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Abstract Global greenhouse gases increase could be a

threat to sustainable agriculture since it might affect both

green water and air temperature. Using the outputs of 15

general circulation models (GCMs) under three SRES

scenarios of A1B, A2 and B1, the projected annual and

seasonal precipitation (P) and cardinal temperatures

(T) were analyzed for five climatic zones in Iran. In

addition, the probable effects of climate change on cereal

production were studied using AquaCrop model. Data

obtained from the GCMs were downscaled using LARS-

WG for 52 synoptic stations up to 2100. An uncertainty

analysis was done for the projected P and T associated to

GCMs and SRES scenarios. Based on station observations,

LARS-WG was capable enough for simulating both P and

T for all the climatic zones. The majority of GCMs as well

as the median of the ensemble for each scenario project

positive P and T changes. In all the climatic zones, wet

seasons have a higher P increase than dry seasons, with the

highest increase (27.9–83.3%) corresponding to hyper-arid

and arid regions. A few GCMs project a P reduction mainly

in Mediterranean and hyper-humid climatic regions. The

highest increase (11.2–44.5%) in minimum T occurred in

Mediterranean climatic regions followed by semi-arid

regions in which a concurrent increase in maximum T

(2.9–14.6%) occurred. The largest uncertainty in P and

cardinal T projection occurred in rainy seasons as well as in

hyper-humid regions. The AquaCrop simulation results

revealed that the increased cardinal T under global

warming will cause 0–28.5% increase in cereal water

requirement as well as 0–15% reduction in crop yield

leading to 0–30% reduction in water use efficiency in 95%

of the country.

Keywords AquaCrop model � Climatic zones � Future
climate conditions � GCMs � SRES scenarios � LARS-WG �
Uncertainty analysis

1 Introduction

There is a solid agreement among scientists that a genetic

evolution occurred in the Earth’s climate related to

increases in atmospheric CO2 and other radiatively active

gases, leading to a climate change (Tabari et al. 2011).

Climate change is defined as any systematic change in the

long-term (several decades or longer) evolution describing

the climate system (Gil-Alana 2012). Over the recent

100-year period (1906–2005), a global surface warming at

a rate of 0.74 ± 0.18 �C has been taking place and the

warming rate over the second half of this period is almost

twice as that of the whole 100-year period (IPCC 2007).

The global warming might affect various meteorological

variables such as precipitation and temperature (Tabari

et al. 2015; Yu et al. 2002; Haskett et al. 2000). Many

studies have clearly shown the variability of climatic

variables in Southwest Asia as a result of human interfer-

ence in the ecosystems (e.g., Tabari and Hosseinzadeh
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Talaee 2011; Hamdi et al. 2009; Smadi 2006; Evans and

Geerken 2004; Abahussain et al. 2002).

Any change in meteorological variables due to climate

change will affect both water and food security since some of

them such as precipitation and air temperature (T) are key

factors in agriculture. In rainfed agriculture, precipitation is

the only water resource which supplies crop water require-

ment during the growing season. Even for irrigated agricul-

ture, green water plays a major role in economic agriculture

since applying blue water is costly due to infrastructure

requirement and a high opportunity cost (Konar et al. 2012;

Yang et al. 2006; Aldaya et al. 2010). However, green water

could be directly used in agriculture. Moreover, temperature

change affects crop growth, development and yield, and grain

quality especially the development rate as reported in the

previous researches (e.g., Sarker et al. 2012; Luo 2011;

Christensen et al. 2007). Negative effects of climate change

on food and water security could also be partly associated

with a significant and direct relationship between T and

evapotranspiration (Xing et al. 2014; Peterson et al. 2002). In

fact, a T increase might increase evapotranspiration and crop

water demand. Under such circumstances, farmers cannot be

allowed to fully irrigate their crops due to water shortage

under climate change by applying deficit irrigation strategies.

However, deficit irrigation (as a rational solution under water

shortage) can lead to a significant reduction in crop yields due

to a significant linear relation between crop yield and crop

water use (Karandish 2016; Payero et al. 2006; Klocke et al.

2004; Stone 2003). Therefore, long-term climate data anal-

ysis particularly for rainfall and temperature, which provides

valuable reference for future water resources and crop water

requirements, is required to develop future strategies for

efficient water and crop planning (Reddy et al. 2014).

Assessing the related risks to extreme temperature and con-

sequently, exploring adaptation solutions requires identifying

the temperature thresholds. In fact, exploring the influences of

high temperatures on crop yield in different growth stages

may help with defining critical phenophases. Therefore, the

investigations could be focused on these stages. Results of

field investigations in which the negative effects of high

temperature on crop yield are studied under different condi-

tions could be helpful for improving crop models and con-

sequently for quantifying the influence of temperature

variations on crop yield at the regional scale (Luo 2011).

Analyzing and predicting the change in critical climatic

variables is more essential in arid regions such as Iran

where dry condition may increase under global warming if

no adaptation solutions is undertaken. Under such cir-

cumstances, the process of desertification will be aggra-

vated due to the growing influence of humans and domestic

animals on fragile and unstable ecosystems (Goyal 2004).

In Iran, land degradation in the past decades through

overexploitation of water resources together with

converting forest and rangelands to cultivated land and

overuse of woodland plants as fuel led to a serious deser-

tification risk (Tabari et al. 2011; Modarres and da Silva

2007; Ghahraman 2006; Raziei et al. 2005). Thus,

achieving water and food security requires serious attempts

to quantify the probable effects of climate change on

meteorological and hydrological variables. Some

researchers investigated the effects of climate change on

climatic variables in different parts of Iran. Abbaspour

et al. (2009) have assessed the impact of climate change on

water resource components in Iran using Canadian Global

Coupled Model (CGCM 3.1) for three scenarios of A1B,

B1, and A2. Their results indicate that the wet regions of

the country will receive more rainfall, while the dry regions

will receive less. However, both monthly minimum and

maximum temperature will increase under climate change.

Tabari and Hosseinzadeh Talaee (2011) have investigated

the annual and seasonal precipitation trends at 41 stations

in Iran for the period 1966–2005 using three methods of

Mann–Kendall, Sen’s slope estimator and linear regression.

The results indicated a decreasing trend in annual precip-

itation at about 60% of the stations which was significant at

seven stations at the 5% significance level.

Although GCMs provide robust information regarding

the quantitative effects of global warming, their coarse

resolution is insufficient for analyzing local researches.

Therefore, the projections of global changes should be

downscaled when local variability of weather data under

climate change is investigated. Downscaling methods are

generally classified in two groups: statistical and dynamical

methods. Detailed information on these methods can be

found in the literature (Fowler et al. 2007; Wilby et al.

2004; Xu 1999; Hewitson and Crane 1996). Stochastic

weather generator models are a kind of statistical down-

scaling methods by which long synthetic series of data are

stochastically generated (Hashmi et al. 2011). When these

models are used, missing data are also filled and different

realizations of the same data are produced (Wilby 1999). In

these methods, random numbers are employed and the

observed time series of a station or a site are taken as input

parameters (Hashmi et al. 2011).

The Long Ashton Research Station Weather Generator

(LARS-WG) is a stochastic weather generator which was

developed by Semenov and Barrow (2002). In the LARS-

WG, the climate projections from 15 GCMs of IPCC AR4

are incorporated. This model can be employed for gener-

ating time series of precipitation, cardinal temperatures and

radiation for both current and future climates (Ouyang

et al. 2014). LARS-WG has been reported to provide

reliable results for climate change studies in different parts

of the world (Luo 2016; Agarwal et al. 2014; Hashmi et al.

2011). The high capability of this model to downscale

weather data in arid regions such as Iran has also been
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reported (Almasi and Soltani 2016; Kazemi-Rad and

Mohammadi 2015; Osman et al. 2014; Etemadi et al.

2014, 2012; Chen et al. 2013; Dastorani and Poormo-

hammadi 2012). Even for the driest regions of Iran, LARS-

WG yielded reliable results (Goodarzi et al. 2015).

Although LARS-WG has been widely used for down-

scaling GCM data, literature reviews revealed that earlier

studies have mainly focused on the downscaling of only

one or two GCMs in a specific climatic region, while long-

term changes in climatic variables in different climatic

zones in Iran projected by different GCMs did not receive

enough concern globally and locally. Different GCMs may

yield different responses to the same external conditions

and result in differences in their outputs (Fowler et al.

