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Abstract This study draws attention on the extreme pre-

cipitation changes over the eastern Himalayan region of the

Teesta river catchment. To explore the precipitation vari-

ability and heterogeneity, observed (1979–2005) and sta-

tistically downscaled (2006–2100) Coupled Model

Intercomparison Project Phase Five earth system model

global circulation model daily precipitation datasets are

used. The trend analysis is performed to analyze the long-

term changes in precipitation scenarios utilizing non-

parametric Mann–Kendall (MK) test, Kendall Tau test, and

Sen’s slope estimation. A quantile regression (QR) method

has been applied to assess the lower and upper tails

changes in precipitation scenarios. Precipitation extreme

indices were generated to quantify the extremity of pre-

cipitation in observed and projected time domains. To

portrait the spatial heterogeneity, the standard deviation

and skewness are computed for precipitation extreme

indices. The results show that the overall precipitation

amount will be increased in the future over the Himalayan

region. The monthly time series trend analysis based results

reflect an interannual variability in precipitation. The QR

analysis results showed significant increments in precipi-

tation amount in the upper and lower quantiles. The

extreme precipitation events are increased during October

to June months; whereas, it decreases from July to

September months. The representative concentration

pathway (RCP) 8.5 based experiments showed extreme

changes in precipitation compared to RCP2.6 and RCP4.5.

The precipitation extreme indices results reveal that the

intensity of precipitation events will be enhanced in future

time. The spatial standard deviation and skewness based

observations showed a significant variability in precipita-

tion over the selected Himalayan catchment.

Keywords Trend analysis � Precipitation extreme indices �
Heterogeneity � QR � CMIP5 ESM-2M

1 Introduction

Precipitation is a vital component and has great vitality for

the living beings and ecosystem. Excessive or high-inten-

sity precipitation is often hazardous (Choi et al. 2014;

Pervez and Henebry 2014). Future changes in extreme

multi-day precipitation will influence the probability of

flood events in river channels (Pelt et al. 2014; Pervez and

Henebry 2014; Trenberth et al. 2011). The recent floods in

the Kedarnath area, Western Himalayas of Uttarakhand are

the classic examples of flash floods in the Mandakini River

that devastated the country by killing thousands of people

besides livestock (Rao et al. 2014). Therefore, it is sug-

gested that the quantitative and qualitative projections of

changes in climate on regional scales are necessarily nec-

essary to overcome this issue for hydrologist and decision

makers (Grimm 2011). Such projections are available from

the outputs of (downscaled) global climate models

(GCMs). The outputs from the climate models can be

further processed by impact models, e.g. hydrological

models (Leeds et al. 2015; Taylor et al. 2012).

Due to climate change, the rate of extreme precipitation

events have increased in last few years (Shivam et al. 2016;

Choi et al. 2014). The frequency and intensity of precipi-

tation have affected enormously in different regions of the

world (Guo et al. 2014; Choi et al. 2014; Goyal 2014;
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Lupikasza 2010). Many studies revealed that the frequency

and intensity of extreme precipitation events have been

increased (Agarwal et al. 2014; Choi et al. 2014; Meehl

et al. 2005). According to some recent global-scale

assessments, the heavy precipitation days and daily inten-

sity of precipitation have increased (Khaliq et al. 2014;

Donat et al. 2013; Alexander et al. 2006; Kunkel 2003).

The impact of climate change on extreme precipitation

conditions in the future time domain is determined by

Agarwal et al. (2014) and Goyal (2014). The GCMs based

assessment of precipitation scenarios indicated a positive

change in summer, autumn, and annual precipitation, but

an adverse change in spring precipitation. Several recent

studies utilized gridded rainfall data to analyze the daily

extreme rainfall events over India (Goyal 2014; Mondal

et al. 2015; Guhathakurta et al. 2011; Krishnamurthy et al.

2009; Ghosh et al. 2009) showed a significant hetero-

geneity in the precipitation events. They also revealed an

increment in the precipitation intensity over the Indian sub-

continents (Guhathakurta et al. 2011).

Few studies revealed climate change will most likely be

expressed through changes in freshwater availability due to

increasing precipitation variability, higher melting due to

temperature increments, and severe runoff conditions

(Shivam et al. 2016; Singh and Goyal 2016) because of

extreme precipitation events. The changes in precipitation

are expected to affect the cryospheric processes and

hydrology of the headwater catchments in the Himalayas

(Immerzeel et al. 2012; Buytaert et al. 2010; Yao et al.

2009). Goyal (2014) studied on the precipitation variations

in Assam, India utilized 102 years data from 1901 to 2002

and found most probable year of change was 1959 in

annual precipitation. The climate change studies performed

over snow-glacier induced Himalayan watersheds also

showed the enormous changes in precipitation (Shivam

et al. 2016; Kulkarni et al. 2010; Shrestha et al. 2009;

Bajracharya et al. 2008; Yamada 2000). To plan adaptation

strategies for changing climatic conditions, decision mak-

ers require quantitative projections on regional along with

local scales, depending on their purpose (Goyal 2014). The

description starts from increased surface temperature due

to atmospheric heating as well as global warming, thereby

raising potential evapotranspiration (Khaliq et al. 2014).

Furthermore, the higher temperature will lead to specific

humidity, and thus, precipitation occurs with more water

vapor, leading to enhanced precipitation rates (Choi et al.

2014).

A few authors evaluated the applicability of GCMs in

the projection of long-term precipitation trends (Shivam

et al. 2016; Wilby et al. 2014; Harpham and Wilby 2005).

However, the GCMs based projection of precipitation

scenarios may be uncertain due to the GCM resolution,

downscaling methods and the inherent internal variability

of climate (Taylor et al. 2012). This uncertainty arises

because of differences in the numerical and physical for-

mulations of GCMs (e.g. spatial resolution, vertical layers,

the representation of clouds, the convection process, the

boundary layer, etc.) (Agarwal et al. 2014; Taylor et al.

2012). Most modeling groups worldwide are participating

in latest CMIP5 GCMs. CMIP5 GCMs have higher spatial

resolution than previous versions such as CMIP3 (Singh

and Goyal 2016; Wang and Yang 2016; Taylor et al. 2012).

Thus, the CMIP5 GCMs based climate projections were

generated by adopting various downscaling approaches.

The usefulness of CMIP5 GCMs has already assessed in

several hydrological studies (Brands et al. 2013; Pervez

and Henebry 2014; Harding et al. 2014; Shashikanth et al.

2014; Sengupta and Rajeevan 2013; Kharin et al. 2013).

One of the most vulnerable regions in India is its

northeastern part comprising of the Sikkim Himalayas.

During the last decades (Palazzi et al. 2015; Pervez and

Henebry 2014; Ravindranath et al. 2011), no comprehen-

sive research has been conducted to determine the precip-

itation variability in this region. Most of the studies are

confined to only north, central and south India. Changes in

precipitation in Sikkim Himalayan region, which comes

under the eastern Himalayas, did not receive enough con-

cern globally and locally and no comprehensive studies

have been carried out at local/regional scale about climate

change as per the author’s best knowledge. Therefore, our

main objective is to reveal the current scenario of climatic

changes and its influence on extreme precipitation events.

