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Abstract We focus on the Bayesian estimation of strongly

heterogeneous transmissivity fields conditional on data

sampled at a set of locations in an aquifer. Log-transmis-

sivity, Y, is modeled as a stochastic Gaussian process,

parameterized through a truncated Karhunen–Loève (KL)

expansion. We consider Y fields characterized by a short

correlation scale as compared to the size of the observed

domain. These systems are associated with a KL decom-

position which still requires a high number of parameters,

thus hampering the efficiency of the Bayesian estimation of

the underlying stochastic field. The distinctive aim of this

work is to present an efficient approach for the stochastic

inverse modeling of fully saturated groundwater flow in

these types of strongly heterogeneous domains. The

methodology is grounded on the construction of an optimal

sparse KL decomposition which is achieved by retaining

only a limited set of modes in the expansion. Mode

selection is driven by model selection criteria and is con-

ditional on available data of hydraulic heads and (option-

ally) Y. Bayesian inversion of the optimal sparse KLE is

then inferred using Markov Chain Monte Carlo (MCMC)

samplers. As a test bed, we illustrate our approach by way

of a suite of computational examples where noisy head and

Y values are sampled from a given randomly generated

system. Our findings suggest that the proposed methodol-

ogy yields a globally satisfactory inversion of the

stochastic head and Y fields. Comparison of reference

values against the corresponding MCMC predictive dis-

tributions suggests that observed values are well repro-

duced in a probabilistic sense. In a few cases, reference

values at some unsampled locations (typically far from

measurements) are not captured by the posterior probabil-

ity distributions. In these cases, the quality of the estima-

tion could be improved, e.g., by increasing the number of

measurements and/or the threshold for the selection of KL

modes.

Keywords Heterogeneous porous media � Stochastic
inverse modeling � Karhunen–Loève expansion � Markov

Chain Monte Carlo

1 Introduction

Prediction of flow and transport in subsurface reservoirs is

typically fraught with diverse types of uncertainties,

including imperfect knowledge of the spatial distribution of

system parameters, types of boundary conditions and their

values, as well as forcing terms (e.g. Lin et al. 2010;

Tartakovsky et al. 2012; Tartakovsky 2013 and references

therein). All these uncertainties should be appropriately

considered and their impact on the quality of model
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predictions needs to be quantified in a rigorous way. These

requirements should also be compatible with the opera-

tional challenges associated with the analysis and man-

agement of complex settings such as those characterizing

natural aquifer systems.

Bayesian inference is a convenient and flexible theo-

retical framework within which all these issues can be

tackled. Bayesian approaches enable one to incorporate in

a stochastic model inversion available data from diverse

sources, relying on prior information. The latter is then

updated through conditioning onto observations to yield

posterior probability distributions of system parameters and

responses. Recent examples involving applications of

Bayesian characterizations of uncertain parameter fields

associated with subsurface flow and transport settings can

be found, among others, in Rubin et al. (2010), Murakami

et al. (2010), Chen et al. (2012), and Over et al. (2013) and

references therein.

The application of the Bayesian framework to

(stochastic) inverse modeling of groundwater flow typi-

cally requires obtaining multiple forward solutions of the

mathematical model governing the spatial/temporal evo-

lution of the system physics. The Markov Chain Monte

Carlo (MCMC) method is one of the most widely

employed approaches in the context of porous media

characterization. MCMC has been applied with several

degrees of success in hydrogeology for stochastic model

calibration and uncertainty quantification (e.g., Vrugt et al.

2003, 2008; Zanini and Kitanidis 2009; Keating et al. 2010;

Schoups and Vrugt 2010; Huard et al. 2010; Zheng and

Han 2016). Shi et al. (2012) employed MCMC for vadose

zone characterization and compared the ensuing results

against those obtained through a nonlinear regression

method. These authors found that MCMC (a) produces

results of higher fidelity and (b) is more advantageous from

a computational standpoint than nonlinear regression for

problems associated with a relatively small dimensionality

of the parameter space.

