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Abstract Changing climate and precipitation patterns

make the estimation of precipitation, which exhibits two-

dimensional and sometimes chaotic behavior, more chal-

lenging. In recent decades, numerous data-driven methods

have been developed and applied to estimate precipitation;

however, these methods suffer from the use of one-di-

mensional approaches, lack generality, require the use of

neighboring stations and have low sensitivity. This paper

aims to implement the first generally applicable, highly

sensitive two-dimensional data-driven model of precipita-

tion. This model, named frequency based imputation (FBI),

relies on non-continuous monthly precipitation time series

data. It requires no determination of input parameters and

no data preprocessing, and it provides multiple estimations

(from the most to the least probable) of each missing data

unit utilizing the series itself. A total of 34,330 monthly

total precipitation observations from 70 stations in 21

basins within Turkey were used to assess the success of the

method by removing and estimating observation series in

annual increments. Comparisons with the expectation

maximization and multiple linear regression models illus-

trate that the FBI method is superior in its estimation of

monthly precipitation. This paper also provides a link to

the software code for the FBI method.

Keywords Frequency based imputation � Data-driven
modelling � Precipitation � Estimation of missing data

1 Introduction

The importance of accurate and reliable modeling, esti-

mation and forecasting of precipitation is becoming

increasingly apparent as the rapid worldwide increase in

population and water demand puts pressure on limited

water resources and dwindling water supplies (Leconte

et al. 2013; Popp et al. 2016). Accurate and reliable

observations of precipitation are essential to the perfor-

mance of valid hydrologic studies; yet, many precipitation

records are incomplete. Complete records improve the

ability of these studies to determine spatial, temporal and

quantitative variations in precipitation data, which is cru-

cial to the design of water supply systems. Changes in the

water cycle and precipitation patterns, coupled with a

warming climate (Hou et al. 2014; Reager and Famiglietti

2009), increase the need for stronger precipitation models

(Zhang et al. 2010).

Developments in software technologies in recent dec-

ades have allowed traditional hydraulic and data-driven

models to support/complement hydrologic models (Solo-

matine et al. 2008). Data-driven models analyze time series

data, but they should not be regarded as computational

methods that ignore physical processes. Determining the

spatial and temporal interrelationships between precipita-

tion time series data is mathematically equivalent to

determining the relationships between the drivers of pre-

cipitation. In other words, precipitation is a function of its

contributing variables. Thus, the analysis of precipitation

time series data comprises the consideration of all variables

that contribute to precipitation (though the relationships

and variations of the variables are not evaluated); and the

success of making accurate estimations of missing data is

directly related to the level of understanding of the tem-

poral and quantitative relationships between observed data.
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Though precipitation is generally seasonal, the high

variability in numerous influencing factors sometimes

indicates the existence of a chaotic (Jayawardena and Lai

1994; Sivakumar 2000; Sivakumar et al. 1999) and rela-

tively random behavior. This nonstationary and sometimes

erratic behavior results in distinct variations in precipita-

tion across space and time and makes the observation,

quantification, estimation and forecasting of precipitation

challenging (Wang and Lin 2015). Consequently, although

there are a vast number of data-driven modeling studies

that estimate hydrologic processes such as streamflow

(which generally occur continuously), a very limited

number of studies address the data-driven estimation of

missing precipitation records. Some prominent studies that

have utilized data-driven methods to estimate precipitation

have applied artificial neural networks (ANNs), fuzzy rule

based systems (FRBSs), genetic algorithms (GAs), support

vector machines (SVMs), particle swarm optimization

(PSO) and expectation maximization (EM) in the compu-

tation of results.

Lack of generality and overfitting are two of the most

important problems associated with existing data-driven

methods, as discussed in detail by Remesan and Mathew

(2015). Both issues result in model failure when the

training and testing period ranges change. Unfortunately,

most data-driven hydrologic modeling studies do not even

mention (or test) these issues. Another problem associated

with existing methods is that time series data is generally

regarded as a one-dimensional vector. This results in a

failure to acknowledge the variation of behavior seen

through time series data. For example, hydrological time

series generally indicate an annual cycle of seasonality,

with values observed in the winter months varying greatly

from those observed during the summer months. Instead of

using a one-dimensional time series to represent this data, a

two-dimensional matrix containing a full cycle in each row

would better express this temporal hydrological variability

in a more comprehensible way and would enable the

investigation of the two-dimensional behavior of time

series data (Dikbas 2016b). Detailed information about the

concepts, approaches, experiences and problems associated

with the data-driven modeling of hydrologic variables exist

in literature (Elshorbagy et al. 2010a, b; Maier and Dandy

2000; Maier et al. 2010; Remesan and Mathew 2015;

Sikorska et al. 2015; Solomatine et al. 2008; Solomatine

2006; Yozgatligil et al. 2013).

This paper discusses the implementation of the Fre-

quency Based Imputation (FBI) method to analyze obser-

vation data from 70 precipitation stations in Turkey. The

method was first used to analyze all streamflow observa-

tions from 34 stations on the Buyuk Menderes River

(Turkey) (Dikbas 2016a). This approach is based on the

assumption that an individual observation in a time series is

more closely and quantitatively linked to data observed

within a short period of time and with data from the same

subsection of other periods if the time series is periodic

(i.e., same season in different years). The method searches

neighboring data cluster pairs of missing data within an

observed series, and then estimates the probable range and

value of the missing data by utilizing temporal relation-

ships. It is direct and uses all existing raw data to obtain

estimates of missing values; and it requires no training/

testing periods or input parameters to execute the applied

procedure.

2 Materials and methods

2.1 Description of the frequency based imputation

method

When precipitation observations are placed on a matrix

with months in columns and years in rows, we expect

annual fluctuations in the horizontal direction and values

similar to each other in the vertical direction. In this setup,

the smallest scale representing the temporal and quantita-

tive behavior of precipitation is an adjacent pair of data on

the two-dimensional matrix. This micro-statistical reason-

ing allows the FBI method to extract valuable information

based on relationships within the dataset and provides

information on the possible range of missing observations.

Figure 1 illustrates the logic behind the FBI method.

The blue cell at the center of Fig. 1e (January 1985) is the

missing value to be estimated. The method considers that

the neighbors within the 7 9 7 matrix surrounding the

missing value contain the strongest clues about the

expected range of the missing cell. A wider field would add

cells with a poorer relationship to the data point in question

(like trying to determine the influence of values in

September or May on a value in January which are less

likely to be as influential as the considered temporally

closer values from October to April); and a narrower field

would remove cells with potential relationship (like

ignoring the influences of October and April on the January

value). Similarly, expanding the field vertically would

result in the consideration of observations four or more

years preceding or following the missing value, even

though these values are less likely to relate to the value in

question when compared to the values in closer years. The

numbers in each cell in Fig. 1 are cluster values calculated

by using Eq. 1 or 2 after the observed series was sorted and

divided into range clusters (Appendix 1).

After the cluster index values for each cell are deter-

mined, the process of generating a cluster frequency

table for each missing value begins. To this end, all adja-

cent cluster pairs within the neighborhood of a missing cell
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are searched using a data matrix. Figure 1e shows eight of

the many cluster pairs in the neighborhood of the missing

value for January 1985. The remaining subfigures show the

locations of the matching cluster pairs. The aim of the

search for matching cluster pairs is to deduce the highest

probable cluster value for the missing cell. This task is

accomplished by looking at the cluster values of the blue-

bounded cells at the relative location of the missing Jan-

uary 1985 cell. These clusters show the probable values for

the missing cell in January 1985 by answering the ques-

tions constructed using the searched and matched cluster

pairs. One of the eight questions illustrated in Fig. 1 is:

‘‘What might the cluster value of the missing cell in

January 1985 be when the cluster value in January 1983 is

8 and the cluster value in January 1984 is 10?’’

The goal here is to find the third cluster value of three

vertically aligned cells when the first value is 8 and the

second value is 10. One of the answers to this question is

shown in Fig. 1b and is written as follows:

‘‘The cluster value for February 1974 is 9 when the cluster

value for February 1972 is 8 and the cluster value for February

1973 is 10’’. In other words, the cluster value for January 1985

might be 9 based on previously observed series values.

For all eight cluster pairs in Fig. 1e, the probable cluster

values at the relative January 1985 location in the

remaining figures are found to be: 12 (2 times), 11 (2

times), 10, 9, 5 and 3. When the search for all pairs in the

neighborhood of the missing value is completed, the cluster

with the highest frequency is considered to have the highest

probability of being the missing value. The estimated

precipitation value is calculated by taking the average of

the observations that generated the greatest cluster fre-

quency. Details of how the cluster frequencies were

determined and generated are provided in Appendix 2.

2.2 Study area and data

To test the applicability of the developed method and

provided software on various climate zones, a total of

34,330 monthly total precipitation observations from 70

stations across 21 different basins in Turkey were esti-

mated (Fig. 2). Turkey has a moderately dry climate.