For this reason, a statistical cum stochastic downscaling

model (SDSM) has been used to downscale precipitation

datasets at each sub-basin (SB) scale by utilizing observed

precipitation data sets (Wilby et al. 2014; Mahmood and

Babel 2013; Taylor et al. 2012; Goyal and Ojha 2011a).

Another objective of this study was to highlight the

precipitation changes over Sikkim Himalayan catchment

by applying non-parametric tests and extreme indices

(Choi et al. 2014) in a spatiotemporal domain. Precipitation

extreme indices (PEI) using different percentiles (99th,

90th, 80th) of daily total precipitation ([1 mm) in a year

and the number of days per year with daily precipitation

exceeding 20 mm (N20), 40 mm (N40) were calculated to

detect the precipitation extremity. The other relevant PEI

such as dry days is also calculated. These indices represent

both magnitude and frequency taking into account several

previous studies (Choi et al. 2014; De Lima et al. 2014;

Romano et al. 2013; Donat et al. 2013). The quantile

regression (QR) (Choi et al. 2014; Koenker 2005) based

linear trend analysis was performed to detect the higher

order and lower order changes in extreme precipitation

scenarios.
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2 Observational data, model output, and method

2.1 Study area

In this study, the Teesta river Himalayan catchment (up to

Chungthang) has been selected for the analysis (Fig. 1),

which corresponded to around 2552.57 km2 area. Teesta

River originated from the Chhombo Chhu from a glacial

lake Khangchung Chho at an elevation of 5280 m situated

in the northeastern corner of the Sikkim Himalayas. Teesta

river flows southward through gorges and rapids in the

Sikkim Himalaya (total length 309 km) (Bawa and Ingty

2012; Rahman et al. 2010). It is fed by rivulets arising in

the Thangu, Yumthang and Donkia-La ranges. The major

tributary of the Teesta River is Lachung River which meets

the Teesta River at Chungthang gauge station. The humid

climate of the Teesta catchment in Sikkim is characterized

with enormous water surpluses. The prevalent monsoon

climates have supported evergreen rainforests including

grasses which become dense and luxuriant in some parts of

middle Teesta catchment near to Lachung. The southwest

monsoon season, which is the principle rainy period for

almost the entire Teesta basin, is responsible for more than

80% of the total annual rainfall in these mountainous

ecological sites, and is significant in controlling the water

balance. The average annual maximum, minimum and

average precipitation during the years 1979–2005 varies

across all the SBs between 3238.60 and 3354.60 mm,

1399–1569 mm, 2346.71–2460.05 mm, respectively

(Fig. 2). The upstream catchment is mostly fed by snow

and glaciers only, whereas lower part of the catchment also

contributes to rainfall during monsoon and summer season.

2.2 Spatial interpolation of the precipitation

datasets

In this study, we have used daily gridded (0.5� 9 0.5�
scale) precipitation data sets which collected from Indian

Meteorological Department (IMD) for the year 1979–2005.

This dataset prepared from the quality-controlled observed

precipitation/rainfall data from more than 1800 gauges

(Vittal et al. 2013). Many authors utilized this dataset for

different hydrological studies (Shivam et al. 2016; Subas

and Sikka 2013; Goyal 2014; Vittal et al. 2013; Sen Roy

and Balling 2004). For the two gauge stations such as

Lachung and Chungthang, a point source measured daily

precipitation data sets (1979–2005) were also available;

and hence, used in this study. The six grids and two gauge

stations which were falling inside/near to study area uti-

lized for the analysis. This catchment corresponded to

extreme elevation variations.

The selected study area is divided into seven SBs to

highlight the local scale changes in precipitation. The

selected study area such as upper part of the Teesta river

catchment varies their elevations from moderate 1495 to

extreme 7392 m. The SB1 corresponded to upstream por-

tion and SB7 corresponded to lowest portion. Therefore

significant precipitation gradient change (around maximum

40 mm/km-year) was observed between these two SBs

(Singh and Goyal 2016). As per the above elevation

Fig. 1 Study area map showing Teesta river catchment (up to Chungthang)
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variations, precipitation has been adjusted to each SB scale

as the methodology presented by Singh and Goyal (2016)

and Neitsch et al. (2011).

2.3 Downscaling and bias correction of precipitation

datasets

After the spatial adjustment of observed hydro-meteoro-

logical variables at each SB, daily precipitation datasets

were downscaled at each SB utilizing ESM-2M GCM with

low (RCP2.6), moderate (RCP4.5) and extreme (RCP8.5)

RCP experiments. The ESM-2M GCM datasets utilized by

various researchers for the assessment of climate variabil-

ity in hydrological scenarios (Shivam et al. 2016; Singh

and Goyal 2016; Zhang et al. 2014; Kharin et al. 2013).

The six GCM grids (2.5� 9 2.5�) surrounding the study

region were selected as the spatial domain of the 16 most

relevant GCM predictors to adequately cover the various

circulation domains of the predictors as suggested by pre-

vious authors (Shivam et al. 2016; Zhang et al. 2014;

Taylor et al. 2012). These six GCM grid points are spatially

interpolated at each SB using an Inverse Distance

Weighting Approach (IDWA) (Snell 1998; Snell et al.

2000). Previously many authors successfully utilized

IDWA for the GCM interpolations (Kharin et al. 2013;

Goyal and Ojha 2011b). The IDWA method interpolates

the GCM grid point as per the weighting average of each

grid point at the known observed grid point and thus it

assigns the maximum weight to the closet distance point

(Snell et al. 2000).

For the downscaling of daily precipitation datasets, we

utilized Statistical Downscaling Model (SDSM) (Harpham

and Wilby 2005). The main strength of the SDSM tool is

that it provides the station-scale climate information from

GCM-scale output (Wilby et al. 2014; Wilby and Dawson

2013; Dibike and Coulibaly 2005). In this study, the large-

scale variable fields from GCMs or reanalysis data (e.g. 16

predictors) are chosen such that they are strongly related to

the local scale conditions of interest (Shivam et al. 2016;

Singh and Goyal 2016) to produce more realistic results.

SDSM involves linear regressions and thus the selection

of the predictors has done based on the correlation or

partial correlation analysis between the interested predict

and the predictors, and weights of the predictors which are

estimated through ordinary least-square method (Wilby

et al. 2014). SDSM can be classified as a conditional

weather generator in which regression equations are used

to estimate the parameters of daily precipitation rate and

amount, separately (Hashmi et al. 2011). Therefore it is

considerably more refined than a straightforward regression

model. The SDSM model was setup on a monthly time step

utilizing observed daily precipitation datasets (predictand)

and reanalysis GCM datasets (predictors) for the year

1979–2005.

Due to the coarser resolution of GCM, it may also

contain some bias (Shivam et al. 2016) in their downscaled

scenarios (e.g. daily precipitation). Therefore, the bias

correction of GCM outputs were corrected as also similarly

applied by previous researchers (Shivam et al. 2016;

Ahmed et al. 2013; Goyal and Ojha 2011a, b; Kidson and

Thompson 1998). The bias corrections of precipitation

datasets have done as per the method already used by

Mahmood and Babel (2013) (Eq. 1).