2007). Therefore, the outputs of a few GCMs could not be

suitable for developing adaptation solutions to global

warming. Assessment of climate change impact by a large

ensemble of GCMs and analysis of the associated uncer-

tainties are essential for estimating the potential conse-

quences of anthropogenic climate change and preparing

adaptation solutions. Policy makers and planners require

such information for preparing adaptation and mitigation

plans to reduce possible negative impact of climate change.

This study aims to apply the outputs of all the GCMs

incorporated in LARS-WG to investigate the possible

effects of global warming on key weather variables and

cereal production. Although new scenarios (Representative

Concentration Pathway: RCP) have been recently devel-

oped, they have not yet been incorporated in LARS-WG.

Hence, this study makes use of the outputs of the 15 GCMs

used in the IPCC AR4 under the SRES scenarios incor-

porated in LARS-WG. The precipitation and temperature

data for the historical and future periods from the 15 GCMs

under three scenarios of A1B, A2 and B1 in five climatic

zones of Iran (i.e., hyper-humid, Mediterranean, semi-Arid,

arid and hyper-Arid) were analyzed. The analysis was

carried out for the base period (1981–2010) and three

future periods over the 21th century including 2011–2040

(early-century period), 2041–2070 (mid-century period)

and 2071–2100 (late-century period). The uncertainties in

GCMs and SRES scenarios for precipitation and tempera-

ture projections were also quantified. Finally, the possible

influence of climate change on cereal production in the

country was investigated in terms of crop water require-

ment, yield and water use efficiency.

2 Materials and methods

2.1 Study area and data collection

Iran lies between 25�000N–38�390N latitude and 44�000E–
63�250E longitude and spans an area of 1,640,195 km2. The

elevations range from -32 m below the sea level up to

5428 m with a national average of 1200 m. Based on de

Martonne climate classification, there are five climatic

regions in Iran including hyper-arid, semi-arid, arid,

Mediterranean and hyper-humid with a general climate of

arid and semi-arid (Tabari et al. 2014). For this study, 52

synoptic stations located in the five climatic zones were

selected (Fig. 1) for which 30-year daily weather data

including minimum (Tmin) and maximum (Tmax) tempera-

ture, precipitation (P) and radiation were collected for

1981-2010 (i.e., base period). Based on the available data,

the long-term areal average of Tmin, Tmax and annual P are

12.4, 25.18 �C and 243.6 mm, respectively. The southeast

(Sistan and Balouhestan province) and north (Gilan pro-

vince) parts of the country receive the lowest (104.3 mm)

and highest (1032.9 mm) annual P, respectively.

To obtain future climatic variables, the 15 GCMs used

for the IPCC AR4 were selected because their data for the

selected SRES scenarios are embedded in LARS-WG

model. The models used in this research are listed in

Table 1. Three emission scenarios including B1 (low

emission of GHGs), A1B (medium emission of GHGs) and

A2 (high emission of GHGs) were considered. These sce-

narios were selected because the qualitative results derived

from them are mostly valid for the other SRES scenarios as

well (IPCC 2007).

2.2 Downscaling weather data with LARS-WG

LARS-WG is a stochastic weather generator used to gen-

erate long-term daily weather data series at a single site

Fig. 1 Study area and the locations of 52 synoptic stations
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under both current and future conditions. LARS-WG uses

observed daily weather data for a given site to compute a

set of parameters for probability distributions of weather

variables as well as correlations between them, which are

used to generate synthetic weather time series of arbitrary

length by randomly selecting values from the appropriate

distributions. Semi-empirical probability distributions are

used for P simulation and a normal distribution for tem-

perature (T). Moreover, semi-empirical distributions with

equal interval size are used for estimating solar radiation

for a given set of parameters (Semenov and Barrow 2002).

In LARS-WG, there are three steps to generate synthetic

weather data: model calibration, model validation and

generating the synthetic weather data. SITE ANALYSIS

function is used for the model calibration through which

observed weather data are analyzed to determine their

statistical characteristics. These information are stored in

two parameter files for the other steps. The calibration

process is based on the comparison of the statistical

properties of the synthetic time series versus the observed

data for each station (Agarwal et al. 2014). In this stage, the

statistical properties (including monthly mean, standard

deviation, 95% percentile of monthly P or T, t test and

F-test) of the observed and simulated time series for each

station are compared for the base period of 1981–2010. To

validate LARS-WG, derived parameter files from the

observed weather data during the calibration process are

used to generate a 30-year long daily synthetic weather

time series with the same statistical characteristics as the

original observed data (Chen et al. 2013). Thereafter, the

statistical characteristics of the observed and synthetic

weather data are compared to assess the ability of LARS-

WG to simulate P, Tmax, and Tmin at the chosen sites in the

study. Once LARS-WG has been calibrated using observed

weather data for a given site and its performance has been

verified, the parameter files derived from observed weather

data during the model calibration process are used to

generate synthetic weather data corresponding to a partic-

ular climate change scenario simulated by GCMs having

the same statistical characteristics as the original observed

data, but differing on a day-to-day basis (Chen et al. 2013;

Agarwal et al. 2014). Synthetic data corresponding to a

particular climate change scenario may also be generated

by applying GCM-derived changes of precipitation, tem-

perature and solar radiation to the LARS-WG parameter

files.

To generate future climate scenarios for a station,

LARS-WG baseline parameters calculated during the cal-

ibration process were adjusted by monthly D-change fac-

tors calculated from the differences between the future and

baseline periods. These D-change factors were then applied

as relative changes to LARS-WG parameters for the

baseline P and T of each station in order to generate daily

time series for the future periods. In this study, the climate

scenarios based on the A1B, A2 and B1 scenarios simu-

lated by the selected 15 GCMs (Table 1) were generated by

using LARS-WG for the time periods of 2011–2040,

2041–2071, and 2071–2100 to predict the future change of

precipitation and temperature in Iran. A detailed descrip-

tion of the different steps involved in LARS-WG for

Table 1 The global climate models used in this research (GCMs from IPCC AR4)

No. Model Scenarios Research center Country Resolution

A1B A2 B1

1 BCM2 4 4 Bjerknes Centre for Climate Research Norway 1.9� 9 1.9�
2 CGMR 4 Canadian Center for Climate Modelling and Analysis Canada 3.75� 9 3.75�
3 CNCM3 4 4 Canadian Centre for Climate Modelling and Analysis Canada 1.9� 9 1.9�
4 CSMK3 4 4 Australia’s Commonwealth Scientific and Industrial Research Organization Australia 2.8� 9 2.8�
5 FGOALS 4 4 Institute of Atmospheric Physics China 2.8� 9 2.8�
6 GFCM21 4 4 4 Geophysical Fluid dynamic Laboratory USA 2.5� 9 2�
7 GIAOM 4 4 Goddard Institute for Space Studies USA 3� 9 4�
8 HadCM3 4 4 4 UK Met. Office UK 2.5� 9 3.75�
9 HadGEM 4 4 UK Met. Office UK 1.3� 9 1.9�
10 INCM3 4 4 4 Institute for Numerical Mathematic Russia 4� 9 5�
11 IPCM4 4 4 4 Institute Pierre Simon Laplace France 2.5� 9 3.75�
12 MIHR 4 4 National Institute for Environmental Studies Japan 2.8� 9 2.8�
13 MPEH5 4 4 4 Max-Planck-Institute for Meteorology Germany 1.8� 9 1.8�
14 NCCCSM 4 4 4 National Centre for Atmospheric Research USA 1.4� 9 1.4�
15 NCPCM 4 4 National Center for Atmospheric Research USA 2.8� 9 2.8�
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downscaling climate change projections is given in

Semenov and Stratonovitch (2010).

After downscaling weather data at 52 synoptic stations,

mean daily and monthly values of the generated data for

each time period were compared with the ones of the base

period to explore the possible impact of climate change. To

do so, the downscaled weather data at the stations located

in each climatic zone were averaged (i.e., areal average) to

represent the weather data over that zone. The averages

over the country (national averages) were also calculated.

The comparison was carried out for the annual and sea-

sonal time-scales. In the seasonal scale, four seasons were

defined based on the national standard of Iran: (i) spring:

April, May and June (AMJ), (ii) summer: July, August and

September (JAS), (iii) autumn: October, November and

December (OND), and (iv) winter: January, February and

March (JFM).