Average precipitation tends to be high in the coastal

regions of Turkey and decreases towards the inland

regions. The area around Rize on the coast of the Black Sea

receives an average annual precipitation of 2200 mm,

while Salt Lake region receives 250–300 mm. The Aegean

and Mediterranean coasts are wet in the winter but dry

during the summer. The Black Sea coastline is the only

region in Turkey that receives precipitation throughout the

year. Figure 2 illustrates the average annual precipitation

in Turkey between 1981 and 2010. The selected stations

represent the majority of the climate and elevation zones,

and cover nearly all hydrological basins in Turkey.

The General Directorate of State Hydraulic Works of

Turkey observes precipitation throughout the country using

pluviographs capable ofmeasuring liquid (rainfall) and solid

(snow, hail, freezing rain, grain, etc.) precipitation. There-

fore, the observations used in this study include liquid pre-

cipitation and water equivalents of solid precipitation.

Table 1 outlines the descriptive statistics for all stations,

including percentiles and best-fitting distributions. The

Fig. 1 The missing observation to be estimated (the blue cell) and

eight example cluster pairs to be searched in the data matrix (each

pair is shown in a different color) (e), matching cluster pairs found in

different sections of the data matrix (take careful note of the relative

location of the missing value) (a–d, f–i) and the probable values of

the missing data (cells with blue borders at the center of a–d, f–i)

Stoch Environ Res Risk Assess (2017) 31:2415–2434 2417

123



highest and lowest values (excluding 0.0) are shown in

bold in all tables throughout the article. The majority of

precipitation series from all stations (48/70) were found to

fit the Wakeby distribution. The skewness and excess

kurtosis measures indicate that the probability distributions

for all stations are positively skewed and leptokurtic (ex-

cept 21-007). A majority of the stations (67/70) have a

minimum monthly precipitation of 0. A total of 59% (41/

70) of stations registered zero monthly precipitation for at

least 5% of the year, while 36% (25/70) of stations mea-

sured zero monthly precipitation more than 10% of the year

and 4% (3/70) of stations measured zero monthly precipi-

tation data during more than 25% of the year.

A comprehensive explanation of the applied steps for

the estimation of the monthly total precipitation is pre-

sented below for the observations of station 07-016 in

Çivril-Denizli (Turkey). The first seven values from 1962

are missing, and the total number of existing observations

at station 07-016 is 521. When 12 observations (a year of

data) are removed from the set to test the model’s ability to

make estimations, this number decreases to 509, resulting

in a missing data rate of 3.6% (Fig. 3).

The details of the estimation process are presented using

the observed values from 1985. The entire estimation

process was repeated for each missing data point. First, the

software removed and estimated data for each year

between 1962 and 1984. Then, the 1985 values were

removed from the set and estimated. The January value

was estimated first. Figure 4 shows the observed values for

those months and years surrounding January 1985. The

October–December columns represent values from the

previous calendar year (current water year).

To assess the quantitative relationships between the

observations, the observed series are sorted and divided

into 2–12 clusters, as explained in Appendix 1. The

greatest number of clusters (12) was chosen based on the

length and variability of the time series. The results show

that this number was sufficient to generate successful

results. Figure 5 shows the cluster values for the field

surrounding January 1985 at each clustering step. Lower

values are shown in shades of red and higher values are

shown in shades of green. When the observed data series is

divided into two clusters, the first cluster contains the lower

precipitation values (0–25.8 mm) from the sorted obser-

vations, and the second cluster contains the higher values

(26.0–204.8 mm). Each data point is assigned a cluster

index: 1 for the data in the first cluster and 2 for the data in

the second cluster, as shown in the first table of Fig. 5.

In the remaining cluster divisions (3–12), the January

1985 (84.9 mm) value is always located within the highest

range of observations and thus the last cluster (bounded in

blue in Fig. 5). The temporal and quantitative relationships

between the horizontally, vertically and diagonally adjacent

cluster pairs in the neighborhood of the missing data are

determined as explained in Sect. 2. Then, the relationships

are used to estimate the probable cluster value of the delib-

erately removed data in the center of the neighborhood.

When the sorted observations of the station are divided

into 12 clusters, 496 cluster pairs matching with the adja-

cent cluster pairs in the neighborhood of January 1985

Fig. 2 Map of 1981–2010 average annual precipitation in Turkey, including the locations of the 70 stations used in this study
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Table 1 Descriptive statistics, percentiles and best-fitting distributions for all stations

Station 01-004 01-005 01-008 02-004 02-009 02-011 02-012 02-018 03-009 03-013 03-027 04-003

Elevation (m) 90 395 395 35 40 10 180 30 20 770 240 320

Statistic

Sample Size 490 485 472 446 482 463 442 452 469 528 500 485

Missing 2 7 8 10 10 5 14 40 11 0 16 7

Mean 42.3 54.0 46.4 69.3 77.8 47.2 82.5 61.0 46.3 55.6 52.2 69.5

Variance 1139 1627 1331 3015 4301 1541 5073 2537 1755 2680 1420 4076

Std. Error 1.52 1.83 1.68 2.60 2.99 1.82 3.39 2.37 1.93 2.25 1.69 2.90

Skewness 1.11 1.04 1.45 1.18 1.55 1.27 1.66 1.19 1.50 1.44 0.78 1.35

Excess Kurtosis 1.06 1.01 3.56 2.07 2.76 2.21 4.02 1.42 4.14 2.91 0.28 2.06

Percentiles

Min 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5% 1.2 3.0 4.6 4.2 7.0 1.7 4.6 2.0 0.0 0.3 1.2 0.4

10% 4.6 8.0 7.8 7.8 13.4 4.4 10.2 8.0 2.3 2.3 7.7 3.8

25% (Q1) 17.0 24.2 18.5 26.8 30.1 17.1 31.8 22.9 13.2 15.2 22.6 17.6

50% (Median) 33.8 46.1 38.7 56.5 61.8 38.0 64.5 47.9 36.2 42.9 46.0 53.8

75% (Q3) 60.0 77.9 65.0 101.1 103.3 70.5 114.5 88.9 66.8 83.0 74.7 101.8

90% 89.6 107.6 93.3 142.0 165.6 98.0 171.1 130.8 107.8 129.6 105.0 150.4

95% 111.1 134.3 117.6 174.5 211.2 117.8 225.2 165.0 123.6 154.3 122.4 196.1

Max 170.1 205.0 264.3 365.5 351.0 242.5 476.5 272.0 315.9 320.5 184.1 342.3

Best-Fit Distribution* WAK WAK WAK WAK WAK WAK WAK WAK WAK BETA WAK BETA

Station 04-008 05-001 05-004 05-007 05-008 05-012 05-016 06-005 07-013 07-016 07-022

Elevation (m) 500 930 1020 100 340 715 670 380 885 825 1095

Statistic

Sample Size 431 511 461 530 524 521 528 516 516 521 523

Missing 1 17 19 10 4 7 0 12 12 7 5

Mean 78.4 39.3 38.6 45.8 46.0 37.3 49.3 70.3 94.9 36.5 53.0

Variance 8145 1297 1337 2946 2878 1105 2398 6615 11,595 959 2455

Std. Error 4.35 1.59 1.70 2.36 2.34 1.46 2.13 3.58 4.74 1.36 2.17

Skewness 1.92 1.25 1.30 1.72 1.82 1.15 1.25 1.69 1.62 1.13 1.44

Excess Kurtosis 5.13 1.76 1.96 3.44 4.25 1.11 1.33 2.68 2.82 1.85 2.62

Percentiles

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10% 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.2

25% (Q1) 8.8 10.2 10.9 2.9 5.3 10.2 9.0 10.5 11.4 11.8 15.5

50% (Median) 47.5 32.0 29.9 27.3 29.0 30.2 37.0 41.3 57.9 29.5 39.3

75% (Q3) 117.5 55.8 59.9 70.5 65.6 53.4 76.0 99.2 137.2 54.4 78.5

90% 196.7 90.6 91.5 122.7 121.8 84.6 119.7 184.3 258.1 78.8 117.7

95% 254.7 110.3 110.7 158.3 155.4 105.9 142.2 256.6 326.7 93.3 147.0

Max 630.4 208.2 214.5 333.1 362.9 159.9 254.6 405.2 602.3 204.8 291.5

Best-Fit Distribution* GEV WAK G.PAR GEV GEV WAK G.PAR WAK GEV WAK G.PAR

Station 08-006 08-008 08-010 08-013 08-014 09-014 10-007 11-002 12-003 12-011 12-012 12-014

Elevation (m) 730 240 1300 230 1410 310 850 1085 744 250 1100 40

Statistic

Sample size 507 528 471 504 534 518 510 484 508 501 498 494

Missing 9 0 9 12 6 10 6 8 8 3 6 10

Mean 130.6 74.0 58.6 84.9 37.3 113.7 32.1 46.9 28.9 31.7 36.3 78.1
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Table 1 continued

Station 08-006 08-008 08-010 08-013 08-014 09-014 10-007 11-002 12-003 12-011 12-012 12-014