Pdeb ¼ PSCEN � Pobs

PCONT

� �
ð1Þ

where, Pdeb is the de-biased (corrected) daily time series of

precipitation for future periods. SCEN represents the sce-

nario data downscaled by SDSM for future periods (e.g.,

2006–2100), and CONT represents downscaled data by

Fig. 2 Average annual precipitation trend over the study area based on observed precipitation (1979–2005)
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SDSM for the present period (e.g., 1979–2005). Pscen is the

daily time series of precipitation generated by SDSM for

future periods respectively. Pcont is the long term values for

precipitation for the control period simulated by SDSM.

Pobs represents the long-term monthly observed values for

precipitation. The �P shows the long-term average. The

comparison results between the observed and SDSM based

simulated precipitation datasets have shown in Table 1.

The results found comparable to the previous studies

(Shivam et al. 2016; Wilby et al. 2014).

2.4 Analysis methods

Seasonal (e.g. months) non-parametric Mann–Kendall

(MK) test and Kendall’s Tau (s) coefficient (Mann 1975;

Kendall 1975; Sen 1968) are calculated to detect the trends

in precipitation scenarios (Goyal 2014). The purpose of the

Seasonal MK (SMK) test is to test the precipitation sce-

narios over time are expected to change in the same

direction (increase or decrease), but the trend may or may

not be linear (Choi et al. 2014; Goyal 2014). It does not

require that the data are normally distributed. However, the

regression analysis requires that the residuals from the

fitted regression line be normally distributed. The presence

of seasonality implies that the data have different distri-

butions for different seasons of the year.

The change in the time series data sets was estimated

using Sen’s slopes (Sen 1968). The Sen’s slope represents

the rate of change of precipitation per year (Oliveira et al.

2014). The Sen’s slopes used to highlight the precipitation

changes in both the historical (1979–2005) and future times

(2006–2100). The Sen’s slopes significantly used so far by

various researchers in other regions (Goyal 2014; Choi

et al. 2014; Oliveira et al. 2014; Jena et al. 2014; Subas and

Sikka 2013; Goyal and Ojha 2011a, b). The significance

level alpha (a) was chosen as 0.05 for a two-sided test

(Goyal 2014; Choi et al. 2014). Based on the significance

level, values of the test statistic Z larger than ?1.96 or

lower than -1.96, indicate the positive (increasing) or

negative (decreasing) trends (Goyal 2014; Choi et al.

2014).

To enumerate the linear trends in annual precipitation at

high tails (high order changes), the QR (Koenker 2005)

was applied to all the RCP experimental scenarios. QR

estimates the conditional quantiles of a response variable

distribution in the linear model that provides the complete

view of possible causal relationships between variables

(Tareghian and Rasmussen 2013). The main benefit of QR

is its flexibility for modeling data with heterogeneous

conditional distributions. Therefore, QR calculates multi-

ple rates of change (slopes) from the minimum to maxi-

mum response. The QR model allows one to examine

changes in specific parts (quantiles) of the distribution

(Choi et al. 2014). Thus, this model is suitable for calcu-

lating extreme event values (Choi et al. 2014; Tareghian

and Rasmussen 2013).

In this study, the ‘‘year’’ has taken as an explanatory

variable and annual precipitation was taken as an inde-

pendent variable. As per the Choi et al. (2014), the sth

quantile (0\ s\ 1) represents the value of the variable

below which the proportion of population is s. The central

location of a distribution is represented by the median that

is 0.5th quantile (Koenker 2005). In the standard regres-

sion, the expectation of the dependent variable Y, given the

observation of X = x, can be described as (Eq. 2):

E Y jxð Þ½ � ¼ b0 þ b1x ð2Þ

where b0 and b1 are the intercept and slope coefficient of

the linear regression line, respectively. The standard

regression focuses on determining a conditional mean. The

QR is mainly concerned with the determination of a con-

ditional quantile (Choi et al. 2014; Koenker 2005). The

linear conditional quantile function can be written in the

following form (Eq. 3):

Qy sjxð Þ ¼ b0 sð Þ þ xb1 sð Þ ð3Þ

where Qy(s|x) is the expected y for the sth quantile of x and

b0(s) and b1(s) are the intercept and slope coefficient of the

sth QR line, respectively. For example, for s = 0.90,

Qy(0.90|x) is the 90th percentile of the distribution of

y conditional on the values of x; in other words, 90% of the

values of y are less than or equal to the specified function

of x (see Hao and Naiman 2007; Koenker 2005 for further

details).

Precipitation extreme indices (PEI) were calculated and

compared at each SB scale to highlight the spatio-temporal

variations in precipitation extremity. The six PEIs were

generated as per the previous guidelines (Choi et al. 2014;

Santos and Fragoso 2013) and their details have shown in

Table 2. The first five indices such as 99th percentile, 90th

Table 1 Comparison between

the observed and SDSM

simulated precipitation data at

each catchment scale

Statistics SB1 SB2 SB3 SB4 SB5 SB6 SB7

Observed 200.50 198.70 199.80 199.30 198.00 198.50 202.30

Simulated 227.10 215.00 213.60 215.00 216.90 217.84 229.90

R2 0.86 0.85 0.85 0.83 0.85 0.87 0.85

RMSE 32.36 45.92 15.54 16.46 40.58 21.21 28.76
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percentile, 80th percentile, N20 and N40 show intensity

based changes, while the last one such as dry days shows

frequency based changes. These PEIs were generated to

highlight the magnitude of change of precipitation.

To examine the spatio-temporal heterogeneity of the

extreme precipitation indices, spatial standard deviation

and spatial skewness are calculated for both the time series.

To determine deviation of index values from the mean

across space, standard deviation of each index across the

SBs for each year was calculated. Higher values indicate

larger deviation across the SB from the mean and lower

values smaller deviation (Choi et al. 2014). To set off

spatial standard deviation as a measure of changeability,

spatial skewness of each index for each year for both the

time series are also calculated. Skewness s of the data x

(index values from all the SBs) can be written as (Eq. 4):

s ¼ E x� lð Þ3

r3
ð4Þ

where l is the mean of x and r is the standard deviation of

x and E(t) represents the expected value of the quantity

t. Positive skewness indicates that the data is spread out to

the right of the mean and negative to the left. The skewness

of a perfectly symmetric distribution is zero.

3 Results

Figure 2 shows the average annual scenarios of precipita-

tion for the historical time series (1979–2005). The average

annual precipitation varies between 2446.71 and

2460.05 mm across all the SBs calculated from observed

datasets (Fig. 2). The upstream SBs (e.g. between SB1 and

SB2) show higher variations in precipitation amount which

vary from 2346. 71 mm to 2457.85 mm while in lower SBs

(e.g. between SB6 and SB7), it ranges from 2446.41 to

2473.05 mm. As per the annual precipitation scenario

(1979–2005), the maximum amount of precipitation (cu-

mulative) have occurred during June to October months

over the selected Teesta river catchment.

The outcomes from MK, Kendall’s Tau and Sen’s slopes

are presented in Tables 3 and 4. These tests show signifi-

cant changes in precipitation scenarios as per observed

(1979–2005) and CMIP5 ESM2 M GCM based RCP

experimental scenarios (2006–2100). Table 3 shows

monthly precipitation trend analysis for historical time

(1979–2005). The observed scenario indicates that the

precipitation amount has increased during historical time

(1979–2005). As per MK test static Z, the precipitation

trends for February, March and April months show a sig-

nificant increase in precipitation across all the SBs except

September which shows a significant decrease in precipi-

tation amount. These observations reveal a significant shift

in precipitation pattern over the Himalayan region. The

monsoon months (e.g. July to September) show a decrease

in precipitation across all the SBs while pre-monsoon

months show an increase in precipitation. The rate of

change of precipitation was computed through Sen’s

slopes.