Routine application of MCMC to stochastic inverse

groundwater flow modeling under realistic conditions is

hampered by practical challenges due to the usually high

dimensionality of the parameter space. Parameterization of

the spatially heterogeneous distribution of model attributes,

such as system transmissivity, via the truncated Karhunen–

Loève expansion (KLE) (Loeve 1977) can be considered as

a viable strategy to alleviate this difficulty. In essence, the

Karhuen–Loève representation of a random spatial field is

based on the spectral expansion of the process covariance

function. This approach has been broadly used (Li and

Cirpka 2006; Efendiev et al. 2006; Marzouk and Najm

2009; Ray et al. 2012; Laloy et al. 2013; Mara et al. 2015)

mainly because it enables one to reduce the dimensionality

of the problem while preserving to a given extent the key

characteristics of the considered stochastic model (Mar-

zouk and Najm 2009). The KLE has been recently used by

Das et al. (2010) in conjunction with the MCMC technique

to characterize the saturated hydraulic conductivity of a

mildly heterogeneous agricultural field. These authors rely

on a truncated form of KLE by retaining solely a reduced

number of terms (or modes) in the expansion.

The number of terms that enables the truncated KLE to

be effective for a computationally affordable and accurate

system representation depends on the functional format of

the covariance function (e.g., exponential, Gaussian,

spherical, or other) as well as on the degree of spatial

persistence, or correlation, of the field. It can be seen that

the norm of the eigenvalues of the covariance matrix tends

to decay rapidly for heterogeneous fields characterized by

large correlation scales (relative to a characteristic length

scale of the flow domain). In these cases, it is seen that

retaining less than 20 terms in the KLE typically allows

capturing more than 90% of the energy of the target spatial

random field (Das et al. 2010). Otherwise, the number of

terms to be retained in the KLE to achieve an appropriate

representation of a random parameter field tends to

increase when the correlation scale of the covariance

function decreases. This can become a limiting factor

constraining the effectiveness of the technique when one is

confronted with short-range (with respect to the domain

size) correlated heterogeneous fields.

In this work, we focus on these types of strongly

heterogeneous fields, for which Bayesian inference

becomes highly challenging and computationally

demanding due to the large number of terms required to be

retained in the KLE. The main objective of this work is to

develop an operational strategy which renders the MCMC

method computationally affordable to be employed for the

stochastic characterization of short-range random parame-

ter fields. Our strategy is data-driven and is based on

destructuring the stochastic inverse modeling procedure of

fully saturated groundwater flow into the following two

steps:

1. Starting from a highly-parameterized system, a set of

sparse KLEs are formed by progressively reducing the

dimensionality of the parameter space. For each KLE,

the Maximum a Posteriori (MAP) estimate of the

eigenmodes in the expansion is oobtained through

inverse modeling of flow (against available observa-

tions of the system state, i.e., hydraulic heads or fluxes,

and, optionally, of system parameters, i.e., hydraulic

conductivity/transmissivity). Once this MAP estimate

is obtained, a new sparse KLE is constructed by

removing the least influential components of the

expansion via an analysis of the spatial variance of

the resulting estimated field.
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2. A model selection criterion is employed to select the

optimal sparse KLE, as driven by the available data.

The posterior statistical distribution of the correspond-

ing eigenmodes is then obtained, relying on the

DREAM(ZS) MCMC sampler developed by Laloy

and Vrugt (2012).

The work is organized as follows: Sect. 2 introduces

the flow problem and Sect. 3 the Karhunen–Loève

decomposition. In Sect. 4, we detail the way the Bayesian

inference is performed for a stochastic field of the kind we

consider in our computational example. Section 5 sum-

marizes the main elements of the information criterion we

employ for model selection. Section 6 illustrates our

strategy to achieve dimensionality reduction of the

parameter space. Section 7 is devoted to the presentation

of an application of our technique to the stochastic

inversion of flow through a strongly heterogeneous ran-

dom porous medium. The key findings are then summa-

rized in the conclusions.