Elevation (m) 730 240 1300 230 1410 310 850 1085 744 250 1100 40

Variance 25,647 7419 4021 12,568 1078 17,627 808 1630 520 595 729 2803

Std. error 7.11 3.75 2.92 4.99 1.42 5.83 1.26 1.84 1.01 1.09 1.21 2.38

Skewness 1.75 1.81 2.22 2.03 1.32 1.85 1.42 1.51 1.02 1.19 0.86 1.14

Excess kurtosis 3.34 3.62 7.79 5.22 1.97 4.21 3.19 3.30 1.09 2.51 0.58 2.73

Percentiles

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5% 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.4 0.5 0.5 9.9

10% 0.0 0.0 1.3 0.0 2.5 0.5 1.5 4.2 2.0 3.7 4.2 16.9

25% (Q1) 9.3 9.6 12.0 2.1 12.3 15.0 9.7 17.3 11.4 12.1 15.7 37.9

50% (Median) 69.8 47.2 39.4 39.3 29.0 66.5 25.8 37.5 25.2 27.4 31.8 71.5

75% (Q3) 195.9 104.8 83.8 130.5 53.5 167.3 47.3 67.1 40.7 46.7 51.3 107.6

90% 373.6 187.7 132.6 233.9 83.7 293.8 71.0 97.8 60.7 62.9 73.6 148.2

95% 472.6 256.7 175.4 309.3 102.2 395.8 85.7 120.1 70.4 75.5 87.8 178.9

Max 893.5 468.9 476.6 725.2 187.5 879.5 194.7 247.8 124.5 150.9 137.6 399.9

Best-fit distribution* GEV J.SB WAK GEV G.PAR BETA WAK WAK WAK WAK WAK WAK

Station 12-042 12-047 12-049 14-005 14-007 14-017 14-018 14-019 15-008 15-010 15-019

Elevation (m) 981 950 900 1600 830 870 10 635 1330 800 460

Statistic

Sample size 462 465 509 451 531 566 519 517 387 500 479

Missing 18 15 7 17 9 10 9 11 33 4 13

Mean 31.5 94.1 29.1 41.0 44.1 54.2 75.0 35.5 43.1 28.2 41.5

Variance 835 5559 652 983 1253 1362 2607 798 1258 527 831

Std. error 1.34 3.46 1.13 1.48 1.54 1.55 2.24 1.24 1.80 1.03 1.32

Skewness 1.39 1.48 1.43 1.29 1.95 1.09 1.28 0.96 1.78 1.05 0.85

Excess kurtosis 2.71 3.38 3.39 2.88 10.58 1.70 2.13 0.63 4.31 0.96 0.27

Percentiles

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5% 0.0 7.5 0.0 1.9 1.2 6.1 12.0 0.0 4.3 0.5 4.0

10% 1.3 15.3 1.5 6.3 4.6 12.7 20.0 2.4 8.5 3.5 9.2

25% (Q1) 8.9 41.2 8.8 17.8 17.9 27.0 36.7 12.8 19.4 9.9 19.5

50% (Median) 24.6 76.1 22.3 35.1 39.1 48.4 65.5 31.7 33.9 23.1 36.5

75% (Q3) 48.1 130.4 43.4 57.3 61.6 73.9 98.5 51.6 56.8 41.6 58.9

90% 68.8 197.3 62.4 79.7 89.1 102.1 145.9 75.1 84.5 60.5 83.8

95% 87.2 227.2 79.8 100.1 109.7 125.2 167.5 95.5 117.0 75.1 97.1

Max 184.3 474.9 177.8 224.1 351.0 238.1 305.6 139.7 223.1 123.0 140.1

Best-fit distribution* WAK WAK WAK WAK WAK WAK WAK WAK WAK WAK WAK

Station 15-020 16-013 16-016 16-019 16-030 18-003 18-013 18-016 20-009 21-003 21-004 21-006

Elevation (m) 25 1155 1450 1150 1350 1740 1225 1670 895 1475 1180 2040

Statistic

Sample size 515 492 483 462 536 553 472 437 514 401 497 500

Missing 1 0 11 18 16 11 8 7 2 33 19 16

Mean 64.1 26.5 24.7 38.5 32.0 25.1 52.9 35.6 79.4 18.7 26.1 30.6

Variance 2251 756 627 968 791 535 3571 950 6870 499 697 933

Std. error 2.09 1.24 1.14 1.45 1.22 0.98 2.75 1.47 3.66 1.12 1.18 1.37

Skewness 1.46 2.15 1.44 1.10 1.35 1.57 2.50 1.52 1.30 1.64 1.41 1.80

Excess kurtosis 4.14 8.37 2.16 1.36 3.61 3.40 10.17 3.29 1.53 2.84 1.98 3.92

2420 Stoch Environ Res Risk Assess (2017) 31:2415–2434

123



were found in the data matrix. Eight examples of the

searched pairs in the neighborhood of the missing data, and

matched pairs from various regions of the data matrix are

shown in Fig. 1. The process described above for 12

clusters is repeated for 2–11 clusters, and a cluster fre-

quency table is obtained for each month of 1985 (Fig. 6).

From left to right, each column in each table shows the

frequencies obtained after dividing the observed value

range for station 07-016 into 2–12 clusters. Each column

heading indicates the number of clusters into which the

observed data range is divided. Each row heading indicates

the cluster indices. The Min and Max columns on the right

show the cluster ranges when the number of clusters is 12.

For example, Cluster 1 includes 0 values, Cluster 2

includes values from 0.1 to 4.5 mm, Cluster 11 includes

values from 65.1 to 80.3 and Cluster 12 includes the

highest values (80.8–204.8 mm).

The frequency table for each month provides informa-

tion on the possible value of the missing data point in that

month. For example, the first column of the frequency

table for January 1985 shows the frequency values obtained

for the first (the lower values) and the second (the higher

values) clusters when the data series is divided into two

clusters. The frequency value of the second cluster

(10,075) is higher than the frequency value of the first

cluster (6623). This shows that it is more probable that the

Table 1 continued

Station 15-020 16-013 16-016 16-019 16-030 18-003 18-013 18-016 20-009 21-003 21-004 21-006

Elevation (m) 25 1155 1450 1150 1350 1740 1225 1670 895 1475 1180 2040

Percentiles

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

5% 8.1 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10% 13.4 0.0 0.0 3.5 0.0 1.8 0.4 3.0 0.0 0.0 0.0 1.0

25% (Q1) 29.7 6.2 4.0 15.0 9.2 7.5 10.6 13.1 10.4 1.4 5.1 9.7

50% (Median) 52.7 19.7 18.5 32.5 26.5 19.7 38.8 29.4 52.8 10.5 19.3 21.5

75% (Q3) 88.6 39.7 36.7 57.6 49.2 35.1 73.3 48.6 124.4 26.7 38.4 41.6

90% 127.6 62.4 57.3 81.3 67.9 58.1 120.4 76.6 198.1 52.0 62.2 71.2

95% 153.4 75.9 76.1 97.6 88.8 71.4 173.6 94.1 246.8 65.4 80.9 98.1

Max 377.6 229.6 133.0 183.8 216.0 154.5 492.2 189.9 436.1 130.2 135.4 186.9

Best-fit distribution* WAK WAK WAK WAK WAK WAK WAK WAK BETA GEV WAK WAK

Station 21-007 21-017 21-025 21-027 21-029 21-031 21-034 21-046 22-001 24-013 26-005 26-019

Elevation (m) 1350 1200 1120 432 800 1880 1258 680 1700 2000 815 530

Statistic

Sample size 511 501 508 480 507 501 432 451 546 362 451 481

Missing 5 3 8 24 9 27 0 5 18 10 17 47

Mean 53.4 29.2 39.0 35.5 69.1 41.7 58.6 36.3 72.6 58.2 36.4 53.5

Variance 2508 806 1419 1827 6419 1163 2711 1813 2313 1497 1549 4254

Std. error 2.22 1.27 1.67 1.95 3.56 1.52 2.51 2.00 2.06 2.03 1.85 2.97

Skewness 0.77 1.21 1.24 1.47 1.36 1.27 0.81 1.51 1.71 1.18 1.22 1.47

Excess kurtosis -0.31 1.66 1.73 2.17 1.59 2.09 0.09 3.18 6.30 2.05 1.42 2.30

Percentiles

Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 2.0 0.0 0.0

5% 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 15.8 8.8 0.0 0.0

10% 0.0 0.0 0.0 0.0 0.0 4.8 0.1 0.0 21.7 15.4 0.0 0.0

25% (Q1) 6.4 4.4 7.0 0.0 1.2 15.1 10.3 0.0 38.0 30.1 0.4 0.0

50% (Median) 40.8 23.7 31.0 21.5 44.4 35.8 48.3 23.0 62.1 52.3 28.0 25.3

75% (Q3) 90.3 44.8 59.0 57.5 109.6 58.6 91.0 61.9 98.2 78.4 59.7 88.1

90% 128.5 69.3 93.6 95.1 189.2 88.5 137.1 98.9 133.6 110.7 89.7 149.3

95% 148.5 84.7 108.1 126.0 238.4 109.6 162.1 121.4 157.2 132.9 112.7 177.4

Max 217.4 171.0 220.8 222.7 399.9 188.4 260.0 290.1 421.4 251.4 216.6 380.4

Best-fit distribution* GEV GEV GEV WAK GEV WAK GEV GEV WAK WAK WAK WAK

* WAK Wakeby, BETA beta, GEV generalized extreme value, G.PAR generalized pareto, J.SB Johnson SB
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January 1985 data point range was identified by the second

cluster (within the 29.0–204.8 mm range).