As per Table 3, the higher rate of changes in precipi-

tation was calculated for upstream SBs such as SB1 and

SB2, and downstream SBs such as SB6 and SB7. As per

the observations, the maximum negative rate of change in

precipitation has been recorded at downstream SBs which

vary from -9.19 to -9.44 (Table 3). The maximum pos-

itive Sen’s slopes range from 4.07 (SB1) to 5.77 (SB5).

Table 4 shows the monthly precipitation trend analysis

results for forecasted time (2006–2100) as per CMIP5

ESM-2M RCP experimental scenarios. The projected

trends of precipitation enable the climatic variations in a

spatiotemporal domain. The RCP based precipitation sce-

narios show moderate (e.g. RCP2.6 and RCP4.5) to

extreme change in precipitation (e.g. RCP8.5). Therefore,

for every RCP experiment, the separate trend has been

computed at each SB scale. The MK results have presented

in Table 4 on a monthly time step, illustrating the seasonal

variations in precipitation amount for the year 2006–2100.

As per Table 4, the MK Z shows a significant increase

(SI) in precipitation during January to June and October to

November months across all the SBs; while in the July to

Table 2 Description of precipitation extreme indices (PEIs)

Acronym Description Unit

99th Percentile 99th Percentile of daily total precipitation amounts[1 mm in a year in the given period mm

90th Percentile 90th Percentile of daily total precipitation amounts[1 mm in a year in the given period mm

80th Percentile 80th Percentile of daily total precipitation amounts[1 mm in a year in the given period mm

N20 Number of days with precipitation of 20 mm or more in a year in the given period days

N40 Number of days with precipitation of 40 mm or more in a year in the given period days

Dry Days Number of dry days in a year in the given period days
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September months, the precipitation trends show signifi-

cant decrease across all the SBs (Table 4). However, a few

observations did not account any significant increase or

decrease. As per Table 4, the precipitation trends have

recorded highly significant for the RCP4.5 and RCP8.5

experimental scenarios than RCP2.6. The RCP8.5 experi-

ments based trends show the maximum increase and

decrease in precipitation. The April and May months show

a maximum increase in precipitation across all the SBs

(e.g. their MK Z varied from 7.03 to 8.11 for RCP4.5 and

RCP8.5 at SB5 during May, respectively). The Sen’s

slopes show a rate of change in precipitation during both

Table 3 Precipitation trend analysis results on a monthly basis for

observed time series (1979–2005) data at each sub-basin (SB) scale

using Mann–Kendall (MK) Test

SBs Months Kendall Tau MK Z Sen’s Slope

SB1 Jan 0.153 1.104 0.740

Feb 0.339 2.459 2.720

Mar 0.264 1.917 3.820

Apr 0.356 2.585 4.070

May 0.076 0.542 1.670

Jun 0.075 0.541 2.090

Jul -0.207 -1.500 -7.510

Aug 0.173 1.250 3.730

Sep -0.316 -2.293 -5.390

Oct 0.225 1.626 2.650

Nov 0.059 0.416 0.120

Dec -0.019 -0.125 -0.030

SB2 Jan 0.148 1.063 0.710

Feb 0.340 2.460 2.700

Mar 0.267 1.938 3.860

Apr 0.367 2.668 4.000

May 0.074 0.521 1.730

Jun 0.071 0.500 2.750

Jul -0.202 -1.460 -7.640

Aug 0.170 1.230 3.500

Sep -0.310 -2.251 -5.370

Oct 0.222 1.605 2.610

Nov 0.054 0.375 0.080

Dec -0.022 -0.145 -0.030

SB3 Jan 0.148 1.063 0.751

Feb 0.350 2.543 2.731

Mar 0.264 1.917 3.820

Apr 0.361 2.626 4.070

May 0.076 0.542 1.750

Jun 0.071 0.501 2.930

Jul -0.207 -1.501 -7.800

Aug 0.168 1.209 3.440

Sep -0.316 -2.293 -5.380

Oct 0.225 1.626 2.650

Nov 0.059 0.416 0.070

Dec -0.025 -0.166 -0.029

SB4 Jan 0.149 1.064 1.020

Feb 0.356 2.585 2.830

Mar 0.270 1.960 3.880

Apr 0.316 2.293 3.340

May 0.071 0.500 1.610

Jun 0.042 0.291 1.950

Jul -0.213 -1.542 -8.730

Aug 0.168 1.209 3.270

Sep -0.316 -2.293 -6.020

Oct 0.207 1.500 2.520

Nov 0.048 0.333 0.100

Dec -0.008 -0.042 -0.050

Table 3 continued

SBs Months Kendall Tau MK Z Sen’s Slope

SB5 Jan 0.076 0.542 0.140

Feb 0.173 1.250 0.880

Mar 0.094 0.667 0.640

Apr 0.175 1.256 1.360

May -0.039 -0.271 -0.890

Jun 0.174 1.252 5.770

Jul -0.219 -1.584 -7.930

Aug 0.168 1.209 5.090

Sep -0.299 -2.160 -5.610

Oct 0.068 0.479 1.020

Nov 0.022 0.145 0.010

Dec -0.031 -0.208 -0.030

SB6 Jan 0.148 1.063 1.000

Feb 0.344 2.501 2.800

Mar 0.270 1.959 3.820

Apr 0.287 2.084 3.370

May 0.071 0.500 1.610

Jun 0.042 0.291 1.870

Jul -0.225 -1.626 -9.190

Aug 0.168 1.209 3.190

Sep -0.321 -2.334 -6.030

Oct 0.207 1.500 2.510

Nov 0.042 0.291 0.060

Dec -0.008 -0.041 -0.050

SB7 Jan 0.182 1.313 1.180

Feb 0.339 2.459 3.070

Mar 0.279 2.022 4.320

Apr 0.430 3.127 4.060

May 0.037 0.250 1.240

Jun 0.054 0.375 0.890

Jul -0.225 -1.626 -9.440

Aug 0.145 1.042 3.000

Sep -0.344 -2.501 -6.150

Oct 0.219 1.584 2.650

Nov 0.042 0.291 0.060

Dec -0.039 -0.271 -0.040
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Table 4 Precipitation trends on a monthly basis for different RCPs scenarios as per CMIP5 ESM-2M model (2006–2100) using MK test

Months Tests SB1 SB2 SB3 SB4

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Jan Kendall Tau 0.11 0.17 0.11 0.17 0.12 -0.05 0.20 0.20 0.10 0.20 0.21 -0.02