2.3 Mann–Kendall trend analysis

The rank-based nonparametric Mann–Kendall method

(Mann 1945; Kendall 1975) was applied to the long-term

data in this study to detect statistically significant trends. In

this test, the null hypothesis (H0) is that there has been no

trend in P, Tmin and Tmax over time and the alternate

hypothesis (H1) is that there has been a trend (increasing or

decreasing) over time. The mathematical equations for

calculating the Mann–Kendall statistics S, V(S) and stan-

dardized test Z statistics are as follows:

S ¼
Xn�1

i¼1

Xn

j¼iþ1

sgnðXj � XiÞ; ð1Þ

sgn Xj � Xi

� �
¼

þ1 if Xj � Xi

� �
[ 0

0 if Xj � Xi

� �
¼ 0

�1 if Xj � Xi

� �
\0

8
<

: ; ð2Þ

V Sð Þ ¼ 1

18
½n n� 1ð Þ 2nþ 5ð Þ� �

Xq

p¼1

tp tp � 1
� �

2tp þ 5
� �

;

ð3Þ

Z ¼

S� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þ

p if S[ 0

0 if S ¼ 0
Sþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þ

p if S\0

8
>>>><

>>>>:

: ð4Þ

In these equations, Xi and Xj are the time series observa-

tions in chronological order, n is the length of time series,

tp is the number of ties for pth value, and q is the number of

tied values. Positive Z values indicate an upward trend in

the time series, while negative Z values indicate a negative

trend. If Zj j[ Z1�a=2, H0 is rejected and a statistically

significant trend exists in the time series. The critical value

of Z1�a=2 for a p-value of 0.05 (selected for this study) from

the standard normal table is 1.96. The magnitude of the

trends for the study variables for the period 1980–2010 was

determined by the Sen’s slope estimator. If a linear trend is

present in a time series, then the true slope (change per unit

time) can be estimated by using a simple nonparametric

procedure developed by Sen (1968). The slope estimates of

N pairs of data are first computed by:

Qi ¼
xj � xk

j� k
for i ¼ 1; . . .;N; ð5Þ

where xj and xk are data values at times j and k (j[ k),

respectively. The median of these N values of Qi is Sen’s

estimator of slope. The Sen’s slope estimator is then

computed based on N:

when N is odd Qmed ¼ Q Nþ1
2½ �

when N is odd Qmed ¼
1

2
Q N

2½ � þ Q Nþ2
2½ �

� �

8
<

: : ð6Þ

Finally, Qmed is tested with a two-sided test at the

100(1-a)% confidence interval and the true slope may be

obtained by the nonparametric test (Partal and Kahya

2006).

2.4 GCMs and SRES scenarios uncertainty

A plausible range was quantified to illustrate the uncer-

tainty in P, Tmin and Tmax projections in the various

climatic zones of Iran. The change in the mean value of

these variables for each future period (average of the

30 years for 2011–2040, 2041–2070 and 2071–2100)

from the base period was determined for estimating the

plausible range for both the annual and seasonal scales.

Different probability distribution functions (PDFs) were

fitted to the GCMs projections for each scenario and

then, the Kolmogrov–Smirnov test was used to evaluate

the goodness-of-fit of these functions. The Kolmogrov–

Smirnov statistic (D) is determined based on the largest

vertical difference between the theoretical and the

empirical cumulative distribution function (CDF) as

follows:

D ¼ max
1� i� n

F xið Þ � i� 1

n
;
i

n
� F xið Þ

� �
: ð7Þ

The 5% significant intervals were selected to analyze the

hypothesis regarding the distribution form. Thereafter, the

CDFs were computed based on the best fitted function for

both the seasonal and annual changes in P, Tmin and Tmax in

the future periods projected by GCMs under A1B, A2 and

B1 scenarios compared to the base period. The uncertainty

range was presented as the 5th and 95th percentile intervals

from the CDFs.
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2.5 Performance evaluation criteria

The statistical parameters including the percentage of dif-

ference between observed and generated data (DF) (Reddy

et al. 2014), model efficiency (Ef) and root mean square

error (RMSE) were considered for comparing the observed

and simulated weather data as follows.

DF ¼ Yi � Xið Þ
Xi

� 100 ð8Þ

Ef ¼
Pn

i¼1 Xi � �Xð Þ2�
Pn

i¼1 Yi � Xið Þ2
Pn

i¼1 Xi � �Xð Þ2
ð9Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Xi � Yið Þ2

n

s

ð10Þ

where Xi, Yi, �X and �Y are respectively observed, simulated,

average of observed and average of simulated data. N de-

notes the number of observed/simulated data. DF was used

to calculate percentage change in the climate variables with

respect to the base period. The lowest values of DF and

RMSE and values near unity for Ef denote higher simu-

lation accuracy.

3 Results and discussions

3.1 Evaluating LARS-WG outputs

For the base period (1981–2010), the percentage difference

between the observed and simulated values of annual P,

Tmin and Tmax is illustrated in Fig. 2. Precipitation is gen-

erally overestimated, with the highest bias in the southern

and southeastern parts of Iran and the lowest one in the

northern, northeastern and northwestern parts. However,

Tmax is underestimated in a small area, while Tmin is gen-

erally overestimated. Comparison of the observed and

LARS-WG simulated data reveals that the model performs

better for non-monsoon months (June–September) when

there is less rainy days and lower P amount (Fig. 3). The

largest bias between the observed and generated data is

observed in March–May period when the higher variability

of P and T occurs. The model shows a higher ability for

temperature simulation compared with precipitation. These

results are in agreement with the findings of Reddy et al.

(2014) and Agarwal et al. (2014) who found better results

for simulating T than P when comparing the observed and

generated data.

The model’s validation results in terms of normalized

root mean square error (NRMSE) (2.14–31.33, 0.14–0.38

and 0.17–0.54 for P, Tmin and Tmax, respectively) and Ef

(near unity for all the considered variables) indicate that

LARS-WG can generate the selected climatic variable

quite well (Table 2). However, monthly comparison

between the observed and LARS-WG simulated P for the

five climatic zones in Fig. 3 reveals that the model ranks

first for simulating the climate variables in the Mediter-

ranean and sub-humid climatic zones, while the higher

variability of monthly P in the other climatic zones led to

lower Ef and higher NRMSE. Overall, the statistical results

are satisfactory for the five climatic zones since no sig-

nificant difference is found between the observed and

generated data based on t-test analysis (p-value\ 0.05).

These results are in accordance with the reported results in

the previous precipitation- and temperature-related resear-

ches (Zhang et al. 2014; Hashmi et al. 2011).

3.2 Precipitation analysis

3.2.1 Historical precipitation trend

Figure 4 shows the results of trend analysis for annual and

seasonal P, Tmin and Tmax during the base period. The

results show that although there is a slight decrease in the

average annual P over the country during 1981–2010, it is

not significant according to the MK test. An insignificant

annual P trend in most of the stations in Iran has also been

reported by Tabari and Hosseinzadeh Talaee (2011), Raziei

et al. (2005) and Modarres and da Silva (2007). The

average of the Z values over different stations for P is equal

to -0.3, indicating a slight decrease in annual P at the

national level. Also, it can be observed that annual P in

19.4% of the stations is decreasing, although it is not sig-

nificant. An increasing trend can be found at the remaining

stations, of which only Bam, Khoy and Sanandaj stations

have a statistically significant trend. Tabari and Hossein-

zadeh Talaee (2011) reported that during 1966–2005, most

of the stations located in Northern Iran had decreasing

trends, while most of the stations located on the northern

coasts of the Oman Sea and the Persian Gulf in the

southern part of Iran had increasing trends of annual P.

For spring P, a significant decreasing trend is observed

only at Tabass station (Fig. 4), while four stations

(Hamedan, Khoramabad, Saghez and Zanjan) show a sig-

nificant increase in spring P with Z[ 1.96. The summer P

for all stations shows insignificant change, with an

insignificant decrease in 63.5% of the stations (Fig. 4). A

general decrease is observed in autumn P with a significant

trend in seven stations (Ghazvin, Gorgan, Hamedan, Ker-

man, Khoy, Sanandaj and Zanjan). Nevertheless, six sta-

tions (Bojnurd, Boushehr, Isfahan, Ghom, Ramsar and

Tabass) experienced a slight but not significant increase in

autumn P during 1981–2010. With the exception of a sig-

nificant decrease in Bandar Abbas and Bandar Lengeh

stations, no significant change in winter P is observed for

the other stations. Generally, winter P decreased in 44% of
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the stations. This result is in agreement with some previous

researches which reported a negative trend in winter P over

the past decades (Nazemosadat et al. 2006; Tabari and

Hosseinzadeh Talaee 2011).