The division into three clusters yields frequencies of

1388, 2965 and 3397, respectively. The high value of the

third cluster indicates that the desired value is most prob-

ably within the 45.9–204.8 mm range. Similarly, for the

remaining clusters, the higher frequencies trend toward the

bottom of the January 1985 cluster frequency table, indi-

cating that the missing data point is most probably in the

higher observation range.

The larger the number of clusters, the smaller the data

range covered by each cluster. The increase in the number

of clusters results in a green path that highlights the highest

frequencies generally observed. This green path shows the

clusters with the highest probability of representing the

missing value range; in contrast, the red cells indicate those

clusters with a lower probability of representing the miss-

ing value. Months with highly variable observations (like
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Fig. 3 Heat map of monthly precipitation observations for station 07-016

OCT NOV DEC JAN FEB MAR APR
1982 2.1 22.8 92.4 58.1 54.9 31.2 46.2
1983 55.8 3.9 21.5 41.7 28.6 24.4 78.5
1984 18.7 131.0 71.5 63.6 22.1 118.1 107.0
1985 0.0 65.6 17.3 84.9 84.4 46.2 39.6
1986 24.0 37.7 46.6 71.9 95.4 8.5 31.9
1987 9.2 17.5 61.1 49.3 64.4 42.2 71.3
1988 15.2 38.8 51.0 12.2 74.1 73.6 52.5

Fig. 4 Observed values for months and years around January 1985
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Fig. 5 Cluster numbers for data points near January 1985 at each clustering step
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JAN 2 3 4 5 6 7 8 9 10 11 12 FEB 2 3 4 5 6 7 8 9 10 11 12 Min Max
1 6623 1388 519 210 112 73 35 40 13 1 0 1 6904 1479 502 227 112 79 19 16 14 9 0 0.0 0.0
2 10075 2965 1211 555 214 139 96 55 48 41 28 2 10626 3485 1361 547 260 138 102 85 42 37 37 0.1 4.5
3 3397 1242 668 414 204 124 63 31 39 13 3 3776 1301 756 432 187 126 72 58 41 21 4.5 11.0
4 1609 632 354 240 168 120 65 33 30 4 1732 665 414 299 208 105 72 49 47 11.1 16.9
5 801 378 254 167 106 85 59 39 5 941 407 230 175 128 98 46 36 16.9 23.2
6 413 281 133 75 62 42 63 6 525 288 149 116 93 72 78 23.2 29.0
7 275 206 109 80 54 32 7 350 185 100 71 79 66 29.0 37.5
8 181 168 99 45 51 8 266 167 56 48 40 37.6 45.3
9 134 84 52 43 9 139 118 65 45 45.9 53.6

10 96 74 70 10 105 89 61 53.6 65.0
11 98 63 11 62 61 65.1 80.3
12 64 12 47 80.8 204.8

MAR 2 3 4 5 6 7 8 9 10 11 12 APR 2 3 4 5 6 7 8 9 10 11 12 Min Max
1 7184 1558 604 276 113 57 28 18 10 0 0 1 7731 1631 650 290 144 73 53 20 13 5 0 0.0 0.0
2 10679 3362 1234 556 311 206 155 96 65 44 24 2 10961 3524 1366 663 313 226 148 82 77 55 35 0.1 4.5
3 3711 1444 698 405 190 125 74 64 55 64 3 3772 1347 815 468 257 164 107 80 55 56 4.5 11.0
4 1559 781 443 220 175 112 69 36 45 4 1479 729 415 268 198 116 67 51 43 11.1 16.9
5 946 414 301 152 101 59 69 45 5 867 435 295 172 141 77 65 57 16.9 23.2
6 486 278 209 136 77 68 40 6 541 246 163 111 81 62 60 23.2 29.0
7 319 190 134 100 55 44 7 294 187 141 95 62 30 29.0 37.5
8 201 97 84 57 74 8 207 146 57 73 56 37.6 45.3
9 148 110 74 49 9 120 142 56 53 45.9 53.6

10 110 59 49 10 93 97 36 53.6 65.0
11 63 44 11 57 73 65.1 80.3
12 49 12 56 80.8 204.8

MAY 2 3 4 5 6 7 8 9 10 11 12 JUN 2 3 4 5 6 7 8 9 10 11 12 Min Max
1 6299 1563 526 273 145 94 53 28 9 3 0 1 6161 1613 590 260 168 83 60 22 5 0 0 0.0 0.0
2 8220 2634 946 537 329 231 140 78 62 50 32 2 6842 2218 853 525 348 214 178 85 77 89 61 0.1 4.5
3 2756 1064 658 378 182 127 67 66 56 71 3 2083 793 455 284 187 150 106 89 64 46 4.5 11.0
4 1051 607 369 248 170 162 107 42 22 4 780 477 298 167 146 127 53 51 41 11.1 16.9
5 572 422 208 189 111 74 54 52 5 543 360 128 90 81 65 51 55 16.9 23.2
6 306 224 110 99 95 56 53 6 266 228 135 84 40 37 49 23.2 29.0
7 197 143 92 57 90 73 7 192 114 95 65 35 17 29.0 37.5
8 131 113 68 51 41 8 143 118 85 33 35 37.6 45.3
9 113 52 44 26 9 72 78 58 50 45.9 53.6

10 55 57 57 10 69 59 48 53.6 65.0
11 63 29 11 63 43 65.1 80.3
12 36 12 33 80.8 204.8

JUL 2 3 4 5 6 7 8 9 10 11 12 AUG 2 3 4 5 6 7 8 9 10 11 12 Min Max
1 5180 1572 612 283 163 92 69 19 20 2 0 1 4818 1579 548 257 113 75 40 31 3 2 0 0.0 0.0
2 5163 1684 531 416 266 172 171 106 86 59 55 2 4807 1284 560 410 287 204 139 104 94 42 45 0.1 4.5
3 1239 713 429 250 117 85 76 71 47 31 3 1139 474 291 179 116 95 109 93 71 38 4.5 11.0
4 408 352 275 142 66 60 80 44 26 4 452 303 197 102 89 58 36 44 44 11.1 16.9
5 263 205 123 139 110 72 31 25 5 218 197 148 94 60 42 41 19 16.9 23.2
6 127 150 115 65 90 58 22 6 131 127 72 75 44 46 19 23.2 29.0
7 111 71 63 26 48 49 7 90 79 49 24 49 45 29.0 37.5
8 85 85 46 22 26 8 99 35 69 22 23 37.6 45.3
9 46 25 68 28 9 44 25 49 28 45.9 53.6

10 24 38 43 10 23 22 24 53.6 65.0
11 21 22 11 23 17 65.1 80.3
12 17 12 15 80.8 204.8

SEP 2 3 4 5 6 7 8 9 10 11 12 OCT 2 3 4 5 6 7 8 9 10 11 12 Min Max
1 4936 1580 526 288 124 54 47 24 6 1 0 1 4862 1384 471 252 146 31 17 8 1 0 0 0.0 0.0
2 5402 1485 574 347 264 221 178 170 92 77 38 2 6400 1794 662 425 306 198 175 90 74 59 30 0.1 4.5
3 1421 603 388 217 108 100 108 79 59 63 3 1869 733 378 218 163 97 94 93 77 69 4.5 11.0
4 527 337 261 152 72 57 54 52 25 4 843 410 238 148 101 81 67 58 33 11.1 16.9
5 266 222 158 144 63 53 30 25 5 424 267 172 128 114 42 53 53 16.9 23.2
6 139 121 79 72 84 37 26 6 218 180 118 112 60 33 25 23.2 29.0
7 98 71 86 77 76 50 7 132 115 85 65 47 21 29.0 37.5
8 82 38 43 41 34 8 107 60 50 43 37 37.6 45.3
9 53 27 39 36 9 77 48 46 38 45.9 53.6

10 45 15 25 10 59 35 31 53.6 65.0
11 33 15 11 37 24 65.1 80.3
12 29 12 38 80.8 204.8

NOV 2 3 4 5 6 7 8 9 10 11 12 DEC 2 3 4 5 6 7 8 9 10 11 12 Min Max
1 5539 1262 434 260 107 74 59 15 13 2 0 1 6101 1410 559 281 124 57 42 19 7 4 0 0.0 0.0
2 7276 2295 905 388 188 176 122 72 68 54 34 2 8137 2467 884 464 251 249 138 102 45 66 27 0.1 4.5
3 2344 891 459 308 165 138 54 56 24 23 3 2924 989 570 343 158 89 88 68 39 34 4.5 11.0
4 998 562 258 208 144 136 62 32 26 4 1220 536 318 241 192 116 64 38 33 11.1 16.9
5 535 294 181 133 118 69 61 46 5 591 364 190 126 94 104 58 47 16.9 23.2
6 300 164 130 111 64 73 48 6 312 227 140 86 47 52 51 23.2 29.0
7 178 116 78 67 34 53 7 200 161 138 67 45 45 29.0 37.5
8 119 102 63 62 25 8 150 122 86 54 39 37.6 45.3
9 92 63 47 32 9 87 106 77 50 45.9 53.6

10 92 60 48 10 65 62 59 53.6 65.0
11 55 33 11 38 38 65.1 80.3
12 44 12 37 80.8 204.8

Fig. 6 Cluster frequency tables of the months of 1985
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June) result in fuzzy frequency tables, while months with

low variability (like August) produce more distinguishable

red and green patterns. For 1985, the green trends are more

apparent in the January–April and July–September fre-

quency tables.