MK Z 1.61 2.46 1.52 2.49 1.74 -0.75 2.93 2.80 1.50 2.92 3.04 -0.33

Sen’s Slope 0.17 0.19 0.10 0.22 0.13 -0.07 0.28 0.23 0.14 0.31 0.23 -0.04

Feb Kendall Tau 0.26 0.07 0.13 0.34 0.29 0.25 0.23 0.13 0.16 0.22 0.22 0.04

MK Z 3.79 1.02 1.81 4.87 4.16 3.63 3.34 1.84 2.26 3.32 3.12 0.54

Sen’s Slope 0.48 0.12 0.22 0.52 0.48 0.45 0.47 0.24 0.26 0.35 0.35 0.06

Mar Kendall Tau 0.38 0.40 0.45 0.19 0.26 0.42 0.25 0.36 0.39 0.32 0.40 0.35

MK Z 5.51 5.70 6.43 2.77 3.74 6.08 3.65 5.20 5.66 4.64 5.80 4.98

Sen’s Slope 0.84 0.93 1.07 0.47 0.61 0.91 0.62 0.92 0.86 0.80 0.79 0.77

Apr Kendall Tau 0.25 0.30 0.36 0.27 0.35 0.40 0.24 0.25 0.49 0.21 0.25 0.33

MK Z 3.54 4.24 5.10 3.86 4.97 5.68 3.49 3.61 7.06 3.07 3.61 4.71

Sen’s Slope 0.50 0.70 0.96 0.71 0.85 1.17 0.67 0.56 1.29 0.51 0.86 0.78

May Kendall Tau 0.40 0.40 0.43 0.24 0.43 0.47 0.28 0.45 0.42 0.33 0.45 0.47

MK Z 5.67 5.81 6.22 3.51 6.21 6.80 3.99 6.46 6.04 4.69 6.44 6.80

Sen’s Slope 1.31 1.46 1.45 0.88 1.61 1.67 0.93 1.39 1.36 1.06 1.52 1.69

Jun Kendall Tau 0.30 0.35 0.35 0.26 0.31 0.35 0.36 0.35 0.45 0.27 0.35 0.45

MK Z 4.26 5.13 4.95 3.74 4.50 5.02 5.16 5.03 6.40 3.92 5.07 6.40

Sen’s Slope 1.03 1.24 1.32 1.25 1.25 1.62 1.50 1.46 1.67 1.03 1.40 1.93

Jul Kendall Tau -0.35 -0.32 -0.40 -0.40 -0.21 -0.42 -0.41 -0.25 -0.37 -0.31 -0.30 -0.24

MK Z -5.09 -4.60 -5.74 -5.78 -2.95 -6.06 -5.92 -3.55 -5.36 -4.50 -4.32 -3.43

Sen’s Slope -1.53 -1.36 -1.78 -1.75 -0.89 -1.97 -1.74 -1.13 -1.68 -1.35 -1.23 -0.93

Aug Kendall Tau -0.20 -0.28 0.20 -0.08 -0.07 0.13 -0.14 -0.12 0.13 -0.21 -0.21 0.05

MK Z -2.90 -4.05 2.86 -1.13 -1.05 1.87 -1.95 -1.68 1.83 -2.95 -3.00 0.68

Sen’s Slope -0.60 -0.76 0.58 -0.22 -0.22 0.37 -0.42 -0.33 0.37 -0.55 -0.62 0.16

Sep Kendall Tau -0.50 -0.34 -0.22 -0.40 -0.39 -0.10 -0.46 -0.39 -0.21 -0.44 -0.34 -0.23

MK Z -7.20 -4.83 -3.16 -5.78 -5.65 -1.49 -6.59 -5.57 -3.04 -6.30 -4.93 -3.31

Sen’s Slope -1.39 -0.82 -0.57 -1.33 -1.15 -0.29 -1.62 -1.17 -0.65 -1.41 -0.96 -0.71

Oct Kendall Tau -0.39 -0.31 0.06 -0.29 -0.16 0.00 -0.39 -0.28 -0.06 -0.46 -0.29 -0.04

MK Z -5.66 -4.42 0.79 -4.10 -2.25 0.00 -5.54 -4.05 -0.82 -6.57 -4.12 -0.51

Sen’s Slope -0.79 -0.53 0.09 -0.43 -0.24 0.00 -0.73 -0.48 -0.08 -0.91 -0.41 -0.06

Nov Kendall Tau 0.28 0.26 0.24 0.24 0.20 0.21 0.21 0.26 0.20 0.35 0.19 0.29

MK Z 4.01 3.70 3.51 3.45 2.84 3.06 3.02 3.79 2.81 5.08 2.67 4.18

Sen’s Slope 0.23 0.16 0.20 0.21 0.14 0.16 0.21 0.21 0.17 0.31 0.14 0.22

Dec Kendall Tau -0.08 0.03 0.03 0.12 0.11 0.18 0.03 -0.13 -0.13 0.13 -0.05 0.02

MK Z -1.12 0.40 0.39 1.68 1.62 2.61 0.43 -1.88 -1.92 1.86 -0.69 0.26

Sen’s Slope -0.09 0.03 0.04 0.12 0.13 0.17 0.03 -0.14 -0.15 0.12 -0.05 0.02

Months Tests SB5 SB6 SB7

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Jan Kendall Tau 0.22 0.12 0.12 0.19 0.11 -0.02 0.29 0.39 0.43

MK Z 3.13 1.74 1.76 2.76 1.63 -0.35 4.18 5.59 6.13

Sen’s Slope 0.18 0.10 0.09 0.28 0.14 -0.02 0.29 0.21 0.44

Feb Kendall Tau 0.08 -0.03 0.02 0.25 0.32 0.24 0.10 0.19 0.34

MK Z 1.22 -0.47 0.26 3.54 4.59 3.40 1.39 2.77 4.90

Sen’s Slope 0.08 -0.03 0.03 0.42 0.55 0.39 0.13 0.20 0.40

Mar Kendall Tau 0.42 0.54 0.52 0.13 0.33 0.39 0.12 0.32 0.32

MK Z 5.99 7.72 7.52 1.86 4.78 5.58 1.70 4.56 4.66

Sen’s Slope 0.65 0.89 0.91 0.26 0.64 0.90 0.15 0.41 0.37

Apr Kendall Tau 0.37 0.46 0.49 0.22 0.19 0.22 0.47 0.50 0.47

MK Z 5.29 6.56 6.98 3.13 2.75 3.21 6.80 7.23 6.79

Sen’s Slope 0.73 0.94 1.18 0.53 0.47 0.49 0.98 1.18 0.98
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the time scenarios. The results indicate high magnitude of

change during monsoon period (July–September). The

intensity or magnitude of change of precipitation vary

across all the SBs and RCP experiments and it shows the

high magnitude of change for the RCP 4.5 and RCP 8.5

(Table 4).

The Sen’s slopes correspond to both positive (?) and

negative (-) values (Tables 3, 4). For the future time, the

slopes vary from 0.00 to 1.77, 0.00–1.61 and 0.02–2.16 for

the RCP2.6, RCP4.5, and RCP8.5, respectively across the

SBs. Likewise, the negative Sen’s slopes vary from -0.09

to -1.75, -0.05 to -1.45 and -0.02 to -2.54 (Table 4).

These test statistics show that the RCP8.5 scenario repre-

sented extreme conditions in this overall analysis. In

overall comparison, for all the RCPs, most of the months

have shown increasing trends of precipitation events,

which illustrate that the precipitation will enhance in the

future time domain. Kendall’s Tau results show the slope

of the average monthly precipitation trends (Tables 3, 4).

