameterC, CrestLevel, SlopeRoughness,

SeaWallLength, ScatterParameter, ExtremeHighTide and

ExtremeSurge). Waves are assumed to overcome the

defences only if the condition 0� ðCL� SWLÞ
rCHs

\1 is

verified, where CL measures the highest elevation of the

seawall, SWL the average sea water surface elevation

(taking into account both ExtremeHighTide and Ex-

tremeSurge), r the seawall SlopeRoughness, Hs the Inci-

dentWaveHeight (i.e., combination of the significant wave

height of wind waves and swell). Similarly, C represents

the ratio of the maximum vertical extent of wave up-rush

on the structure (Sorensen 2006) to the waves significant

height and is a function of the so called surf similarity

parameter np. This latter is computed as:

np ¼
tanðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pHs=gT2

p

q ð6Þ

where Tp represents the IncidentWavePeriod (i.e., combi-

nation of the peak periods of wind waves and swell).

Hence, given seawall features such as SlopeRoughness and

SeaWallInclination [a in Eq.(6)], the overtopping rate can

be expressed as:

Q ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðCHsÞ3

q
1� CL� SWL

r CHsð Þ

� �eBB
ð7Þ

where g refers to the gravitational acceleration, A and B

to empirical coefficients (ParameterA, ParameterB)

of the model dependent on the SeaWallInclination (Reis

Table 1 Discharge system capacity input

Node Unit Interval

DrainageSystemCapacity mm/day [281.0–309.0]

OutfallCapacity m [4.850–5.150]

Fig. 9 Representation of the overtopping process for sea waves: CL

is the Crest Level of the structure, a its inclination, SWL the average

water surface elevation at any instant, Q the rate of water overcoming

the seawall
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et al. 2008) and eB to a parameter which represents the

scatter about the line of perfect agreement between the

predicted and measured values of the mean discharge

(ScatterParameter). On the contrary, if the condition

0� ðCL� SWLÞ
rCHs

\1 is not verified the overtopping rate

results equal to zero.

This model allows for bi-modal sea representation

which means that the seawall of the facility is assumed

exposed to waves generated locally by winds as well as

long-period waves associated with distant storms (i.e.,

swell). Indeed, although swell waves tend to have lower

wave heights than wind-sea waves around England and

Wales, their much higher periods can lead to higher run-up

and overtopping of sea defence (Hawkes et al. 1997). Data

regarding swell and bi-modal wave climate around the

coast of England are provided by Hawkes et al. (1997):

those adopted for this study refer to the Suffolk area and

are represented in Fig. 10. On the basis of the information

available, a Weibull distribution was adopted for the sig-

nificant swell height (SwellHeight) with a mean of 0.121 m

and standard deviation 0.307 m. For the swell peak periods,

an empirical distribution was derived with mean 12.04 s

and standard deviation 2.46 s. Generally, for swell condi-

tions, higher waves tend to have shorter periods: a linear

correlation coefficient of -0.032 has been computed from

the data available. Probabilistic distributions for the wind

waves conditions (WindWavePeriod, WindWaveHeight)

have been implemented fitting historical data (CEFAS

2014) to generalized extreme value distributions (see

Table 2) adopting the maximum likelihood approach. A

linear correlation coefficient of 0.29 between the two

variables, represented by the continuous line in Fig. 11, has

been computed. Since swell waves are not well correlated

with local meteorological conditions they results only

weakly correlated with either extreme wind-seas or surge

water levels (Hawkes et al. 1997).

In light of this, the correlation between ExtremeSurge

and swell conditions has been neglected whilst a linear

correlation factor of -0.06 has been assumed between

WindWaveHeight and SwellWaveHeight (McMillan et al.

2011). Also, a correlation coefficient of 0.659 has been

assumed between WindWaveHeight and ExtremeSurge, on

the basis of the information provided by Hawkes and

Svensson (2003). Since from the data available it is not

possible to identify a clear trend for the seasonal variability

of waves and swell conditions this has been neglected. A

further assumption concerns the direction of the waves,

which have been considered to be normally incident to the

structure. Finally, no wave transformation models has been

adopted. This simplificative hypothesis is expected to result

in a strongly conservative approach. The nodes Inci-

dentSignificantHeight and IncidentPeakPeriod are com-

puted according to Eqs.(8) and (9).