2.3 Estimation of missing values based on cluster

frequencies

The 12th column in the frequency table for January 1985

(Fig. 6) is used to estimate the missing data for that date.

The clusters that occur most often provide the most likely

ranges of value for the missing data. In the January 1985

example, the highest frequency (70) occurs in cluster 10,

which represents the precipitation range between 53.6 and

65.0 mm. The average of the 70 observations (60.04 mm)

used to generate this frequency is the most likely estima-

tion of the missing January 1985 value. The obtained

estimate will always be within the range of the averaged

cluster. In the present example, the actual observed value

for the January 1985 data point was 84.9 mm (within the

range of the 12th cluster).

The second highest frequency (64) obtained by the

example model occurred in cluster 12 (80.8–204.8 mm

range). The average of the 64 observations used to generate

this frequency is 110.6 mm and is the second probable

estimate for the January 1985 value. The third highest

frequency (63) occurred in clusters 6 and 11, which rep-

resent the third and fourth most likely estimates (71.2 and

25.2 mm) of value. The green path in the January 1985

frequency table indicates that the most likely value will be

within the range of clusters 10–12; and, of the first five

estimations, the third estimate obtained (cluster 11) is the

nearest to the real observed value. This approach is repe-

ated for the five highest total frequency values for each

month analyzed, and the five most likely estimates for each

month are written in a correlation tables output file by the

software. As previously stated, precipitation is relatively

chaotic, and the most likely precipitation might not be the

experienced precipitation. Therefore, generating multiple

precipitation values with a high likelihood of occurrence is

very useful to scientists and practitioners who work with

precipitation data.

The three lowest frequencies obtained for the 12 clusters

occurred in clusters 1–3, indicating that the range

0.00–11.0 mm is the least likely to represent the total

precipitation that occurred in January 1985. The actual

1985 data points to be tested were removed prior to the

application of the method and were not known by the

software at any stage of the estimation process.

The ability of the FBI method to estimate precipitation

values can be compared to estimates generated using the

EM and MLR methods, which are also direct methods. EM

is an iterative method used to identify the maximum like-

lihood estimates of parameters in statistical models

(Dempster et al. 1977). It also enables parameter estimation

in probabilistic models with incomplete data. A good

introduction to the mathematical foundations and applica-

tions of the EM method is provided by Do and Batzoglou

(2008). As with the FBI method, the EM and MLR

methods have the ability to generate estimates for a series

by using existing observations in the series itself; they do

not require preprocessing of data, and unlike methods such

as ANN, they do not require the adjustment of any input

parameters to improve the results. To compare these two

models with the FBI method, all existing station 07-016

observations were estimated using the EM and regression

modules in the missing value analysis toolbox of the IBM

S.P.S.S. software. The same approach used to estimate

values in the FBI method was applied. The data from each

year was removed and estimated using both methods.

Table 2 shows the estimates obtained for the test year using

the FBI, EM and regression methods, together with the

long-term monthly averages. The correlations obtained

using the EM (0.713), regression (0.778) and long-term

average (0.733) methods are significantly lower than the

correlation found using the FBI method (0.976).

To test the advantages of generating multiple estimates

for a missing value, the increase in correlation with the

increase of the number of estimations is assessed for all

observations of the station 07-016 annually. Table 3 shows

the correlations between the observed values and the best

estimates generated within the first 2, 3, 4 and 5 estimations

for each year. Annual correlations over 0.7 occurred

between the observed values and the nearest estimates in

the first two estimations in 58% of cases (25/43). This rate

Table 2 Correlations between the observed values and the best estimates from the FBI, EM, regression and long-term average methods for 1985

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Observation 84.9 84.4 46.2 39.6 20.0 6.0 0.0 27.2 0.0 24.0 37.7 46.6 Corr.

Best FBI Est. 71.2 73.1 49.4 27.0 19.9 1.8 1.8 34.1 2.4 20.4 31.8 48.8 0.976

EM 49.8 48.8 48.0 49.6 45.2 23.8 12.6 9.2 12.8 32.7 48.6 57.6 0.713

Regression 82.0 53.2 24.3 25.6 212.2 -2.5 12.7 40.9 20.6 37.0 40.5 56.0 0.778

Long-term Av. 51.8 49.4 48.1 49.7 44.9 24.6 16.1 13.2 16.7 34.0 48.4 58.7 0.733
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increased to 91% (39/43) when three estimates were gen-

erated and to 100% when four or five estimates were

produced. Similarly, the rate of annual correlations over 0.8

was 28, 81, 98 and 100% for the first 2, 3, 4 and 5 esti-

mates, respectively; and the rate of annual correlations over

0.9 was 5, 33, 74 and 98%, respectively. These results

indicate that increasing the number of estimates generated

increases the model’s reliability and accuracy.

The last column in the table (titled ‘‘Whole’’) shows the

correlations between the entire observed series and the

series of best estimates derived from the first 2, 3, 4 and 5

estimations. A correlation value of 0.843 obtained for the

first three estimations might be regarded as sufficient to

estimate precipitation. Increasing the number of estimates

to 4 produces a correlation of 0.912, while increasing the

number to 5 yields a correlation of 0.944 for the entire

series. These correlations indicate the production of

extremely reliable precipitation estimates.

Table 4 presents the correlations between the observed

values from station 07-016 and the estimates derived using

the FBI, EM and regression methods, as well as the long-

term averages for each year. For all years, the correlations

between the FBI method estimates and the observed values

exceed the correlations between the EM, regression and

long-term average values and the observed data. While

98% (42/43) of the annual correlations between the FBI

method and the observed values are over 0.9, all annual

correlations with the compared methods are under 0.9.

The highest and lowest correlations produced by each

method are shown in bold. The obtained results reveal that

the estimates produced using the EM method tend to be

more similar to the long-term averages than the observed

values. This resulted similar correlation values for both the

EM method and the long-term averages across the years.

The correlations of the compared methods follow a similar

pattern. Generally, the correlations increase or decrease

together over the years. For example, the lowest annual

correlations with the EM method (0.015) and the long-term

averages (0.030) occurred in 1972. This year represented

the sixth lowest annual correlation for the FBI method

(0.904) and the third lowest for the regression (0.006)

method.

To compare the general performance of the methods

used to estimate precipitation values at station 07-016, five

statistical measures (correlation (r), Nash–Sutcliffe effi-

ciency coefficient (E), root mean squared error (RMSE),

mean absolute error (MAE) and mean bias error (MBE))

were calculated and presented in Table 5. The FBI method

performed best using all statistical measures except the

MBE. The negative E value obtained using the regression

method indicates that the observed mean is a better indi-

cator of value than the regression method. The other

Table 3 Correlations between

observed values from station

07-016 and the estimates

generated using the clusters

with the five highest frequencies

Estimations 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

1–2 0.807 0.679 0.797 0.806 0.583 0.763 0.881 0.898 0.793 0.265 0.698

1–3 0.925 0.896 0.876 0.884 0.809 0.884 0.963 0.883 0.938 0.590 0.816

1–4 0.929 0.933 0.950 0.904 0.950 0.898 0.964 0.916 0.985 0.842 0.972

1–5 0.929 0.952 0.956 0.945 0.980 0.970 0.964 0.949 0.984 0.924 0.972

Estimations 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

1–2 0.627 0.823 0.561 0.694 0.773 0.834 0.841 0.735 0.552 0.743 0.461

1–3 0.867 0.851 0.773 0.878 0.936 0.878 0.861 0.908 0.582 0.903 0.643

1–4 0.939 0.860 0.840 0.915 0.962 0.931 0.937 0.922 0.766 0.916 0.920

1–5 0.944 0.960 0.979 0.942 0.957 0.975 0.967 0.929 0.922 0.966 0.980

Estimations 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

1–2 0.717 0.737 0.539 0.880 0.770 0.652 0.430 0.139 0.944 0.873 0.792

1–3 0.955 0.813 0.856 0.972 0.832 0.707 0.720 0.832 0.964 0.922 0.840

1–4 0.973 0.865 0.901 0.981 0.962 0.873 0.872 0.932 0.982 0.929 0.947

1–5 0.976 0.865 0.904 0.992 0.962 0.931 0.930 0.935 0.982 0.928 0.964

Estimations 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 Whole

1–2 0.706 0.553 0.574 0.747 0.814 0.901 0.672 0.777 0.468 0.479 0.696

1–3 0.812 0.929 0.795 0.815 0.826 0.937 0.916 0.882 0.908 0.683 0.843

1–4 0.877 0.940 0.847 0.910 0.884 0.959 0.912 0.944 0.928 0.903 0.912

1–5 0.924 0.969 0.933 0.954 0.992 0.961 0.917 0.951 0.950 0.983 0.944
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statistical measures also reveal that utilization of long-term

averages is preferred to use of the regression method. As

expected, the MBE for long-term averages was zero, while

the MAE was lowest for the FBI method, suggesting that

the FBI method estimates are closer to the observed values.