As per Tables 3 and 4, Kendall’s Tau positive slopes are

computed mostly for the spring season (October to March)

precipitation, whereas negative slopes are recorded for the

monsoon season precipitation events (April–September)

for all the RCP scenarios across all the SBs. However, the

intensity of positive and negative slopes vary for all the

RCPs across all the SBs.

Figure 3a, b shows the SB wise results for the QR model

applied on annual average precipitation scenarios for both

the time periods. Table 5 shows the hypothesis test results

for statistical significance of the estimated trends such as

t test (Sawilowsky 2005 for more details) and p-value test

(Chamaillé-Jammes et al. 2007 for more information). The

different order quantiles such as e.g. 99th, 95th and 90th

85th and 80th were generated for all the SBs and RCP

scenarios to evaluate the trends. As per Fig. 3a, b, QR

diagrams have plotted to visualize the temporal change in

precipitation scenarios under different quantiles (99th,

95th, 90th, 85th, 80th) as per their data distribution. In

order to identify the changes in precipitation, the 95%

confidence interval based on the slope of the regression

model for the median quantile (which is also a 50th

quantile) has plotted (Fig. 3a, b).

Figure 3a shows the results for QRs for the historical

time series data (1979–2005). Figure 3b shows the QRs for

future time (2006–2100). All quantile-based regression

plots show the decrease and increase in the average annual

precipitation scenarios at each SB scale. In Fig. 3a, the

higher quantiles (e.g. 99th, 95th and 90th) show an increase

Table 4 continued

Months Tests SB5 SB6 SB7

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

May Kendall Tau 0.51 0.49 0.57 0.35 0.40 0.47 0.15 0.45 0.37

MK Z 7.35 7.03 8.11 5.05 5.79 6.76 2.19 6.52 5.37

Sen’s Slope 1.80 1.95 2.10 1.26 1.23 1.56 0.36 1.10 0.96

Jun Kendall Tau 0.35 0.33 0.51 0.30 0.27 0.28 0.51 0.48 0.53

MK Z 5.09 4.73 7.33 4.33 3.81 4.03 7.38 6.91 7.56

Sen’s Slope 1.49 1.43 2.16 1.18 0.88 1.10 1.77 1.50 1.85

Jul Kendall Tau -0.36 -0.30 -0.22 -0.41 -0.38 -0.55 -0.04 0.02 0.21

MK Z -5.20 -4.34 -3.17 -5.92 -5.43 -7.87 -0.64 0.27 3.05

Sen’s Slope -1.73 -1.39 -0.90 -1.66 -1.45 -2.54 -0.18 0.06 0.85

Aug Kendall Tau -0.20 -0.18 -0.07 -0.23 0.00 0.00 -0.28 -0.16 -0.10

MK Z -2.83 -2.53 -1.04 -3.32 0.04 -0.03 -4.04 -2.33 -1.38

Sen’s Slope -0.56 -0.65 -0.25 -0.80 0.01 -0.01 -0.98 -0.53 -0.29

Sep Kendall Tau -0.46 -0.34 -0.24 -0.44 -0.28 -0.14 -0.31 -0.18 -0.07

MK Z -6.64 -4.92 -3.51 -6.31 -3.99 -2.05 -4.46 -2.64 -1.02

Sen’s Slope -1.49 -1.06 -0.81 -1.36 -0.87 -0.41 -1.16 -0.56 -0.22

Oct Kendall Tau -0.46 -0.41 -0.29 -0.34 -0.32 -0.05 -0.47 -0.38 -0.10

MK Z -6.62 -5.84 -4.15 -4.93 -4.65 -0.70 -6.72 -5.41 -1.49

Sen’s Slope -0.94 -0.80 -0.67 -0.48 -0.49 -0.08 -1.28 -1.04 -0.23

Nov Kendall Tau -0.06 0.08 0.10 0.29 0.23 0.20 -0.27 -0.08 0.26

MK Z -0.81 1.17 1.43 4.10 3.25 2.86 -3.84 -1.13 3.78

Sen’s Slope -0.04 0.03 0.07 0.19 0.07 0.16 -0.15 0.00 0.10

Dec Kendall Tau -0.99 0.35 0.24 0.11 0.23 -0.05 0.00 0.23 0.29

MK Z -14.17 5.05 3.39 1.58 3.25 -0.70 0.02 3.28 4.20

Sen’s Slope 0.06 0.20 0.19 0.13 0.18 -0.05 0.00 0.00 0.02
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across all the SBs expect SB5 and SB6. The lower quan-

tiles (e.g. 85th and 80th) and a 99th quantile for SB5 show

significant increase during historical time (1979–2005)

(Fig. 3a; Table 5). In Fig. 3a, the range for the higher

quantile of 99th has recorded higher data values for the

SB5 than other SBs.

As per Fig. 3b, most of the trends show increase in

precipitation at each quantile (e.g. 99th, 95th, 90th, 85th,

80th). In case of future precipitation scenarios, the p-values

are recorded less than 0.05 (p\ 0.05) in most of SBs as

shown in Table 5 except very few one. These results

demonstrate that the precipitation has significantly

enhanced over the future time domain in all of the quantile

ranges or orders. Table 3 clearly shows that the RCP4.5

and RCP8.5 showed significant increase in precipitation

from the year 2006–2100 in all the quantiles. However, a

very few trends showed decrease in precipitation as also

observed in the MK results during August and September.

The overall QR plots and their statistics reveal a significant

increase in precipitation amount in both the time period.

The RCP8.5 and 80th percentile have shown maximum

increase in the precipitation, which ranged their t-test

values from 5.1 to 7.1 across all the SBs (Table 5).

Figure 2 shows the comparison between observed

(1979–2005) and future (2006–2100) PEIs (for all RCPs).

These indices have computed as per the annual average of

PEIs. The description and details of the precipitation

indices such as 99th percentile, 90th percentile, 80th per-

centile, N20, N40 and dry days have shown in Table 4.

These precipitation indices initially calculated for historical

time series based on the daily precipitation datasets

(1979–2005), and then they compared to the projected time

series data sets (2006–2100) for all the RCPs at each SB

scale, respectively.

To highlight the spatial distribution of precipitation

amounts (based on the precipitation indices) at all the SBs,

Fig. 3 a Quantile regression (QR) plots for annual precipitation at each sub-basin (SB) during observed time and b QR plots for

annual precipitation at each SB during future time as per different RCP experiments
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Fig. 3 continued
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an IDW approach based interpolation has been applied,

which is an inbuilt function of vector data based GIS

(geographical information system) tool ArcGIS (Nagi

2012; Childs 2004). The highest value of 99th percentile at

any SB was found almost five times and the total annual

precipitation is just about two times the mean. The average

values of precipitation extreme indices such as 99th, 90th,

80th percentiles for historical time series (1979–2005) vary

from 55.28 to 62.08, 28.22–30.77 and 19.77–20.90,

respectively across all the SBs.

Figure 4 portrays the historical precipitation indices

(1979–2005), which show significant variations in the

intensity and frequencies of the precipitation in spatial

scale and temporal domain. For the historical time series

precipitation indices (1979–2005) (Fig. 4), the SB5 has

shown extreme condition. As per the comparison done

between the historical (1979–2005) and projected PEIs

(2006–2100), the counts of dry days have increased. The

intensity based precipitation Indices such as N20 and N40

show enormous increase in precipitation from the year

2006 to 2100. As per the 99th, 90th, 80th percentiles, the

middle part of the catchment (e.g. SB2, SB3, SB4 and SB5)

shows high intensity precipitation changes (or increase)

than upper (e.g. SB1) and lower parts (e.g. SB6 and SB7).