3.2.2 Future precipitation change

Using the probability density functions (PDFs), the pro-

jection of precipitation for the 15 GCMs under the A1B

scenario and also for the ensemble average of the GCMs

under three SRES scenarios (i.e., A1B, A2 and B1) is

calculated (not shown). The probability of P occurrence

under a certain value is equal to the area under the curve to

the left of that value. The total area under a PDF is equal to

one. Results show both inter-annual variability (i.e., vari-

ation of an individual PDF) and probable uncertainty (i.e.,

differences between the PDFs of different GCMs). The

hyper-humid regions have the highest inter-annual vari-

ability of P with more flat PDFs compared the other

regions. However, the uncertainty is greater than inter-an-

nual variability of P for the hyper-arid and arid regions.

A closer agreement is observed between GCMs PDFs

(or scenario PDFs) with the extracted PDFs for the base

period in the early periods compared with those for the

later periods (not shown). In fact, in the early period, the

inter-annual variability of P is higher than the difference

between GCMs or scenario PDFs for all regions while it is

opposite for the mid and late periods. The difference

between the SRES scenarios well represents the uncer-

tainty in P projections in the future periods in addition to

the inter-annual variability of P. The difference between

GCMs or scenario PDFs indicates different behaviors of

the projected P for different GCMs and scenarios as can be

seen for the later periods. Such different behaviors may be

associated with the different resolutions of ocean models

for different GCMs. In fact, better simulation of sea ice

extent, sea surface temperature, surface heat, ocean heat

transfer process and momentum fluxes under an ocean

model in GCMs considerably affect climate processes

(CCSP 2008). The difference between GCMs could also be

attributed to several factors such as the prognostic variable

for cloud characterization and the compatibility between

the heat and water budget of the atmospheric and ocean

models (Randall et al. 2007). The projection differences

between the three SRES scenarios are mainly due to the

different assumptions related to economic, social and

environmental modes.

The results of 35 ensembles (i.e., projections from 15

GCMs and three scenarios, Table 1) indicate that most

ensembles show an increase in mean annual P and a few

ensembles show a decrease. However, the average value

yielded from 15 GCMs under the three scenarios as well as

the median values for PDFs under the three scenarios of

A1B, A2 and B1 indicate a general increase in annual P in

the study area. Based on a physical law, any rise in T will

increase the atmospheric water-holding capacity. In fact,

the main reason which led to P increase is the increase in

atmospheric water vapor content. Increased T in the study

area is discussed in the following sections.

Based on the average results of the 15 GCMs for each

scenario, the national average of annual P was calculated

for the base and future periods and results are summarized

in Table 3. Compared to the base period, climate change

projections show a positive increase of the average annual

precipitation at the national level under A1B, A2 and B2

scenarios with a range of 8.14–21.86%. Despite an overall

increase in annual P in the country during 2011–2100, the

share of regions which annually receive lower P than the

national average will slightly increase by 1.5–3.3% com-

pared with those for the base period (Table 3). The national

average of annual P is 243.6 mm in the base period when

58.4% of the country receive less P than 243.6 mm. During

2011–2100, annual P increases by 8.14–21.86%. Never-

theless, 57.8–60.3% of the study area will receive less P

Fig. 2 Percentage difference between the observed and simulated (i.e., DF) P (left), Tmin (middle) and Tmax (right) during 1980–2010
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than the national average in the future periods. However, a

slight increase in the share of regions with higher P than the

national average is observed under the A2 and B1 scenarios

during 2011–2040. Such results demonstrate a non-uniform

spatial increase in P under projected climate change which

is also obvious in Fig. 5.

Figure 5 shows that the highest P increase under climate

change will happen on the coasts of the Caspian Sea, the

Oman Sea and the Persian Gulf, and in the northern hill-

sides of the Alborz Mountains and the western hillsides of

the Zagros Mountains. Inversely, the lowest impact of

climate change is expected for the west and northwest of

Iran. In addition, climate change is also projected to have a

significant effect on P thresholds (Fig. 5). During the base

period, P ranges between 53.1 and 1679.5 mm in the study

area, while climate change increases the minimum

Fig. 3 Monthly variation of the observed and LARS-WG simulated climate variables for five climatic zones during 1981–2010
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Table 2 Statistical properties for comparing observed and simulated weather data during 1980–2010

Climate St. no Station P Rank Tmin Rank Tmax Rank

NRMSE EF NRMSE EF NRMSE EF

Hyper-arid 1 Abadan 33.87 89.87 30 0.90 99.95 3 0.62 99.96 2

7 Bam 50.53 71.76 45 1.47 99.90 8 0.86 99.91 7

10 Bandar Lengeh 36.41 90.01 27 0.78 99.92 6 0.80 99.81 16

14 Chahbahar 70.38 55.99 52 0.85 99.83 14 0.57 99.74 19

17 Esfahan 46.36 72.97 44 2.40 99.93 5 1.45 99.89 9

25 Iranshahr 54.92 60.83 51 0.74 99.97 1 0.86 99.89 9

26 Jask 75.21 61.10 50 0.92 99.78 16 0.91 99.51 20

28 Kashan 40.38 77.95 40 1.70 99.95 3 1.24 99.91 7

29 Kerman 18.71 96.78 6 3.08 99.91 7 0.98 99.92 6

45 Tabass 39.93 85.77 37 1.47 99.94 4 0.92 99.94 4

49 Yazd 64.30 65.58 47 1.41 99.96 2 0.99 99.93 5

50 Zabol 42.63 88.18 33 1.44 99.95 3 1.15 99.88 10

51 Zahedan 45.33 76.24 42 2.32 99.88 10 0.88 99.92 6

Arid 2 Abadeh 24.15 93.77 17 3.83 99.89 9 1.05 99.94 4

3 Ahwaz 33.06 90.78 26 0.86 99.96 2 0.64 99.96 2

8 Bandar Abass 71.50 65.56 48 1 99.90 8 0.65 99.87 11

11 Birjand 30.55 92.05 21 2.92 99.91 7 1.44 99.85 13

13 Bushehr 17.02 98.41 1 0.84 99.94 4 0.80 99.90 8

16 Doushan Tappeh 17.64 94.97 10 1.81 99.93 5 1.15 99.93 5

20 Ghom 24.15 91.52 23 3.09 99.87 11 1.54 99.86 12

38 Sabzevar 22.96 93.98 16 2.11 99.92 6 1.34 99.90 8

41 Semnan 45.66 61.68 49 1.56 99.96 2 1.28 99.92 6

Semi-arid 4 Arak 21.90 92.03 22 3.92 99.90 8 2.03 99.86 12

5 Ardebil 18.81 87.14 35 8.97 99.87 11 2.31 99.82 15

12 Bojnurd 67.22 84.93 38 3.87 99.88 10 2.03 99.83 14

15 Dezful 32.32 91.32 24 1.57 99.90 8 0.64 99.96 2

18 Fassa 60.42 77.26 41 3.07 99.82 15 1.38 99.83 14

19 Ghazvin 17.14 94.61 12 2.81 99.94 4 1.23 99.94 4

22 Hamedan Foroudgah 14.50 96.13 8 8.27 99.85 13 1.34 99.95 3

23 Hamedan Nozheh 12.76 96.65 7 14.58 99.78 16 1.21 99.96 2

27 Karaj 16.84 95.10 9 3.25 99.86 12 1.56 99.90 8

30 Kermanshah 26.82 89.43 31 2.96 99.92 6 1.16 99.94 4

32 Khoy 21.36 86.31 36 2.73 99.96 2 2.16 99.86 12

33 Mashhad 23.02 93.22 18 2.50 99.93 5 1.15 99.94 4

35 Oroomieh 20.32 89.97 29 3.94 99.93 5 2.36 99.83 14

43 Shahroud 42.22 67.08 46 2.51 99.92 6 1.24 99.94 4

44 Shiraz 16.93 97.95 2 2.01 99.92 6 1.44 99.85 13

46 Tabriz 20.99 88.99 32 2.11 99.97 1 1.11 99.97 1

47 Tehran Mehrabad 19.14 94.38 14 1.95 99.92 6 1 99.95 3

48 Torbate Heydarie 30.11 89.98 28 3.15 99.92 6 1.37 99.92 6

52 Zanjan 32.54 73.63 43 4.82 99.93 5 1.97 99.89 9

Mediterranean 21 Gorgan 13.21 87.30 34 1.05 99.97 1 1.71 99.75 18

24 Ilam 22.16 94.29 15 1.88 99.94 4 1.09 99.94 4

31 Khoramabad 23.94 92.56 20 3.15 99.86 12 1.26 99.92 6

39 Saghez 12.24 97.26 5 12.31 99.73 18 2.92 99.77 17

40 Sanandaj 18.61 94.58 13 4.69 99.88 10 1.23 99.94 4

42 Shahre Kord 28.51 90.98 25 12.06 99.75 17 0.87 99.97 1
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threshold of P by 24.5% (i.e., under B1 scenario in

2071–2100) up to 35.84% (i.e., under A2 scenario in

2011–2040) and increases the maximum threshold by 0.3%

(i.e., under A1B scenario in 2071–2100) up to 6.7% (i.e.,

under A2 scenario in 2011–2040).