The MAE and MBE statistics should be considered toge-

ther because equal averages for estimates and observed

values does not generally mean that the estimations are

sufficiently close to the observations. The averages may be

similar even though there are significant positive and

negative differences between the estimates and observed

values. These differences can be detected by calculating

the MAE, which has advantages over the RMSE and MBE

in assessing average model performance (Willmott and

Matsuura 2005).

The graphs shown in Fig. 7 compare the observed val-

ues from station 07-016 with the estimates produced using

the FBI, EM and regression methods. A very good fit is

seen between the FBI method estimates and the observed

values across the time series, indicating that the method is

sensitive to the variations in precipitation. On the other

hand, the estimates produced using the EM and regression

methods lack generality and sensitivity. Figure 7 also

shows that the FBI method provides lower estimates for

rarely observed high precipitation values even though it

produces better estimates compared to the EM and

regression methods. Low estimations of extreme values

occur as a result of the estimation logic behind the FBI

method, which considers the frequency of observed values;

it is well known that the frequency of extreme precipitation

is generally low. The graphs also show that the estimates

obtained for extreme values are always higher than the

remaining estimates. This may be considered a disadvan-

tage of the method; however, its ability to estimate extreme

values might be improved by considering observations

from nearby stations.

2.4 Application of the FBI method using

the remaining 69 precipitation stations

The above discussion was generated based on estimates

and observations for a single station (07-016). A method’s

ability to estimate values for a single station is not suffi-

cient to claim that it will be successful in estimating values

for other stations. To test the FBI method’s application

across multiple stations, we used the above method to

estimate precipitation values for 70 stations across 21 dif-

ferent basins in Turkey. Stations were chosen based on

location and the variation in observed values. The stations

reflect various climates in Turkey, ranging from dry to wet

(see the descriptive statistics of the observed series in

Table 1). Table 6 presents the statistical measures (r, E,

Table 4 Correlations between

the observed values for station

07-016 and the estimates from

the FBI, EM, regression

methods, and the long-term

averages

Year 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

FBI 0.929 0.952 0.956 0.945 0.980 0.970 0.964 0.949 0.984 0.924 0.972

EM 0.282 0.352 0.881 0.564 0.707 0.633 0.703 0.577 0.696 0.015 0.461

Regression 0.598 0.126 0.538 0.691 0.548 0.277 0.382 0.240 0.456 0.006 -0.007

Long-term Av. 0.334 0.403 0.884 0.623 0.744 0.667 0.752 0.608 0.701 0.030 0.484

Year 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

FBI 0.944 0.960 0.979 0.942 0.957 0.975 0.967 0.929 0.922 0.966 0.980

EM 0.868 0.794 0.633 0.675 0.433 0.589 0.744 0.705 0.398 0.533 0.546

Regression 0.764 0.591 0.756 0.356 0.379 0.029 0.323 0.433 0.227 0.507 0.257

Long-term Av. 0.865 0.791 0.662 0.666 0.486 0.626 0.764 0.738 0.412 0.566 0.575

Year 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

FBI 0.976 0.865 0.904 0.992 0.962 0.931 0.930 0.935 0.982 0.928 0.964

EM 0.713 0.277 0.856 0.572 0.382 0.288 0.458 0.287 0.625 0.718 0.238

Regression 0.778 0.248 0.356 0.271 0.785 -0.012 0.299 0.416 0.839 0.624 0.092

Long-term Av. 0.733 0.316 0.854 0.579 0.422 0.342 0.492 0.303 0.638 0.720 0.268

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

FBI 0.924 0.969 0.933 0.954 0.992 0.961 0.917 0.951 0.950 0.983

EM 0.601 0.458 0.765 0.325 0.652 0.653 0.435 0.613 0.546 0.675

Regression 0.674 0.387 0.267 0.361 0.266 0.191 0.262 0.328 0.197 0.644

Long-term Av. 0.614 0.476 0.765 0.348 0.673 0.694 0.483 0.643 0.569 0.666
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normalized root mean squared error (NRMSE), mean

absolute scaled error (MASE), MAE and MBE) generated

for each station based on a comparison between produced

FBI method estimates and the observed values from each

station. The number of years data was available for each

station is also presented in the table.

The correlations between the results of the FBI method

and the observations exceeded 0.9 for 24% (17/70) of

stations and exceeded 0.85 for 79% (55/70) of stations. The

minimum correlation was 0.795, and the maximum corre-

lation was 0.944. 11 of the 15 stations with the highest

correlations are located in basins 4, 5, 6, 7, 8 and 9, which

are all located within the Eastern Aegean and Eastern

Mediterranean regions of Turkey. Similarly, 8 of the 15

stations with the lowest correlations are in basins 12, 13,

Table 5 Statistical measures used to compare all observed values

from station 07-016 with the estimates generated using the FBI, EM,

and regression methods and the long-term averages

r E RMSE MAE MBE

FBI 0.944 0.889 10.322 6.764 0.084

EM 0.513 0.263 26.566 19.987 -0.031

Regression 0.351 -0.258 34.698 26.216 0.557

Long-term Av. 0.544 0.296 25.954 19.532 0

Fig. 7 Comparisons between estimates produced using the FBI, EM and regression methods with observed data from station 07-016
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Table 6 Statistical measures of

the comparisons between the

estimated and observed values

of the stations

Station r E NRMSE MASE MAE MBE Obs. years

01-004 0.898 0.796 0.090 0.303 9.981 -2.112 41

01-005 0.851 0.690 0.109 0.336 13.418 -2.940 41

01-008 0.797 0.591 0.088 0.338 12.744 -4.764 40

02-004 0.900 0.778 0.071 0.289 14.335 -6.426 38

02-009 0.843 0.671 0.107 0.309 18.675 -8.929 41

02-011 0.880 0.754 0.080 0.305 10.954 -3.123 39

02-012 0.885 0.737 0.077 0.290 18.730 -8.344 38

02-018 0.873 0.730 0.096 0.297 14.287 -4.753 41

03-009 0.886 0.764 0.064 0.296 10.662 -2.868 40

03-013 0.897 0.780 0.076 0.290 12.462 -4.552 44

03-027 0.862 0.717 0.109 0.324 12.377 -3.041 43

04-003 0.904 0.788 0.086 0.283 15.604 -6.746 41

04-008 0.914 0.798 0.064 0.263 18.091 -8.746 36

05-001 0.880 0.737 0.089 0.332 10.439 -4.249 44

05-004 0.901 0.784 0.079 0.300 9.457 -3.527 40

05-007 0.904 0.765 0.079 0.303 12.001 -7.172 45

05-008 0.886 0.749 0.074 0.303 12.290 -6.260 44

05-012 0.899 0.785 0.096 0.299 9.008 -1.786 44

05-016 0.923 0.829 0.079 0.268 10.700 -3.583 44

06-005 0.913 0.784 0.093 0.287 17.830 -9.468 44

07-013 0.933 0.835 0.073 0.279 20.599 -10.19 44

07-016 0.944 0.889 0.050 0.237 6.764 0.084 44

07-022 0.894 0.778 0.080 0.297 12.531 -3.243 44

08-006 0.942 0.841 0.071 0.259 27.571 -17.67 43

08-008 0.927 0.817 0.079 0.274 17.121 -8.567 44

08-010 0.877 0.735 0.068 0.292 14.102 -5.691 40

08-013 0.915 0.794 0.070 0.284 19.726 -12.28 43

08-014 0.899 0.785 0.081 0.289 8.553 -1.984 45

09-014 0.920 0.799 0.068 0.290 27.246 -14.89 44

10-007 0.874 0.735 0.075 0.310 8.191 -1.160 43

11-002 0.865 0.714 0.087 0.313 11.050 -3.379 41

12-003 0.864 0.726 0.096 0.322 7.032 -1.514 43

12-011 0.842 0.689 0.090 0.304 7.201 -2.006 42

12-012 0.867 0.726 0.103 0.321 8.509 -1.797 42

12-014 0.834 0.668 0.076 0.336 17.169 -4.751 42

12-042 0.837 0.665 0.091 0.320 8.693 -3.378 41

12-047 0.885 0.758 0.077 0.264 17.407 -6.972 41

12-049 0.847 0.686 0.080 0.312 7.376 -2.284 40

14-005 0.897 0.781 0.065 0.284 8.214 -2.219 38

14-007 0.866 0.725 0.053 0.291 9.294 -2.161 41

14-017 0.820 0.644 0.092 0.366 12.702 -2.881 39

14-018 0.860 0.699 0.092 0.317 15.768 -4.890 38

14-019 0.888 0.759 0.099 0.294 7.850 -2.205 41

15-008 0.851 0.670 0.091 0.361 11.040 -4.767 40

15-010 0.859 0.702 0.102 0.330 7.399 -1.929 44

15-019 0.886 0.762 0.100 0.308 8.934 -2.400 43

15-020 0.820 0.636 0.076 0.356 15.755 -6.051 41

16-013 0.795 0.595 0.076 0.346 8.029 -3.333 36

16-016 0.824 0.630 0.114 0.364 7.880 -3.905 44

16-019 0.880 0.751 0.084 0.307 8.929 -2.286 40
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14, 15, 16 and 18, which are located in the central and