Figure 5 shows the comparison between observed and

RCPs based PEIs as per their minimum and maximum

statistics. The minimum and maximum statistics of all PEIs

have been computed at each SB scale for both the time

scenarios. The SB wise comparison plots show a significant

variability in all the PEIs as per the minimum and maxi-

mum indices. The RCP4.5 and RCP8.5 show maximum

variations than observed and RCP2.6. The percentile based

indices significantly show the higher variations in PEIs as

they were recoded for maximum indices. As per minimum

indices, all the RCPs show almost similar trend to observed

scenario; while in case of maximum indices, a significant

variations can be noticed. For example 99th percentile,

N20 and dry days showed different RCP trends than

observed trend. The observed trend line does not overlap

with RCPs trends. However, in case of maximum indices,

the observed trend line overlaps to the RCPs trend lines.

These statistics reveal that the precipitation changes are

more significant to the extreme events. As per minimum

statistics, the dry days are computed between 100 and 120

Table 5 Quantile regression based statistical evaluation of linear trends using t- test and p-value test for observed (1979–2005) and RCP

scenarios (2006–2100) at sub-basin (SB) scale

RCPs Quantiles SB1 SB2 SB3 SB4 SB5 SB6 SB7

t stat p-

value

t stat p-

value

t stat p-

value

t stat p-

value

t stat p-

value

t stat p-

value

t stat p-

value

Observed 99th P -0.23 0.82 -0.22 0.83 -0.20 0.84 -0.37 0.72 0.74 0.47 -0.32 0.75 -0.21 0.84

95th P -0.23 0.82 -0.23 0.82 -0.20 0.85 -0.28 0.78 0.82 0.42 -0.30 0.77 -0.20 0.84

90th P 1.08 0.29 1.12 0.27 1.12 0.27 0.86 0.40 0.97 0.34 0.81 0.42 0.79 0.44

85th P 0.04 0.97 0.13 0.90 0.12 0.90 0.06 0.95 -0.17 0.86 0.04 0.97 0.05 0.96

80th P 0.05 0.96 0.14 0.89 18.10 0.15 0.07 0.95 0.36 0.72 0.04 0.97 0.06 0.95

RCP2.6 99th P 1.46 0.15 1.26 0.21 -1.92 0.06 -1.55 0.12 0.27 0.79 -0.57 0.57 -2.91 0.00

95th P -0.26 0.79 0.62 0.54 -1.09 0.28 -0.47 0.64 -0.17 0.86 -0.71 0.48 -0.69 0.49

90th P -0.52 0.60 1.25 0.22 -0.74 0.46 -0.34 0.73 -0.31 0.76 -0.17 0.86 -1.46 0.15

85th P -0.22 0.82 1.04 0.30 -0.90 0.37 -0.42 0.67 0.07 0.94 0.46 0.64 -0.64 0.52

80th P -0.32 0.75 1.08 0.28 -1.10 0.28 -0.14 0.89 0.19 0.85 0.49 0.62 -0.87 0.39

RCP4.5 99th P 0.68 0.50 3.46 0.00 -0.55 0.58 1.16 0.25 1.06 0.29 1.66 0.10 2.40 0.02

95th P 0.65 0.52 3.91 0.00 2.02 0.05 1.59 0.12 2.95 0.00 1.40 0.16 1.62 0.11

90th P 1.71 0.08 4.47 0.00 2.37 0.02 3.26 0.00 2.82 0.01 2.25 0.03 2.39 0.02

85th P 1.12 0.26 4.46 0.00 2.03 0.05 1.80 0.07 2.64 0.01 1.80 0.07 2.60 0.01

80th P 1.26 0.21 3.24 0.00 2.81 0.01 2.31 0.02 2.64 0.01 2.22 0.03 3.24 0.00

RCP8.5 99th P 2.68 0.01 6.88 0.00 3.83 0.00 5.01 0.00 6.45 0.00 2.98 0.00 1.52 0.13

95th P 2.99 0.00 4.33 0.00 2.98 0.00 2.58 0.01 5.06 0.00 2.51 0.01 3.05 0.00

90th P 4.01 0.00 5.79 0.00 4.29 0.00 3.51 0.00 4.06 0.00 2.39 0.02 5.36 0.00

85th P 5.95 0.00 5.44 0.00 4.70 0.00 3.40 0.00 6.03 0.00 1.69 0.09 5.61 0.00

80th P 5.15 0.00 7.33 0.00 6.16 0.00 5.13 0.00 5.34 0.00 0.66 0.51 7.87 0.00

cFig. 4 Spatial variations in average annual precipitation indices at

catchment scale as per observed (1979–2005) and ESM-2M GCM

based RCP (2006–2100) scenarios

2538 Stoch Environ Res Risk Assess (2017) 31:2527–2546

123



Stoch Environ Res Risk Assess (2017) 31:2527–2546 2539

123



Fig. 5 Sub-catchment wise

comparison of observed

(1979–2005) and RCP

(2006–2100) based Indices

based on their minimum and

maximum values
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across all the SBs, while the RCPs computed 150–180

across the whole catchment. In case of maximum, the dry

days are calculated from 190 to 235 for all the scenarios

including observed and RCPs.

The intensity based PEIs (e.g. 99th, 90th, 80th per-

centiles), which are calculated for the RCP2.6 and RCP4.5,

show high intensity precipitation changes in lower part of

the catchment (e.g. SB5 and SB7). However, the RCP8.5

gives a mix response. In RCP4.5 (Fig. 5), the 99th per-

centile shows maximum intensity over the middle and

lower parts of the catchment (e.g. SB5 and SB7), whereas

the 90th and 80th percentiles show high precipitation

intensity in only lower part of the catchment (SB7)

(Fig. 5). The N20, N40 and dry days indices are varied

significantly from the upstream to downstream portion over

the catchment and can be observed in Fig. 5. In the above

spatiotemporal investigation of all precipitation indices, the

frequency based indices such as N20, N40 and dry days are

identified as the key indices to visualize and comparing the

precipitation changes in both the time domains.

The geographical and spatial variability in extreme

precipitation indices have been analyzed using spatial

standard deviation and spatial skewness at the catchment

scale by doing an average of all SBs (Figs. 6, 7). The

spatial heterogeneity of PEIs is calculated for both of the

time series (1979–2005 and 2006–2100). Figure 6 shows

the trends in the geographical heterogeneity of the extreme

precipitation indices as standard deviation. In the observed

Fig. 6 Comparison of averaged spatial standard (SD) deviation (for all stations) for extreme precipitation indices as per observed and RCP

experimental scenarios
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time series (1979–2005), magnitude indices of extreme

precipitation show high peaks after 1995s (Fig. 6) with

increase. In Fig. 6, RCP2.6 shows diverse heterogeneity

and the high peaks are mostly observed after 2050s, though

several moderate high peaks can also be observed during

earlier 2030s. The RCPs 4.5 and RCP8.5 show continuous

high peaks from 2030s to 2100s except dry days indices

(Fig. 6) with increase.