2 The flow model

We consider two-dimensional steady-state fully saturated

groundwater flow taking place within a spatially bounded

domain, D, governed by

r � T xð Þrh xð Þð Þ ¼ 0; x 2 D

h xð Þ ¼ h0; x 2 oD1

�T xð Þrh xð Þð Þ:goD2
¼ g0 x 2 oD2

8
><

>:
ð1Þ

Here, x ¼ x; yð Þ is the vector of spatial coordinates, h xð Þ
[L] and T xð Þ [L2T-1] respectively are hydraulic head and

transmissivity fields; Dirichlet and Neumann boundary

conditions corresponding to given pressure head, h0, or

normal flux, g0, are respectively defined along the (disjoint)

boundary segments oD1 and oD2, forming the domain

boundary qD; goD2
is the outward unit vector normal to

oD2.

Given the spatial distribution of T xð Þ, the numerical

solution of the forward problem (1) is performed through

the mixed-hybrid finite element method (Younes et al.

2010) upon discretizing D with uniform square elements.

Observations of h xð Þ and T xð Þ are assumed to be jointly

available at a set of M points xi ¼ xi; yið Þ (i = 1, 2,…, M)

within D. We collect these data into the observation vector

m. For the purpose of our demonstration we assume that

the functional format of the covariance of Y xð Þ ¼
log T xð Þð Þ is deterministically known together with its

parameters. We consider log-transmissivity Y as a Gaussian

field that can be represented by its Karhunen–Loève

expansion (Loeve 1977).

3 Karhunen–Loève expansion

Let Y x;xð Þ ¼ log T x;xð Þð Þ be a Gaussian random process,

where x 2 D and x 2 X (X being a suitable probability

space). One can characterize Y through its mean, lY , and
two-point covariance function, CY(x, x

0), between locations
x and x0. Covariance CY is bounded, symmetric, and pos-

itive definite (assuming that Y 2 L2 Dð Þ; 8x 2 D). The

Karhunen–Loève expansion (KLE) of the random field

Y x;xð Þ is defined as

Y x;xð Þ � lY þ
Xþ1

i¼1

ffiffiffiffi
ki

p
ni xð Þui xð Þ ð2Þ

Here, ki and ui xð Þ respectively are eigenvalues and

eigenfunctions of CY(x, x
0), nif g1i¼1 being a set of statisti-

cally independent standard normal random variables.

According to Mercer’s theorem (Mercer, 1909) CY(x, x
0)

can be decomposed as

CY x; x0ð Þ ¼
X1

i¼1

kiui xð Þui x
0ð Þ ð3Þ

where ki and ui xð Þ are obtained by solving the following

Fredholm equation
Z

D

CY x; x0ð Þui x
0ð Þdx0 ¼ kiui xð Þ: ð4Þ

The eigenfunctions ui xð Þf g1i¼1 are orthonormal and form a

complete basis in L2 Dð Þ, i.e.,
Z

D

ui xð Þuj xð Þdx ¼ dij ð5Þ

dij being the Kronecker delta.

The separability assumption is often used to characterize

the covariance function model of Y in the context of

stochastic analyses of flow and transport in randomly

heterogeneous porous and/or fractured formations. This

assumption has enabled obtaining analytical solutions of

key moments of hydraulic head and fluxes and contaminant

transport and facilitates basic studies of uncertainty propa-

gation in such random porous and fractured media (see. e.g.

Dagan 1989; Zhang 2002, and references therein). Adoption

of this simplified format has also the practical advantage of

being associated with relatively straightforward estimates

of the model parameters through the type and quantity of

data which is typically available (see e.g. Gneiting et al.

2007, Genton 2007). In the following, we assume that the

covariance function of Y x;xð Þ has the exponential form

CY x; x0ð Þ ¼ r2 exp � x� x0j j
g

� y� y0j j
g

� �

ð6Þ
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where r2 and g respectively are the variance and correla-

tion length of Y. The eigenvalues k i and corresponding

eigenfunctions appearing in (2)–(5) can be readily com-

puted (Zhang and Lu 2004) by solving a system of two

coupled algebraic equations. In the most general case, the

eigenvalue problem (4) is solved numerically (e.g., Phoon

et al. 2002). Note that other models could be employed for

the representation of CY, including, e.g., the Modified

Exponential and the Spartan covariance (e.g. Spanos et al.