northern regions of Turkey. While the lowest 14 correlation

values occurred for stations fitting to the Wakeby distri-

bution, none of the 10 stations with the highest correlations

fit this distribution. 8 of the 15 best correlated stations

(including the first 3) instead fit the GEV distribution.

All Nash–Sutcliffe efficiency coefficients exceeded

0.591; 73% (51/70) were over 0.70 and 11% (8/70) were

over 0.80. The highest Nash–Sutcliffe efficiency coefficient

was 0.889. The highest NRMSE value was 0.114; 83% (58/

70) of the NRMSE values fell below 0.10, while the lowest

NRMSE value was 0.050. All MASE values fell below

0.40; 90% (63/70) of these values were under 0.35 and

41% (29/70) were under 0.30. The lowest MASE value was

0.237. The MAE values ranged between 6.367 (obtained

for 18-003) and 27.571 (obtained for 08-006), suggesting

that the high correlation value (0.942) obtained for station

08-006 may be misleading because the MAE and MBE

values for the station are higher than those for the

remaining stations. MBE values ranged between 0.084 and

-17.667, with data from 69 stations generating negative

MBE values. This indicates that the precipitation estimates

generated using the FBI method have a slight negative bias.

Greater bias occurred at stations where extreme values and

variations were much higher than at other stations, result-

ing in greater differences between the estimated and

observed values. Future studies might investigate ways to

obtain average estimates closer to average observations to

eliminate bias errors without increasing MAE. A method to

overcome this bias might be to multiply all estimates by the

ratio between the averages of the observed values and the

estimated values for each station. This intervention should

only be made if the MAE between the observed and esti-

mated values also decreases. Furthermore, though this

intervention may improve the estimation of higher values,

a much larger number of values in the lower ranges might

be overestimated. A selected bias correction method will

not produce the best results for all data series (Ajaaj et al.

2016); thus, the selection of a bias correction method

should be left to the users of the FBI method where

necessary.

3 Discussion and conclusions

This article assesses the ability of the FBI method to esti-

mate non-continuous monthly precipitation data without

the use of observation from neighboring stations. The

goodness of fit measures calculated between the observed

and estimated series show that the FBI method is capable

of estimating monthly precipitation data obtained from

various climatic zones. However, it is impossible to claim

Table 6 continued
Station r E NRMSE MASE MAE MBE Obs. years

16-030 0.870 0.736 0.067 0.316 8.052 -1.986 45

18-003 0.873 0.713 0.080 0.316 6.367 -2.757 44

18-013 0.832 0.653 0.071 0.308 14.830 -6.633 44

18-016 0.867 0.720 0.086 0.334 8.828 -2.225 44

20-009 0.930 0.841 0.076 0.253 15.794 -6.863 44

21-003 0.860 0.662 0.100 0.347 6.447 -4.225 44

21-004 0.870 0.713 0.104 0.316 6.890 -3.395 44

21-006 0.887 0.724 0.086 0.308 7.778 -3.802 44

21-007 0.930 0.851 0.089 0.275 10.057 -4.089 43

21-017 0.891 0.764 0.081 0.283 6.712 -2.955 44

21-025 0.866 0.726 0.089 0.311 9.702 -3.665 40

21-027 0.835 0.647 0.114 0.387 11.140 -7.945 43

21-029 0.912 0.788 0.092 0.325 17.278 -11.24 45

21-031 0.898 0.784 0.084 0.272 8.363 -2.649 44

21-034 0.922 0.838 0.080 0.263 11.201 -2.927 43

21-046 0.845 0.672 0.084 0.380 11.289 -7.292 41

22-001 0.857 0.713 0.062 0.299 12.892 -3.891 43

24-013 0.882 0.752 0.077 0.310 11.213 -2.679 42

26-005 0.831 0.660 0.106 0.345 10.124 -6.399 42

26-019 0.812 0.620 0.106 0.396 17.423 -11.98 42

Minimum 0.795 0.591 0.050 0.237 6.367 -17.67 36

Average 0.877 0.737 0.084 0.308 12.072 -4.910 42

Maximum 0.944 0.889 0.114 0.396 27.571 0.084 45
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that the method will always successfully estimate values

for stations in other regions without first applying the

method to observations from those stations. The practical

experiences in the literature show that no data driven

methodology is perfect enough to provide the best results

for all stations or for all variables.

This method may also be used to estimate weekly or

daily precipitation data; however, given that the random-

ness of precipitation generally increases with decreasing

observation periods, it is anticipated that the success of the

method will be lower for precipitation estimates at the

weekly or daily scale. The inclusion of observations from

highly correlated neighboring stations improve the gener-

ation of estimates with shorter sampling frequencies. Fur-

ther studies may investigate the influence of neighboring

stations on the estimation power of the presented method.

As noted above, the method analyzed in this study may

not be suitable for the estimation of extreme observations

that occur at a very low frequency. Values that occur with a

very low frequency in a data series also have a low

occurrence probability and will not occur frequently

enough to be determined among the highest possible val-

ues. As is valid for most data-driven methods, the length of

the data series used may influence the performance of the

proposed method. The method may be less useful when

applied to short data series, as the estimates produced by

the presented method are based on the frequencies of the

observed value ranges. The input dataset should have at

least seven rows of input data (i.e., 7 years for monthly

data) and more data will generally provide more informa-

tion about the frequencies of the observations, conse-

quently supporting the possibility of better estimations.

Another limitation of the method is that writing a soft-

ware code for its implementation might not be easy for

every user. With this in mind, a link to the source code

written in Visual Basic is provided to the readers in

Appendix 3. This will enable users to implement the FBI

method on other datasets or in other research areas. Users

of other programming languages or operating systems will

need to convert the code.

The FBI method may be applied in many scientific

disciplines, as it is a generally applicable, direct analysis

method that requires no determination of input parameters,

nor does it require any preprocessing of data. While most

existing methodologies are one-dimensional, the FBI

method is two-dimensional and has been shown to perform

better when compared to the EM and MLR methods in the

estimation of precipitation.
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Appendix 1: Determination of range clusters

For various reasons, there are generally gaps in any time

series dataset, and the reliable estimation of the missing

data has great value. In the FBI method, the missing data

value at the center of the matrix in Fig. 8 (cell i, j) has

temporal and quantitative relationships with nearby cells.

To estimate the probable range of the missing value at

node i, j, the value ranges of all existing observations in the

dataset should be determined. First, the observed data is

sorted in ascending order and a three-dimensional vector

containing the sorted data and associated coordinates in the

data matrix is generated. The coordinate of each data point

used in this study is the observed month (column) and year

(row) of the data and is unique for each observation. The

coordinate information is crucial because the observation

time of a given value affects the temporal and quantitative

investigation of time series data. Sorting and investigating

statistical relationships for a variable without considering

the observation times of each individual variable mean

ignoring information about the temporal relationship

between observations.

After sorting the observations, the observed time series

range is divided into 2 to n range clusters to evaluate and

estimate the possible clusters into which the missing data

point may fall. The value of n may increase with the

amount of available data; this increase would provide more

precise results, as the value range for each cluster would be

narrower. The number of clusters should be chosen so that

the distribution of the observed values is sufficiently rep-

resented. Currently, the maximum number of clusters is

determined by running the software for various number of

clusters. It must be noted that the selected cluster number

may not be optimum for obtaining the best results,

although the method may still produce successful results. A

good approach to determine the maximum number of

clusters might be to start with a high number of clusters

(like 50). Then, the cluster number that produces sufficient

frequency values and cluster ranges might be chosen by

looking at the generated frequency tables. Future studies

should propose a method for determining the optimum

number of clusters based on the number and variability of

j-3 j-2 j-1 j j+1 j+2 j+3
i-3
i-2
i-1
i

i+1
i+2
i+3

Fig. 8 Pairs to be searched in the data matrix
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observations to further improve the successful estimation

of missing values.