Hs ¼ H2
sðwÞ þ H2

sðsÞ

� 	1
2 ð8Þ

Tp ¼
m0ðsÞT

4
pðwÞ þ m0ðwÞT

4
pðsÞ

m0ðwÞ þ m0ðsÞ

 !1
4

ð9Þ

where HsðwÞ, TpðwÞ represent the WindWaveHeight and

WindWavePeriod, HsðsÞ and TpðsÞ the SwellHeight and

SwellPeriod, and m0ðwÞ m0ðsÞ the zero-th moment of the

wind-sea and swell spectrum of surface elevation. Pa-

rameterA, ParameterB and ParameterC depend on the

inclination of the seawall and the waves characteristics.

Please refer to Reis et al. (2008) for further details on their

computation. All the parameters involved in the calculation

are assumed to be affected by imprecision and then rep-

resented as bounded nodes. Table 3 shows the interval

values adopted as input.

The simultaneous occurrence of the flooding dynamics

mentioned can cause the event FloodingStationArea: the

facility is assumed flooded when the accumulation of water

within its area reaches depths higher than those considered

as design basis for the on-site FloodBarrierCapacity. If

such a case is verified, the water is assumed to penetrate the

buildings of the nuclear island and to affect the subsystems

there located. As a consequence of this, chains of internal

failures can be triggered according to the mechanisms

modelled by the dedicated section of the network.

Fig. 10 Probability of occurrence of swell for different combinations

of swell height and swell period

Table 2 Generalized extreme value distributions parameters

Parameter WindWaveHeight WindWavePeriod

Shape parameter 0.268026 0.00512954

Scale parameter 0.280391 1.45702

Location parameter 0.539845 4.62444
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3.3 Internal failure section

As anticipated in the previous paragraphs, the section

modelling the internal chains of events which can lead to

simultaneous failures and eventually to the exposure of fuel

(Fig. 12) embraces only discrete nodes, coherently with the

nature of the events involved. On the other hand, it is worth

to clarify that this does not exclude the use of probability

intervals in the definition of an event of interest: each state

of a discrete node can be associated with probability

bounds instead of singular values in case of uncertain or

contradictory data. The input associated with this section of

the network have been deduced either from previous

studies or, more generally, from data available in literature.

Where probability bounds were available they have been

included in the analysis.

Only if both the cooling system and the emergency

supplies are out of order the exposure of the fuel assem-

blies (SpentFuelExposure) becomes possible. The cooling

system of the spent fuel pond is assumed not to function in

the case of lack of both OnSiteAC (i.e., electric power

produced on-site) and OffSiteAC (i.e., provided by the

national grid) (Baranowsky 1985). The first can be

unavailable due to either planned, such as refuelling

operations, or unplanned power station outages, such as

emergency reactor shut-downs. These would cause the

failure of the EmergencyPowerSupplies which, for the

power plant under study, consist of four emergency diesel

generators. These provide power to the safety buses to

guarantee the correct functioning of crucial systems in the

case of unavailability of other power sources (Kancev and

Duchac 2013). Coherently, in the current model the failure

of the EmergencyPowerSupplies is a precursor of station

blackout in association with the loss of OffSiteAC. In the

case of closure of the station, as for the last three time

scenarios, the failure of the EmergencyPowerSupplies is a

sufficient condition for the lack of OnSiteAC. The proba-

bility values associated with the nodes PlannedOutage and

UnplannedOutage have been deduced from the occurrence

of past events, on the basis of the information provided by

EDF Energy (2014). The probability bounds for the events

of failure of EmergencyPowerSupplies have been deduced

combining the rate of failure to start and to run within an

hour from the start of the four independent generators

available on-site (Eide et al. 2007). On the other hand, the

unavailability of OffSiteAC can be due to the failure of

either the OnSiteSubstation or the ExternalPowerGrid

(Liscouski and Elliot 2004). This latter event implies the

simultaneous failure of the three connection points to

which the Sizewell B on-site substation is linked in the 400

kV system (substations at Bramford, Norwich and Pelham).