The maps in Fig. 5 reveal that in the case of downscaled

future P, each part of the country shows their own style of

projection. Thus, the ensemble effects of the 15 GCMs on

P were calculated for the five climatic zones and results are

summarized in Table 4. Climate change projections show a

P increase in all the climatic zones; however, some GCMs

project a P reduction mainly in the Mediterranean and

hyper-humid regions. The highest P increase corresponds

to the hyper-arid and arid regions in which P increases by

27.9% under B1 scenario during 2071-2100 up to 83.3%

under A2 scenario in 2011–2040. The lowest increase

occurs in the Mediterranean and hyper-humid climatic

regions where P will increase by 1.98% under A1B sce-

nario during 2071–2100 up to 9.5% under A2 scenario

during 2011–2040. Dissimilar patterns of future P may be

due to the local characteristics influencing P. A 15� dif-

ference in geographical latitude between the northern and

southern parts of Iran, the existence of many folds, peaks

and valleys and a combination of different fronts which

initiate from different lands would cause different sources

of P in Iran. In addition, being on the bank side of the

Oman Sea and the Persian Gulf and the influence of the

Mediterranean Sea in one hand, and the existence of Ara-

bian and African arid deserts in the southwestern parts and

Siberian wide plains in the northeastern part on the other

Fig. 4 Stations with increasing, decreasing and no trend at the 5% significance level for the annual and monthly P time series

Table 2 continued

Climate St. no Station P Rank Tmin Rank Tmax Rank

NRMSE EF NRMSE EF NRMSE EF

Hyper-humid 6 Babolsar 17.48 93.08 19 1.02 99.96 2 1.01 99.91 7

9 Bandar Anzali 10.99 97.46 4 1.26 99.94 4 1.61 99.83 14

34 Noushahr 9.45 97.93 3 1.43 99.93 5 1.23 99.88 10

36 Ramsar 32.44 78.83 39 1.29 99.94 4 0.70 99.96 2

37 Rasht 12.45 94.62 11 1.29 99.95 3 1.26 99.88 10

NRMSE Normalized Root Mean Square Error, EF Model efficince
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hand, would lead to different sources of P in Iran (Alizade

et al. 2010). In fact, P in the northern and southern parts of

the country comes from Monsoon and Siberian cold fronts

and Mediterranean fronts respectively, while the central

and eastern parts do not receive high P and stay as deserts

and arid regions since they are located in the back of the

Alborz and Zagros Mountains (Azarakhshi et al. 2013).

This makes complicated the climate change effect study on

the spatial distribution of P in Iran. Non-uniform spatial

increase in P may threaten rainfed agriculture since green

water is the main source for supplying crop water

requirement. Under such circumstances, sustainable agri-

culture requires essentially prioritizing rainfed crop culti-

vation considering regional available green water under

climate change. This need is more obvious when one

considers that average annual P during 2041–2070 and

2071–2100 is less than that during 2011–2040 for the

whole country as well as for the selected climatic zones

(Table 4).

The seasonal pattern of P variations also represents a

non-uniform temporal projected effect of climate change

scenarios on P (Fig. 6). Despite a general P increase, the

increase in autumn and winter periods (wet seasons) is

higher than that for spring and summer periods (dry sea-

sons) which may decrease the green water availability

during the growing seasons. Increased P in wet seasons will

lead to water-logging problems which requires installing

costly drainage systems to relieve the further problems. On

the other hands, increased P in dry seasons could provide

favorable condition for weeds and pests growth and soil

erosion through changing soil available water (Enete and

Amusa 2010). These will have negative effects on crop

growth and economic yield which in turn threaten the food

security in the future.

Figure 6 shows that spring (10.2–23.18% increase in P),

summer (58–65.4% increase in P) and autumn (640–674%

increase in P)monsoons are expected to becomewetter in the

arid regions while winter P has the highest increase in the

hype-arid regions accounted for 41–50.6%. During

2011–2100, the lowest change in autumn and winter P is

observed in the hyper-humid regions where autumn P has a

negative change during 2041–2100 (-2.2 to -10.64%

decrease in P) compared to the base period (1981–2010). A

negative trend is also observed in spring P of the Mediter-

ranean climatic region (-2.7 to-7%) during 2041–2100 and

in the semi-arid regions (-3.5%) during 2071–2100. In

addition, summer monsoon precipitation likely decrease in

both the semi-arid and Mediterranean climatic regions by

-6.3 to -7.5% during 2071–2100. Since the influencing

variables on climate could trigger abrupt transitions, Pmight

decrease under a drier monsoon or increase under amorewet

monsoon (Zickfeld et al. 2005).

To evaluate the probability of seasonal P variations, the

range of seasonal uncertainty arising from the differences

in the projections of different GCMs under the three SRES

scenarios was estimated within the central 5–95% value of

CDFs (i.e., CDFs represents the changes in seasonal P

during the future periods relative to the base period). Fig-

ure 7 shows the range of seasonal P uncertainty for dif-

ferent climatic zones. No uniformity is observed in

seasonal P changes as well as the annual one; rather they

change from negative to positive for the future periods.

Due to the complexity in interpreting P projections, not

uniform pattern is observed in P changes during any sea-

son. Girvetz et al. (2009) has reported that different GCMs

may not agree on whether P will increase or decrease even

at a specific place and agree even less on the magnitude of

the P change.

Table 3 Annual P increase and it’s thresholds at the national level based on the average results of the 15 GCMs for each scenario in the future

periods

Base Scenario Min (mm) Max (mm) Mean (mm) SD (mm) RPH (%) RPL (%) RPD (%) RPD (%) PI (%)

1980–2010 – 53.09 1679.52 240.26 153.98 41.65 58.35 – – –

2011–2040 A1B 67.12 1759.64 274.39 160.81 40.74 59.26 0 100 14.21

A2 72.12 1791.62 292.78 172.42 42.11 57.89 0 100 21.86

B1 67.11 1706.65 273.39 160.33 42.21 57.79 0 100 13.79

2041–2070 A1B 68.07 1726.43 264.85 152.32 40.62 59.38 4.34 95.66 10.23

A2 68.13 1780.33 283.63 166.81 39.71 60.29 1.15 98.85 18.05

B1 68.12 1724.02 271.43 157.14 39.82 60.18 0.21 99.79 12.97

2071–2100 A1B 68.12 1684.97 260.14 150.27 40.24 59.76 10.64 89.36 8.27

A2 68.12 1699.14 273.68 163.00 39.83 60.17 10.09 89.91 13.91

B1 66.11 1678.32 259.82 152.66 40.77 59.23 4.42 95.58 8.14

RPH regions with P higher than national average, RPL regions with P lower than national average, RPD regions with P decrease under climate

change, RPI regions with P increase under climate change, PI increase in P

Stoch Environ Res Risk Assess (2017) 31:2121–2146 2131

123



Uncertainty decreases for all seasons in the different cli-

matic zones in the mid- and late-century except for the

winter season in the hyper-humid and arid climatic zones and

the spring season in the other regions for which uncertainty

decreases with time progress. Increase of uncertainty with

time might be due to the uncertainties in climate sensitivity

and the carbon cycle (Knutti et al. 2003). Similar results were

reported by Minville et al. (2008) and Chen et al. (2011) for

GCMs and GHGs. Regardless of the climatic zones, the

highest range of uncertainty is projected in the rainy seasons

of autumn andwinter, while the lowest one is projected in the

summer season which receives the lowest P during a year.

Exception is for the hyper-humid regions in which the lowest

uncertainty corresponds to spring P. The larger uncertainty

in rainy seasons was also reported by Agarwal et al. (2014).

Figure 7 shows that seasonal P in the hyper-humid regions,

which contributes a large part of the national P, has also the

highest uncertainty, while the hyper-arid regions has the

lowest uncertainty for seasonal P.