As per the frequency based PEIs such as N20 and N40,

all the scenarios tend to increase. In Fig. 6, one can easily

observe that the RCP8.5 scenario based extreme precipita-

tion indices has shown markedly high standard deviations

(most of the values recorded in the range as 8–16) than other

scenarios. In the overall plots (Fig. 6), the spatial standard

deviation based upon the spatially averaged indices

revealed a positive and noteworthy correlation with varying

degrees, proposing spatiotemporal heterogeneity tended to

increase with the indices. Figure 7 shows the heterogeneity

in the extreme indices using spatial skewness. Except for

dry days, all RCPs have shown positive skewness in all

extreme precipitation indices. The frequency indices such

as dry days has shown variable heterogeneity in different

RCPs. The dry days show decreasing trend with dominant

negative skewness. The lower percentiles (90th, 85th, 80th)

based extreme indices especially for the RCP 4.5 has shown

significant variations in their high peaks during the time.

The observed time series based extreme indices show

similar levels of positive and negative skewness (Fig. 7). In

Fig. 7, except in few plots, the skewness tends to fluctuate

between -2 and 3 but mostly positive since 2030s.

Fig. 7 Comparison of averaged spatial skewness (for all stations) for extreme precipitation indices as per observed and RCP experimental

scenarios
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4 Discussion

To explore variability in extreme precipitation under the

current climate conditions, we used latest CMIP5 ESM-2M

GCM model with multiple RCP experiments to highlight

extreme precipitation variability across the snow glaciers

induced Himalayan catchment. Very few studies have ana-

lyzed the extremity of precipitation over Himalayan region

(Shivam et al. 2016). The outcomes of this study clearly

showed that the precipitation variability would be increased

in future due to climate change as observed by latest CMIP5

ESM-2M GCM with their moderate to extreme RCP sce-

narios. The monthly time series projections showed an

enormous heterogeneity existed in the precipitation trends

(Figs. 3, 4, 5, 6). The CMIP5 GCM based projections of

extreme precipitation tended to increase precipitation vari-

ability over Himalayan regions as also observed by Shivam

et al. (2016) and Taylor et al. (2012). Taylor et al. (2012) and

Gosling et al. (2011) found that the global average annual

temperature had been increased rapidly, and thus the pre-

cipitation pattern will be influenced by temperature changes

very frequently in future. This will tend to increases pre-

cipitation variability around the globe, and similar trends are

observed in this study.

The MK based results revealed that the precipitation will

increase in pre-monsoon season, while main monsoon

season (e.g. August and September) showed the decrease in

precipitation (Tables 3, 4). Ravindranath et al. (2011) did

the work on climate change vulnerability over North-East

states of India and told that this region is suffered from the

collectively less rainfall in summer months. Mainly this

happened in the last several years. In the case of seasonal

MK test, the seasonality of the series is taken into account.

This means that for monthly data with the seasonality of

12 months, one will try to find out if there is a trend in the

one month of January to another and from one month July

and another, and so on.

Apart from this, the overall trends on the annual and

monthly basis show significant increments in their amount

and frequencies during both time series. The analysis of the

PEI based on SB wise calculation increased the under-

standing to interpret the heterogeneity in this long term

spatiotemporal domain. The trend analysis in our study

shows that magnitude precipitation indices such as 99th,

90th and 80th were increased over time. One most

important point is also noticed that these indices also have

significant variability and heterogeneity as per different

RCPs. The results clearly revealed the higher variability in

precipitation among all the indices with different RCPs are

considered. The frequency based indices such as N20 has

shown significant variations with increasing across the SBs

including all the scenarios.

As per the Choi et al. (2014), the frequency indices

significantly increased or decreased in very limited parts of

the USA, meaning virtually no change statewide. Similar

statistics also revealed by Shivam et al. (2016) over

Subansiri river Himalayan catchment. In this study, we

found most of the indices had shown consistently

increasing or decreasing trends and similarly observed by

Shivam et al. (2016) over Subansiri river basin. As per the

Sen’s slope and MK significant tests on monthly time

series scenarios, we found consistently increasing trends

for most of the months (October to June). Palazzi et al.

(2015) worked on the Hindu Kush-Karakoram-Himalayan

region (combination of eastern and western Himalayas)

using CMIP5 climate ensembles and also told that the

models differ considerably in the seasonal climatology of

precipitation in these two regions.

In this study, the frequency of the extreme precipitation

events was tested as per the N20 and N40 indices. Here, it

is observed that the higher frequency indices such as N40

have shown decreasing trend with increasing time duration

even at all the SBs and for all the scenarios based on RCPs.

Mondal et al. (2015) used the MK and Sen’s slope tests on

the monthly time series of precipitation data sets and found

significant decreasing trend in the precipitation

(-0.33 mm/year and -13.29%) especially in the month of

August. He also found increasing trends in the March–

April and November across the Sikkim, West Bengal and

North-East India. In our study, we also revealed the similar

outcomes and therefore the MK test results for annual and

monthly basis time series are found meaningful. The Sen’s

slope inspected how the magnitudes of a range of precip-

itation varied across the SBs in a temporal domain, and the

results are comparable to other studies (Shivam et al. 2016;

Mondal et al. 2015; Goyal 2014; Guo et al. 2014).

Choi et al. (2014) mentioned that the precipitation data

not meant to predict precipitation for a given day at the

particular location; they are rather suitable for showing

general trends and variability. In the quantile-based

regression analysis, we found significant increment in the

precipitation trends especially for the RCP 8.5 as compa-

rable to Choi et al. (2014). This study focuses on the

several important considerations and consequences which

were noticed in the spatiotemporal domain of the study

catchment. The first is that in this research work we

emphasized this study only on the precipitation variability

across the state. Future works may extend this research

work through the multivariate trends tests on precipitation

along with temperature so one can compare the precipita-

tion variability with increasing trend of temperature sce-

nario. In this study, the projection of precipitation was done

utilizing CMIP5 ESM-2M GCM model so that another

research work may be emphasized on the RCM model,
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especially over Himalayan catchments. The precipitation

variability and heterogeneity assessment can be taken into

account for the downstream river flows and flood based

hydrological hazard assessment studies.

5 Conclusion

In this research, the magnitude and frequency of extreme

precipitation analyzed over Sikkim Himalayan region in a

spatiotemporal domain. The observed precipitation

(1979–2005) and CMIP5 based ESM-2M GCM datasets

with multiple RCPs (2006–2100) successfully utilized to

explore extreme precipitation changes over Teesta river

Himalayan catchment. The MK and Sen’s slope revealed a

significant increase in precipitation amount in the historical

and projected time domains. The results showed that the

spatial and temporal variability and heterogeneity in pre-

cipitation would be enhanced in the 21st century, as illus-

trated by different PEIs. The spatial heterogeneity explained

using spatial standard deviation and spatial skewness

through precipitation extreme indices and the high scale

variability and changes in extreme precipitation are also

revealed by quantile-based linear regression models. Our

results showed a high level of geographical heterogeneity

existed in the precipitation trends. We concluded that the

increasing trends were mostly observed in annual time series,

and the decreasing trends are prevailing for high extreme

events and less extreme events, respectively. The MK test,

Sen’s slopes, and QRs methods were successfully applied to

check the precipitation variability and heterogeneity in a

spatiotemporal domain over Sikkim Himalayan catchment.
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