In light of the large distance among the substations, these

are considered not to be affected by the eventual extreme

weather conditions at Sizewell and are considered inde-

pendent from each other. The failure rate of the electric

substations, regardless external event, has been gathered

from the existent literature (Nack 2005). In the case of a

general loss of external power grid the nuclear plant is

assumed to shut down safely (UnplannedOutage), accord-

ing to procedures (Maldonado 2004).

A further eventuality modelled by this section of the

network is the lack of actions to prevent the exposure of the

fuel in the case ofmalfunctioning of the cooling system. This

scenario is summarized by the node EmergencySupplies,
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Fig. 11 Correlation between significant wave height (Hm0) and peak period (Tp) measurements

Table 3 Interval input of sea wave overtopping model

Node Unit Interval

SeaWallLength m [348.0–352.0]

SeaWallInclination rad [0.0500–0.0526]

SlopeRoughness [0.80–1.00]

HighTideDuration s [9000–12600]

StationArea m2 [132492–134492]

FloorAreaRatio [0.7138–0.7397]
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which takes into consideration both technological failures

and human errors. Both these cases refer to the intervention

of operators to refill the pond with high purity water possibly

from an external storage tank through the use of third systems

(e.g., fire system) (Adorni et al. 2015). Due to the lack of

related information, possible losses associated with the

storage and the water inventory are not modelled, whilst the

only technological failure considered refer to the Emergen-

cyHydrantSystem, which are supposed to be used to pump

the water flow into the pond. The malfunctioning of these

systems would impede to make-up for the water evaporated

from the pond due to overheating. Also the event Hu-

manError is assumed to lead to similar consequences and

refers to the lack of action by operators.

Even in the case of occurrence of either HumanError or

the malfunction of EmergencyHydrantSystem, the exposure

of the spent fuel can still be avoided. Indeed, the depth of

water in the pond is designed to ensure thermal inertia,

providing adequate coverage for the assemblies up to 24 h

in order to give time to act from the outside, for example

through the use of fire tenders. Only if also this action is

ineffective (DelayInReaction), due for instance to the

inaccessibility of the station (i.e., access road flooded), the

EmergencySupplies are supposed to fail.

The connection of this part of the model to the former

one is guaranteed by the nodes FloodingSurroundings,

FloodingStationArea and TimeScenario, which have the

capability to directly affect the state of the subsystems of

the facility. The flooding in the surrounding area can

impede the access to the station by fire tenders, due to its

capability to affect the access road. Similarly, the event

FloodingStationArea has the potential to cause the mal-

function of diesel generators and hydrant systems as pre-

viously described. The node TimeScenario allows to select

the state of the station, operational or closed, in order to

consider the availability of power generation on-site.

Finally, as mentioned, the event HumanError represents

the lack of actions by the operators and ismodelled according

to the study of Groth and Mosleh (2011) through a further

section of the model shown in Fig. 13. Table 4 shows the

probability bounds adopted for the subsystems failure state,

given the absence of flooding in the station.

3.4 Results

The results obtained from the inference computation on the

reduced model (Fig. 14) appear to be affected by uncer-

tainty which generally grows along with time, coherently

with the uncertainty affecting the climate projections in

input. On the contrary, the probability bounds computed

for the single events do not show a general monotonic

Fig. 12 Section of the network modelling internal failures
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Fig. 13 Section of the network modelling human failures according to Groth and Mosleh

Table 4 Failure probability

bounds adopted for

technological subsystems

Node State Probability bounds

OnSiteSubstation Failure (no flood) [5:67� 10�03 5:72� 10�03]

ExternalPowerGrid Failure (no flood) [1:82� 10�07 1:87� 10�07]