3.3 Temperature analysis

3.3.1 Historical temperature trend

The analysis of historical temperature trends shows an

increasing trend in the annual average Tmin and Tmax time

Fig. 5 Difference between P values for the base and future periods (as the ensemble average of the 15 GCMs) under different climate change

scenarios up to 2100
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Fig. 6 Seasonal variation of P in different climatic zones under changing climate

Table 4 Climate change effects on annual P in the five climatic zone (i.e., as the ensemble average of the 15 GCMs for each scenario)

Period Climatic zone P (mm)

Base A1B A2 B1

Mean Min Max Mean Min Max Mean Min Max

2011–2040 Hyper-arid 103.53 137.72 116.87 176.97 141.63 114.58 181.88 134.68 112.72 178.05

Arid 187.68 227.35 196.91 271.43 344.00 311.06 384.83 227.03 192.88 266.53

Semi-arid 288.68 323.06 293.36 348.36 333.26 300.22 363.13 320.16 294.46 347.30

Mediterranean 457.81 503.38 459.43 593.03 509.83 453.04 603.35 513.74 468.21 589.38

Hyper-humid 1254.49 1363.01 1231.99 1461.98 1373.14 1279.86 1499.26 1338.96 1264.69 1433.29

2041–2070 Hyper-arid 103.53 138.11 113.69 168.48 141.87 117.81 178.75 137.25 117.47 163.97

Arid 187.68 219.42 187.80 250.69 338.27 298.46 373.31 222.41 193.14 258.46

Semi-arid 288.68 307.73 279.82 344.44 317.75 289.65 363.19 317.45 292.38 343.54

Mediterranean 457.81 475.14 427.73 532.30 496.11 431.6 560.84 497.56 446.84 550.17

Hyper-humid 1254.49 1315.02 1195.87 1428.42 1344.91 1186.84 1449.41 1342.14 1215.35 1473.23

2041–2070 Hyper-arid 103.53 137.46 118.07 171.27 137.08 118.88 173.55 132.42 110.78 165.11

Arid 187.68 219.44 178.09 258.28 338.86 304.07 385.92 216.42 175.77 243.71

Semi-arid 288.68 299.53 276.16 326.04 303.14 277.64 334.17 302.95 273.52 333.80

Mediterranean 457.81 466.90 414.29 519.75 467.55 418.78 525.75 480.33 439.02 543.35

Hyper-humid 1254.49 1305.81 1203.15 1432.82 1317.61 1235.12 1443.42 1295.08 1167.62 1417.73
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series (Fig. 4). Tmin increased at the rate of 0.035–1.21 �C
per decade during 1981–2010 with the minimum increase

for Ghazvin station and the maximum one for Mashhad

station, located in the semi-arid climatic zone. Totally, the

lowest increase in Tmin occurred in the Mediterranean cli-

mate followed by the semi-arid one. A slight reduction in

Tmin (i.e., 0.0.4–0.83 �C per decade) occurred in less than

22% of the stations during 1981–2010. For over 94% of the

stations, an increase of 0.02–0.95 �C per decade is

observed in the annual Tmax series with the lowest and

highest increases in the hyper-arid and semi-arid climatic

zones, respectively (Tables 5, 6). Overall, the annual Tmin

and Tmax trends are significant at 28.2 and 51.9% of the

stations, respectively (Table 2; Fig. 4). The results gener-

ally indicate an overall warming climate in Iran, as

reported by other researches (Abbaspour et al. 2009;

Dastorani and Poormohammadi 2012; Kazemi-Rad and

Mohammadi 2015). Z statistics for seasonal average Tmin

and Tmax show an obvious increase for all seasons for over

80% of the stations. This increase is significant in

53.8–63.9% of the stations in different seasons for Tmin. A

slight but not significant decrease in seasonal Tmin is

observed in five stations (Esfahan, Fassa, Ilam, Saghez and

Shahrekord). Tmax for 7.7–61.5% of the stations is found to

have a significant increasing trend in spring, summer and

winter, while about half of the stations in autumn experi-

ence a significant Tmax increase.

3.3.2 Future temperature change

The PDFs for the projection of Tmin and Tmax for all GCMs

under the A1B scenario and for the ensemble projections of

Fig. 7 Range of change in seasonal P under different scenarios in different climatic zones of Iran (lower and upper ends indicate respectively the

5 and 95% intervals of the uncertainty range and dot shows the 50% value)
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the 15 GCMs under three SRES scenarios (i.e., A1B, A2 and

B1) show both inter-annual variability and probable uncer-

tainty (not shown). Despite the negative change in both Tmin

and Tmax under a few GCMs, the median values for PDFs

under the three scenarios indicates a general increase in

annual Tmin and Tmax in the study area. Same as P, a closer

agreement between GCMs or scenarios PDFs with those for

the base period is found in the early future periods compared

to the later one (not shown). Based on the average results of

the 15 GCMs for each scenario, the national average of

annual Tmin and Tmax was calculated for the base and future

periods and results are summarized in Table 5. A 7.1%

(under A1B scenario during 2011–2040) up to 30.5% (under

A2 scenario during 2071–2100) increase in national average

of Tmin can be found for the future periods with an ensemble

average of 19.2% during 2011–2100. Taking the median of

the 15 GCMs, the 90-year average increase (i.e., across

2011–2100) in Tmin is around 17.4, 25.4 and 14.8% for the

A1B, A2 and B1 scenarios, respectively.

Table 5 also shows a considerable increase in annual

Tmax in the future, accounted for 2.14–11.99% with an

ensemble average of 6.16% during 2011–2100. However,

the increase in Tmax is lower than that for Tmin. For

2011–2040, the A2 scenario projects the highest increase in

Tmax with a 30-year average of 11.99%, while for

2041–2100, the highest increase in Tmax corresponds to the

A1B scenario with a 60-year average of 8.83%. The lowest

increase in Tmax is projected by the B1 scenario. Both Tmin

and Tmax increases under climate change in the study area

are supported by the results of the previous researches

(Abbaspour et al. 2009; Dastorani and Poormohammadi

2012; Kazemi-Rad and Mohammadi 2015).

The spatial maps of the difference (%) in the Tmin and

Tmax of the base and those for the future periods (i.e., based

on the median of the 15 GCMs for three scenarios) indicate

a general increase in both Tmin and Tmax in Iran except for a

few parts of the country during 2011–2100 (Figs. 9, 10).

The highest increase in both Tmin and Tmax occurs in the

northwest part where the general climate is semi-arid.

Similar to precipitation, climate change is also projected to

have a significant effect on Tmin and Tmax thresholds

(Figs. 8, 9). During the base period, the ranges of variation

for Tmin and Tmax are 2.68–24.46 and 15.01–34 �C,
respectively. Climate change is expected to increase the

minimum threshold of Tmin and Tmax by 12.3–123.9 and

6.7–20%, respectively. The maximum threshold of Tmin

and Tmax also increases by 1.6–10.2 and 2.9–8.8%,

respectively.

Table 5 Annual Tmin and Tmax increase and thresholds at the national level based on the average results of the 15 GCMs for each scenario in the

future periods

Base Scenario Min (mm) Max (mm) Mean (mm) SD (mm) RTH (%) RTL (%) RTD (%) RTD (%) TI (%)

Tmin 1980–2010 – 2.68 24.46 11.34 4.32 43.25 56.75 – – –

2011–2040 A1B 3.45 25.03 12.14 4.30 43.29 56.71 0 100 7.05

A2 4.00 24.96 14.42 4.16 42.82 57.18 0.30 99.70 27.16

B1 3.01 24.87 12.25 4.22 42.55 57.45 0.10 99.90 8.02

2041–2070 A1B 4.01 25.96 13.42 4.20 42.46 57.54 0 100 18.34

A2 5.00 25.96 13.46 4.17 42.90 57.10 0 100 18.69

B1 4.00 25.96 13.06 4.22 43.55 56.45 0 100 15.17

2071–2100 A1B 5.01 26.96 14.37 4.24 42.66 57.34 0 100 26.72

A2 6.00 26.96 14.76 4.17 43.94 56.06 0 100 30.16

B1 5.00 25.96 13.76 4.24 44.27 55.73 0 100 21.34

Tmax 1980–2010 – 15.01 34.00 25.19 3.83 48.87 51.87 – – –

2011–2040 A1B 16.01 35.00 25.76 3.95 49.59 50.41 0 100 2.26

A2 18.01 37.00 28.21 3.78 50.00 50.00 0 100 11.99

B1 16.01 35.00 25.73 3.92 49.43 50.47 0 100 2.14

2041–2070 A1B 17.00 35.92 26.92 3.86 49.48 50.52 0 100 6.87

A2 17.01 35.93 26.87 3.86 49.41 50.59 0 100 6.67

B1 16.01 35.00 26.31 3.82 49.49 50.51 0 100 4.45

2071–2100 A1B 18.01 37.00 27.91 3.90 50.41 49.59 0 100 10.80

A2 16.01 35.00 25.79 3.89 49.45 50.55 0 100 2.38

B1 17.01 36.00 27.17 3.81 49.85 50.15 0 100 7.86

RTH regions with T higher than national average, RTL regions with T lower than national average, RTD regions with T decrease under climate

change, RTI regions with T increase under climate change, TI increase in T (i.e., T refers to Tmin or Tmax)
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To detect the non-uniform spatial effect of climate

change on temperature, the average impact of the 15 GCMs

on Tmin and Tmax was calculated for the five climatic zones

of Iran and results are summarized in Table 6. A general

increase in both Tmin and Tmax is detected for all climatic

zones. The highest increase in Tmin corresponds to the

Mediterranean climatic regions (11.2–44.5%), while the

lowest one corresponds to the arid climatic regions

(2.6–19%). Tmin increment increases with time evolution.