Clusters may be generated using two different approa-

ches. In the first approach, each cluster has as equal a number

of elements as possible (the clusters have varying ranges).

Observed values are assigned to clusters using Eq. (1).

Cli ¼ int
i � ncl
nd

� �
þ 1 ð1Þ

In the second approach, range values are equalized (the

clusters have a varying number of elements). The bounds

of the cluster ranges are the lowest and highest observa-

tions belonging to that range. Observed values are assigned

to clusters using Eq. (2).

Cli ¼ int
Xi � Xminð Þ � ncl
Xmax � Xmin

� �
þ 1 ð2Þ

In the above equations: nd is the total number of obser-

vations in the sorted data vector, i is the rank (index number)

of the observation in the sorted data vector (changes between

1 and nd), ncl is the number of clusters used to divide the

sorted data vector,Cli is the cluster index to be assigned to the

i-th observation (changes between 1 and ncl), int() is the

function converting a decimal number into an integer, Xi is

the i-th observation in the sorted data series, Xmin;Xmax the

minimum and maximum observations.

Both approaches have advantages and disadvantages over

each other. Selection of the appropriate clustering method

completely depends on the diversity of the observed time

series. For example, if the number of elements in certain

clusters become too high compared to other clusters, then it

would be better to generate clusters with an equal number of

elements. For the precipitation data used in this paper, the

first approach was used; each cluster included a similar

number of elements. For example, for station 07-016, the first

11 clusters cover the range 0.0–80.3 mm while the 12th

cluster covers the range 80.8–204.8 mm (1.54 times greater

than the cumulative range of the first 11 clusters).

Appendix 2: Generation of the cluster frequency
table

The clustering process explained in Appendix 1 assigns a

cluster index to each observation. The cluster index value

of each cell is the key to finding the cluster value of the

missing cell. When the observed range is divided into two

clusters, the first cluster includes the lower values and has a

cluster index of 1, and the second cluster includes the

higher values and has a cluster index value of 2. All

adjacent cluster pairs in the data matrix near the missing

cell are searched. Frequency values for the probable clus-

ters are set to zero prior to the initiation of the search

process. At the first clustering step, there are two possible

clusters (1 or 2) into which the missing data may fall.

When a match for a cluster pair is found in the matrix, the

frequency of the cluster value at the relative location of the

missing data point is increased by one. The maximum

number of unique cluster pairs near the missing data point

is 158. This number decreases if there is more than one

missing data point in the neighborhood. The following

rules provide three examples of the 158 unique rules used

to find matching cluster pairs.

1. If [Cl(Xi,j-2) = a & Cl(Xi,j-1) = b] and if

[Cl(Xp,q-2) = a & Cl(Xp,q-1) = b & Cl(Xp,q) = c]

then freq(c) = freq(c) ?1.

2. If [Cl(Xi-2,j) = a & Cl(Xi-1,j) = b] and if [Cl(Xp-2,q) =

a & Cl(Xp-1,q) = b & Cl(Xp,q) = c] then freq(c) =

freq(c) ?1.

3. If [Cl(Xi-2,j-2) = a & Cl(Xi-1,j-1) = b] and if

[Cl(Xp-2,q-2) = a & Cl(Xp-1,q-1) = b & Cl(Xp,q) = c]

then freq(c) = freq(c) ?1.

In the above rules, Cl(X) is the cluster index of the

observed value X; i and j are the row and column numbers

of the missing node at the center of the 7 9 7 cell field; p

and q are the row and column numbers of the cell at the

relative location of the missing data at i, j and a, b and c are

the cluster numbers of the related cells. When the entire

dataset is divided into two clusters, a, b and c might have

values of 1 or 2; for n clusters, they may have values

ranging between 1 and n. The values of a, b and c may

differ for each rule because they may represent different

locations within the data matrix. The above three rules

represent the horizontal cluster pair to the left of the

missing node, the vertical cluster pair above the missing

node and the diagonal cluster pair to the top left of the

missing node, as shown in Fig. 9a in orange, yellow and

green, respectively. Figure 9b shows the location of the

first pair match for the first rule. With the first match, the

frequency of the cluster number of the cell at the relative

location of the missing data point is increased by one (the

cell at p, q shown in pink). This is done because the cluster

value at cell p, q is a probable value for the missing node at

i, j, given that both cells have the same cluster pairs to the

left. The search for the same pair then continues until all

matching pairs are found and the frequencies of the clusters

at the corresponding cells p, q are increased by one (for

each match, the values of p and q might be different

because the matching pairs will be at different locations

within the data matrix).

After the search for the first cluster pair is completed,

the above process is repeated for the next pair until all pairs

near the missing data point have been searched and the

total frequencies for each probable cluster determined. The

clusters with the highest frequencies will be the most likely
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clusters into which the missing node will fall. Some cluster

frequencies might remain at zero, indicating that it is

unlikely that the missing data point will fall within that

cluster.

In the first step, the observed data range was divided into

two clusters. After the determination of the frequencies of

both clusters, the observed range is divided into three clus-

ters. This time, the cells in the data matrix will have cluster

values ranging from 1 to 3. The process used to assign values

to the two clusters above is repeated for the three clusters. For

the missing value, the frequency of the three probable clus-

ters will be zero to start. Then, all cluster pairs near the

missing data point will be searched, and the frequencies of

the clusters found at the relative location of the missing data

point will be increased by one for each cluster pair match.

The clustering, searching and cluster frequency determina-

tion process continues until the process has been applied for

the greatest number of clusters. During this process, a cluster

frequency table is generated to show the frequencies of the

clusters determined at each clustering step. The highest

frequency values in this table indicate themost likely clusters

into which the missing data point will fall.

A dataset might have more than one missing value. The

above method can be applied to each missing data point in

the set and a frequency table generated for each missing

cell. As the locations of the missing data points in the

matrix will be different from one another, the neighbors of

each missing cell will be unique; consequently, the fre-

quency table for each missing data point will also be

unique. To avoid repetition, cluster frequency table sam-

ples and details about how the estimates are calculated

using the cluster frequencies are presented in the Appli-

cation of the FBI Method section.

Appendix 3: The frequency based imputation
software

The software developed to implement the method used in

this study was written in Visual Basic in the Microsoft

Visual Studio environment. The software is a console

application that makes use of the interoperability feature,

which enables synchronous operation of Microsoft Visual

Basic and Microsoft Excel. The flowchart in Fig. 10 shows

the general application procedure of the developed method

and the software.

The first step in the application of the method is to read

all observed values in the selected time series from the

input file. The file is an Excel spreadsheet containing a

two-dimensional matrix of the observed data. In this study,

the columns in the data file represent months and the rows

represent years. For each run, all observed data for a single

station is evaluated. The method requires no preprocessing

of data and uses all observed values from a station to

generate the frequency tables for each observation; esti-

mations are then made for the entire series. No observa-

tions are ignored and no smoothing occurs.

The software generates four output files containing the

frequency tables, the estimations and their correlations with

removed observations and statistical measures comparing

the observed and estimated series to one another. Conditional

formatting is used in the output files to visualize the

j-3 j-2 j-1 j j+1 j+2 j+3
i-3 Cl(i-3,j-3) Cl(i-3,j-3) Cl(i-3,j-1) Cl(i-3,j) Cl(i-3,j+1) Cl(i-3,j+2) Cl(i-3,j+3)
i-2 Cl(i-2,j-3) Cl(i-2,j-2) Cl(i-2,j-1) Cl(i-2,j) Cl(i-2,j+1) Cl(i-2,j+2) Cl(i-2,j+3)
i-1 Cl(i-1,j-3) Cl(i-1,j-2) Cl(i-1,j-1) Cl(i-1,j) Cl(i-1,j+1) Cl(i-1,j+2) Cl(i-1,j+3)
i Cl(i ,j-3) Cl(i ,j-2) Cl(i ,j-1) Cl(i ,j+1) Cl(i,j+2) Cl(i,j+3)
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p Cl(p,q-3) Cl(p,q-2) Cl(p,q-1) Cl(p,q) Cl(p,q+1) Cl(p,q+2) Cl(p,q+3)
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p+3 Cl(p+3,q-3) Cl(p+3,q-2) Cl(p+3,q-1) Cl(p+3,q) Cl(p+3,q+1) Cl(p+3,q+2) Cl(p+3,q+3)

a

b

Fig. 9 a The cluster pairs

(orange, yellow and green) for

which rules 1, 2 and 3 are

written, b a matching cluster

pair for the first rule
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differences between the values. The code is separated into

distinct sections and explanations about the implementation

of the method by the software are provided in the code itself.

The frequency based imputation software is distributed

under the terms of the GNU General Public License ver-

sion 3, and a copyright notice is provided at the beginning

of the code. The software code may be downloaded using

the following link: https://www.dropbox.com/s/l9eavvjiy

wipl19/FrequencyBasedImputation.vb?dl=0.
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