EmergencyHydrantSystem Failure (no flood) [4:80� 10�03 3:00� 10�01]

EmergencyPowerSupplies Failure (no flood, 4 generators) [8:17� 10�09 8:11� 10�08]

TimeScenario

EmissionScenario

CrestLevel

PrecipitationReturnPeriod

Season

OutfallFailure
DrainageSystemFailure

FloodingSurroundingsDischargeFailure

FloodingStationArea

SpentFuelExposure

CoolingSystemOnSiteAC

PlannedOutage

Closure EmergencySupplies

UnplannedOutage

OffSiteAC

ExternalPowerGrid

DelayInReaction

NumberEmergencyDiesels

EmergencyPowerSupplies

OnSiteSubstation

EmergencyHydrantSystem

OrganizationalCulture

Team

Training

Resources

Knowledge

Machine

Attitude

Complexity

Loads&perceptions

ErrorContext1

ErrorContext2

ErrorContext3

ErrorContext4

HumanError

Fig. 14 BN resulting from the reduction procedure
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growth. This is due again to the trend of the projections

adopted: while the sea level is expected to increase regu-

larly in time, the projections related to the extreme pre-

cipitation and surge trend do not show a similar behaviour.

In light of this, and considering the major contribution of

the tide over the surge on the still water level, the regular

growth of the probability bounds of the event Flood-

ingSurroundings shown in Fig. 16, should be attributed to

the trend of sea level projections. As shown in the graph,

the probability of this events grows from an interval of

[6.25 9 10-03, 2.05 9 10-02] in the first time scenario to

one of [8.77 9 10-03, 1.10 9 10-01], suggesting the

importance of both current and future risks. On the other

hand, events linked to the extreme precipitation occurrence

(such as FloodingStationArea shown in Fig. 18), are

characterized by a far less regular trend of probability in

time. As shown in Fig. 15, the probability of

SpentFuelExposure shows this kind of trend, which reveals

the strong connection between the possibility of exposure

of the spent fuel and the occurrence of FloodingSta-

tionArea. The probability associated to the overall expo-

sure event is expected to fall in an interval [3.28 9 10-09,

1.16 9 10-08] for the time slice 2010–2039 and [9.08 9

10-09, 2.97 9 10-07] for the period 2070–2099: the upper

bound of the probability increases of one order of magni-

tude along with the time domain considered.

As for the previous case, also the probability bounds

computed for the events of failure of the CoolingSystem

(Fig. 17) and FloodingStationArea (Fig. 18) fall entirely in

a quite negligible region, with a minimum lower bound

within an order of magnitude of 10-09 and a maximum

upper bound within an order of magnitude of 10-06 (time

Fig. 15 Probability of the event

SpentFuelExposure

Fig. 16 Probability of the event FloodingSurroundings
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scenario 2070–2099). The closeness between the proba-

bilities of the two events and their trend suggest the

flooding of the station to be the main possible cause of

failure of the cooling system.

Looking at the problem from the opposite perspective, it

is possible to estimate also the conditional probability of an

event of interest. Several What if scenarios have been

evaluated, with the aim of better understanding the distri-

bution of the risk within the model.

In the case of CoolingSystem failure, the probability of

exposure of the spent fuel (Fig. 19) grows significantly, up to

non-negligible values: the smaller values of probability are

registered for the time slice 2010–2039 and are equal to

[6.20 9 10-03, 2.10 9 10-02] and increase up to [8.73 9

10-03, 1.12 910-01] for the period 2070–2099. Similar

results are computed in the case of occurrence of the event

FloodingStationArea as shown in Fig. 20. Moreover, the

trend shown by the probability along with time highlights

the importance of the event FloodingSurroundings: in the

case of flooding of the station or failure of the cooling

system, actions to prevent the SpentFuelExposure are

required from outside and can be impeded in the case of

flooding of the surrounding area and inaccessibility of the

station. On the other hand, due to the low values of the

probability of FloodingStationArea, the effect of the

simultaneous occurrence of HumanError and FloodingSur-

roundings on the probability of SpentFuelExposure results

slighter (Fig. 21): the maximum values for the probability

bounds are registered for the time slice 2070–2099 and

define the interval [1.03 9 10-06, 2.72 9 10-06].