The semi-arid regions, which are the dominant climatic

region of Iran, are the most vulnerable part of the country

to climate change regarding Tmax increment of 2.9–14.6%

for the future. However, the hype-arid regions will be safer

under climate change since they have the lowest Tmax

increase, accounted for 1.2–9.7% compared to the base

period.

Seasonal patterns of Tmin and Tmax variations in Figs. 10

and 11 represent the non-uniform temporal projected effect

of climate change scenarios on these parameters. During

2011–2100, spring has the highest increase in Tmin and Tmax,

while the lowest increase occurs in the autumn season for all

the climatic zones. For all seasons, the highest increase in

both Tmin and Tmax occurs in the Mediterranean climatic

zone followed by the semi-arid regions. The hyper-humid

Table 6 Climate change effects on annual Tmin and Tmax in the five-climatic zone (i.e., as the ensemble average of the 15-models for each

scenario)

Parameter Period Climatic zone T (�C)

Base A1B A2 B1

Mean Min Max Mean Min Max Mean Min Max

Tmin 2011–2040 Hyper-arid 16.03 16.78 16.70 16.87 16.78 16.69 16.86 16.70 16.63 16.79

Arid 13.93 14.40 14.26 14.50 14.29 14.16 14.40 14.34 14.21 14.43

Semi-arid 7.54 8.26 8.20 8.40 8.34 8.28 8.48 8.14 8.07 8.28

Mediterranean 7.12 8.06 7.88 8.23 7.92 7.74 8.05 8.01 7.86 8.16

Hyper-humid 13.20 13.71 13.65 13.87 13.81 13.74 13.96 13.71 13.64 13.86

2041–2070 Hyper-arid 16.03 17.90 16.76 18.21 17.85 16.79 18.15 17.45 16.71 17.67

Arid 13.93 15.50 14.37 15.83 15.31 14.24 15.62 15.05 14.30 15.30

Semi-arid 7.54 9.37 8.23 9.71 9.40 8.32 9.73 8.84 8.13 9.09

Mediterranean 7.12 9.20 7.96 9.59 8.98 7.85 9.33 8.74 7.92 9.04

Hyper-humid 13.20 14.68 13.69 15.00 14.72 13.78 15.03 14.31 13.69 14.56

2041–2070 Hyper-arid 16.03 18.83 18.10 19.20 19.15 18.02 19.68 18.04 17.55 18.32

Arid 13.93 16.40 15.68 16.76 16.57 15.48 17.09 15.66 15.16 15.95

Semi-arid 7.54 10.26 9.54 10.64 10.67 9.57 11.22 9.41 8.92 9.71

Mediterranean 7.12 10.12 9.36 10.56 10.29 9.11 10.88 9.35 8.82 9.69

Hyper-humid 13.20 15.44 14.79 15.80 15.80 14.80 16.29 14.81 14.37 15.12

Tmax (�C) 2011-2040 Hyper-arid 29.04 29.45 29.34 29.60 29.45 29.34 29.60 29.39 29.29 29.54

Arid 26.72 27.22 27.10 27.35 27.13 27.02 27.26 27.19 27.08 27.32

Semi-arid 21.37 21.98 21.89 22.07 22.06 21.97 22.14 21.75 21.68 21.83

Mediterranean 21.93 22.51 22.33 22.77 22.16 22.01 22.41 22.47 22.35 22.74

Hyper-humid 20.04 20.43 20.34 20.59 20.52 20.44 20.65 20.44 20.34 20.59

2041–2070 Hyper-arid 29.04 30.59 29.42 30.97 30.55 29.44 30.91 30.13 29.36 30.41

Arid 26.72 28.36 27.19 28.71 28.20 27.08 28.54 27.92 27.15 28.19

Semi-arid 21.37 23.16 21.99 23.47 23.15 22.05 23.44 22.47 21.75 22.69

Mediterranean 21.93 23.73 22.44 24.23 23.27 22.05 23.73 23.24 22.39 23.66

Hyper-humid 20.04 21.44 20.41 21.80 21.46 20.52 21.78 21.07 20.39 21.34

2041–2070 Hyper-arid 29.04 31.56 30.76 32.00 31.87 30.68 32.48 30.77 30.21 31.14

Arid 26.72 29.32 28.54 29.74 29.51 28.36 30.08 28.59 28.04 28.92

Semi-arid 21.37 24.12 23.36 24.50 24.48 23.33 25.02 23.13 22.58 23.44

Mediterranean 21.93 24.72 23.93 25.26 24.65 23.42 25.32 23.94 23.35 24.42

Hyper-humid 20.04 22.26 21.56 22.65 22.61 21.59 23.12 21.64 21.15 21.97
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regions have the highest increase in seasonal Tmax, while the

arid and hyper-arid regions show the lowest increase in

seasonal Tmin and Tmax. Increased Tmin and Tmax in the

autumn and winter seasons may provide favorable condition

for shifting the sowing dates forward. In addition, such

increase may decrease the duration of the crops growing

seasons since crops receive their required thermal energy in a

shorter period (Karandish et al. 2016). However, increased

Tmin and Tmax may lead to increased crop water requirement.

This necesiates the investigation of climate change impact on

crops to achievce a sustainable agriculture.

The range of seasonal uncertainty arising from the dif-

ferences in the projections of different GCMs under the

three SRES scenarios was estimated within the central

5–95% value of CDFs (i.e., CDFs represents the changes in

seasonal Tmin or Tmax during the future periods relative to

the base period). Figures 12 and 13 show the range of

seasonal Tmin and Tmax uncertainty for different climatic

zones. More uniform results are observed in seasonal Tmin

and Tmax change compared to P. For 2011–2040, both Tmin

and Tmax change from negative to positive, while for

2041–2070 and 2071–2100 they more likely increase

Fig. 8 Difference between Tmax for the base and future periods as the ensemble average of the 15 GCMs under different climate change

scenarios up to 2100
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except for the winter season. For Tmin, uncertainty

increases for all seasons of different climatic zones in the

mid- and late-century, while for Tmax uncertainty decreases

with time progress except for the Mediterranean climatic

regions. Regardless of the climatic zones, the highest range

of uncertainty is projected in the winter season with the

lowest temperature during a year and the lowest uncer-

tainty in the summer season with the highest T during a

year. Figure 12 shows that the Mediterranean climatic

regions have the highest Tmin uncertainty, while the hyper-

arid, semi-arid and arid regions have the lowest uncertainty

for spring (and also winter), summer and autumn Tmin,

respectively. For all seasons, the hyper-arid regions have

the lowest Tmax uncertainty. Such results might imply that

GCM uncertainty in projecting future T is larger in the

humid regions. The main advantage of estimating the

uncertainty range is that it provides plausible ideas about

the changes that may occur in P and T in the future periods.

Such knowledge will help with developing planning and

coping tools and adaptation strategies. Since Iran’s econ-

omy is highly dependent on agriculture, the possible effects

of climate change on producing major crops are analyzed

based on the obtained results for the future changes in Tmin,

Tmax and P in the next section.

Fig. 9 Difference between Tmin for the base and future periods as the ensemble average of the 15 GCMs under different climate change

scenarios up to 2100
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3.4 Climate change effects on cereals in Iran

Seventy-three percentage of the agricultural land in Iran is

devoted to cereals including wheat (53.82%), barley

(12.24%), rice (4.59%) and maize (2.29%). 32.62% of the

total agricultural production of the country is produced in

these areas, of which 33% is produced in rainfed lands.