Fig. 17 Probability of the event

of failure of the CoolingSystem

Fig. 18 Probability of the event

FloodingStationArea

Stoch Environ Res Risk Assess (2017) 31:2733–2756 2751

123



4 Interpretation of the results and limitations

Almost all the probability intervals computed fall in a region

of negligibility of the risk (order of magnitude lower than

10-06) supporting the robustness of the system. Further

investments in the accuracy of the information available

would lead to a decrease of the uncertainty of the outputs,

hence to more precise results. Moreover, a large contribution

to the inaccuracy of the results could come from the intro-

duction of simplificative hypothesis in the model. For

instance, the introduction of off-shore in-shore transforma-

tion models could sensibly decrease the upper bound of the

FloodingStationArea probability. A crucial aspect for the

feasibility of this kind of analysis is the availability of

suitable data for the definition of input parameters. While

information regarding the performance of technological

components (hence related to the bottom section of the

model) are generally provided in the scientific literature,

studies regarding natural hazards, and in particular mod-

elling their future trend in view of the climate change, are

still few and often in disagreement. However, it must be

noticed that this complication is not uniquely associated

with the method proposed in this study, but generally

common to any kind of approach aiming to model the

interaction between natural events and technological instal-

lations. On the contrary, in comparison with more traditional

Fig. 19 Probability of the

SpentFuelExposure in the case

of CoolingSystem failure

Fig. 20 Probability of the

SpentFuelExposure in the case

of FloodingStationArea
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approaches, the method proposed allows the inclusion of the

uncertainty of the data available and even of eventual con-

trasting information, characterizing the output in light of the

degree of accuracy determined by the input.

The main drawback of the approach and model devel-

oped is the high computational effort which can prevent

real-time analysis of the initial network (although it does

not affect the computation of inference on the reduced

network). Nevertheless, it is worth to highlight that the

computation of the inference, thanks to the simplification

of the initial model, can be carried out in near-real time and

hence can provide support also in the case of emergency as

long as the reduction of the initial network has been pre-

viously accomplished. Algorithms able to identify the most

crucial events in terms of uncertainty propagation are

essential in order to tackle effectively the problem.

In light of this, the main target for further research

appears to be the implementation of theoretical and com-

putational tools able to map the contributions of the dif-

ferent variables to the overall uncertainty in output, in

order to obtain more accurate results at the lowest cost.

Also, future efforts will focus on the optimization of the

reduction procedure and the identification of the optimal

topology for the reduced network, in order to further

decrease the computational cost of the analysis.

5 Conclusions

A model for the quantification of the risk of exposure of

spent fuel stored in facilities subject to the risk of flooding

has been proposed and applied to the real-world case study

of Sizewell B nuclear power plant in East Anglia, UK. The

approach adopted for the study is based on a novel

methodology which allows to overcome the limitations of

traditional Bayesian Networks, not renouncing to their

potential. The framework implemented captures the

unavoidable epistemic uncertainty and aleatory nature of

the input through the adoption of discrete variables, prob-

abilistic models, intervals and imprecise random variables.

Moreover, it allows to perform the uncertainty propagation

within the network, quantifying the uncertainty affecting

the output, expressed by probability bounds. These capa-

bilities make the methodology proposed and its computa-

tional implementation a complete and effective tool for

risk-informed decision making support.

The analysis of the case-study selected has been

extended to several time scenarios, mapping the future

risks to which the facility is subject in light of the wors-

ening of natural hazards due to climate change. The results

highlight a general but not regular growth of the risk along

with time. The probability of accidents remains quite low

over the time domain considered, whilst the uncertainty in

output appears to grow coherently with that affecting the

projections adopted as input. What-if scenarios have been

considered in order to identify the crucial links of the chain

of events leading to the overall failure.
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