Figure 14 shows the share of different provinces in pro-

ducing rainfed and irrigated cereals in the country. More

than 70% of the total cereal production in the country is

produced in the arid and semi-arid zones in which crops are

mainly produced as irrigated –crops. These climatic zones

will have a considerable increase in spring and summer

Tmin and Tmax (i.e., growing season of irrigated crops)

which are key factors for crop growth. The hyper-humid

climatic zone ranks second in producing rainfed cereals

(14% of the total production) and seems to be less affected

by global warming regarding T while autumn P will

decrease during 2041–2100. Thus, agriculture in the hyper-

humid regions might be threatened in the future since

autumn P has a major role in the cropping cycle of rainfed

crops in these regions. In addition, there is a big threat to

the food security under global warming in Iran due to its

heavy dependence on irrigated agriculture which is the case

for arid and semi-arid regions. On the other hand, even

53% of rainfed crops are also produced in the semi-arid

climatic zone where air temperature will increase signifi-

cantly in the future periods.

A crop growth simulation model, AquaCrop (FAO

2012) was used to analyze the probable effects of climate

change on cereal growth in Iran. Response of irrigated

cereals to climate change was simulated using the outputs

of the 15 GCMs under different SRES scenarios. The

probable relative changes in cereal crop water requirement

(ET), yield and water use efficiency (WUE) are illustrated

in Fig. 15 for the early (2011–2040), mid (2041–2070) and

late (2071–2100) periods of the 21th century. A large part

of the country will experience 0–30% increase in ET

except for about 12% located in the west and south-west of

Iran in which up to 35% reduction in ET is expected

during 2011–2100. The highest increase in ET (5–28.5%)

will occur in the central and northeastern parts of the

Fig. 10 Seasonal variation of Tmin in different climatic zones under changing climate
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country. A direct relationship between T and evapotran-

spiration has been reported in the earlier studies (Xing

et al. 2014; Peterson et al. 2002). Any change in ET is

expected to affect crop yield since crop yield is directly

affected by root water uptake (Payero et al. 2006; Klocke

et al. 2004; Stone 2003). Yield reduction in the future

climate is obvious for almost 95% of the country espe-

cially in the northern-half where climate change will cause

up to 15% reduction in cereal yield. Figure 15 shows that

the arid and semi-arid climatic zones are more vulnerable

to climate change in view of the increase in ET and

decrease in crop yield, while the hyper-arid climatic zone

seems to be safer.

In the province point of view, more than 50% of the

total crop production in the study area is produced in six

provinces, of which three provinces are located in the

semi-arid climatic zone (Fars, Kermanshah and Razavi

Khorasan with a share of respectively 15.8, 6.3 and 6% in

the total production), one province is located in the arid

climatic zone (Khuzestan with a share of 10.5% in the

total production) and two provinces are located in the

hyper-humid climatic zone (Golestan and Mazandaran

with a share of respectively 6.8 and 4.9% in the total

production). The statistics reveal that even under the

province point of view, the semi-arid climatic zone plays

a major role in the total crop production of Iran. This part

of the country is the most vulnerable part since it is

exposed to a considerable increase in air temperature and

a slight increase in P under climate change. Figure 15

also demonstrates that climate change poses a serious

threat for Iran since Kermanshah, Razavi Khorasan,

Khuzestan, Golestan and Mazandaran provinces are

located in the northern-half of the country where the

highest yield reduction under climate change is expected

to occur especially during the period 2041–2070. How-

ever, cereal ET and yield in Fars province seems to be

less affected which ensure a higher level of food security

in this part of the country as this province is responsible

for 15.8% of crop production in the country (Fig. 15).

The main reason for yield reduction under climate

change could be attributed to the elevated cardinal tem-

peratures in the future. It is known that there is a basic

temperature requirement for crops to complete a specific

phonological phase or the whole life cycle, whereas

Fig. 11 Seasonal variation of Tmax in different climatic zones under changing climate
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extremely high and low temperature can have negative

effects on crop growth, development and yield especially at

critical phonological phases such as anthesis (Luo 2011).

Moreover, plant growth is affected by increased Tmax by

accelerating the growth of weeds, insects and pests in

warmer winters which threaten crop yield (Luo 2011). The

close relation of Tmin and Tmax with crop yield has been

demonstrated by some other researchers (e.g., Wheeler

et al. 2000; Vollenweider and Gunthardt-Goerg 2005;

Wahid et al. 2007). Among different crops, cereal pro-

duction has been reported to be more sensitive to heat

stress (Baker and Allen 1993; Stone and Nicolas 1995;

Commuri and Jones 2001; Shah and Paulsen 2003; Peng

et al. 2004; Ugarte et al. 2007; Selvaraj et al. 2011; Pradhan

et al. 2012).

Considering that ET or crop yield alone is not adequate

enough to evaluate the probable effects of climate change,

water use efficiency (WUE) which takes into account both

crop yield and ET was used for more comprehensive

climate change impact assessment on cereals. The WUE

index (kg m-3) was calculated by dividing crop yield

(kg ha-1) by crop water requirement (m3 ha-1) for the

base and future periods. The relative change in WUE was

calculated for the ensemble effects of the GCMs and three

SRES scenarios in the future periods (Fig. 15c). Fig-

ure 15c reveals 0–30% decrease in WUE in more than

95% of the country mainly located in the northern-half

except a few spots in the western and south-west of Iran

(i.e., in Fars and Ilam provinces). Also, Razavi-Khorasan,

Khuzestan, Kemanshah, Golestan and Mazandaran pro-

vinces, which are responsible for about 35% of the cereal

production in Iran, will experience considerable reduction

in WUE (5–30%). The obtained results imply the growing

threat of climate change to the national food supply in

Fig. 12 Range of change in seasonal and annual Tmin under different scenarios in different climatic zones of Iran (lower and upper ends indicate

respectively the 5 and 95% intervals of the uncertainty range and dot shows the 50% value)
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Iran, demanding further investigations for developing

adaptation solutions to cope with changing climate and to

sustain food and water security in the country.

4 Conclusions

In this research, annual and seasonal P, Tmin and Tmax

projections were analyzed for five climatic zones in Iran

based on the outputs of 15 GCMs under three SRES sce-

narios of A1B, A2 and B1. LARS-WG was applied to

downscale data obtained from GCMs in 52 synoptic sta-

tions over the study area for early (2011–2040), mid

(2041–2070) and late (2071–2100) periods of 21th century.

The range of uncertainty in the projections was determined

based on the 5–95% percentiles of CDFs for changes in P

or T derived from different GCMs for each scenario in the

future periods compared to the base period (1981–2010).

To evaluate the agriculture sustainability condition, the

spatial distribution of major rainfed and irrigated crops

over the country was illustrated and based on the obtained

results for each climatic zone, the probable effects of cli-

mate change on cultivating these crops were analyzed

using the crop growth simulation model of AquaCrop.

Given results for the calibration and validation process well

represent the high performance of LARS-WG for simu-

lating climatic variables for all stations. For 2011–2100,

the majority of GCMs as well as the median values of the

15 GCMs for each scenario show a positive change in both

annual and seasonal P. The highest increase (11.2–44.5%)

in Tmin occurred in the Mediterranean climatic regions

followed by the semi-arid regions. Rainy seasons as well as

the hyper-humid regions have the highest P uncertainty,

while the summer season and the hyper-arid regions show

Fig. 13 Range of change in seasonal and annual Tmax under different scenarios in different climatic zones of Iran (lower and upper ends indicate

respectively the 5 and 95% intervals of the uncertainty range and dot shows the 50% value)
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the lowest uncertainty in cardinal T (i.e., both Tmin and

Tmax).

Uncertainty analysis reveals that there is a high proba-

bility that the change in annual and seasonal cardinal T

may be positive during the irrigated crops’ growing seasons

especially for the semi-arid climatic zones which are

responsible for producing a considerable share of agricul-

tural products. As cereals are the major crops grown in the

country and their yield is highly dependent on thermal

condition during the growing seasons, the effect of climate

change on cereals was investigated. The elevated T beyond

the favorable thresholds significantly reduces the cereal’s

yield up to 15% and thereby, Iran’s food security. Water

security is also threatened since cereal WUE will decrease

up to 30 in 95% of the country. Coping with such probable

hazards for achieving sustainable agriculture requires

planning suitable adaptation solutions to save humankind

being in the future climate. Cultivating high-tolerant and

early cultivars as well as spatially prioritizing crop culti-

vation could be some examples of these solutions which

might help with saving food and water security under

changing climates. Overall, further investigations are

Fig. 14 Share of different provinces in producing rainfed and irrigated cereals in Iran
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highly recommended to propose possible solutions for

achieving sustainable agriculture under climate change in

the water-scarce arid regions such as Iran.
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