2007; Tsantili and Hristopulos 2016; Su and Lucor 2006),

which might require a smaller number of KL terms than the

exponential covariance (Spanos et al. 2007).

As shown in Zhang and Lu (2004), values k i mono-

tonically decrease at the rate of 1=i2. One can then

approximate Y x;xð Þ by considering a finite number of

terms in (2), i.e.,

Y x;xð Þ � lY þ
XK

i¼1

ffiffiffiffi
ki

p
ni xð Þui xð Þ ð7Þ

with n�N 0; IKð Þ, IK being the identity matrix of size K.

We note that

Xþ1

i¼1

ki ¼ �Dr2 ð8Þ

�D being a measure of the area of the domain. Hence, the

number of terms to be retained in (7) can be selected in a

way that the ratio

e Kð Þ ¼
PK

i¼1 kiP1
i¼1 ki

ð9Þ

is larger than a given threshold. In our computational

examples we follow Das et al. (2010) and set e Kð Þ[ 0.90,

which allows to capture more than 90% of the variance of

Y.The number of terms to be retained in (7) depends on the

correlation length of the covariance function of Y, small

values of g usually corresponding to high values of K. As

such, strongly heterogeneous stochastic fields, which are

associated with high variance and/or small correlation

lengths, pose a clear challenge for an effective represen-

tation grounded on the KLE.

The forward problem is tackled by solving (1) for sev-

eral realizations of the Y spatial field. These are obtained by

evaluating (7) through sampling of the random vector

nif gKi¼1 from the standard multi-Gaussian distribution. An

uncertainty analysis of the way the randomness of Y

propagates to the output of the flow model can then be

easily performed through numerical Monte Carlo simula-

tions. In the context of a stochastic inverse problem, one is

mainly interested in characterizing a collection of Y fields

that are consistent with the observations grouped in vector

m. When the stochastic inverse problem is set in a

Bayesian framework, the posterior (updated) probability

density function (pdf) of the field Y x;xð Þ is typically

inferred on the basis of available data and prior knowledge

about the system.

4 Bayesian inference and Markov Chain Monte
Carlo (MCMC) sampling

Characterizing the posterior pdf of Y x;xð Þ in the context of
Bayesian inference is tantamount to assessing the joint

posterior pdf of the entries of the random vector

n ¼ nif gKi¼1. The conditional posterior distribution of n is

defined as

p n mjð Þ / p m njð Þp nð Þ ð10Þ

Here, p mjnð Þ is the likelihood function and p nð Þ is the

prior probability density function of n, which encapsulates

any prior knowledge about the log-transmissivity field. As

stated in Sect. 3, we consider Y x;xð Þ as a Gaussian process
with the covariance function defined in (6). It then follows

that p nð Þ�N 0; IKð Þ.
The conditional posterior distribution (10) can be char-

acterized through diverse numerical methods. Markov

Chain Monte Carlo (MCMC) samplers are particularly

suited for this task. There are several MCMC algorithms

proposed in the literature (e.g., Haario et al. 2001; Green

and Mira 2001; ter Braak and Vrugt 2008; Vrugt et al.

2009a; Laloy and Vrugt 2012), all of which relying on the

Metropolis-Hasting algorithm. In the latter, a new candi-

date value for parameter ni is generated at the ith iteration

from a proposal distribution q ni ni�1
�
�

� �
. Acceptance or

rejection of a new candidate is based on the associated

Hasting ratio, defined as

a ¼ min 1;
p ni mj
� �

q ni ni�1
�
�

� �

p ni�1 mj
� �

q ni�1 ni
�
�

� �

 !

ð11Þ

Convergence of the chain to the target distribution,

i.e., p njmð Þ, is typically achieved after a burn-in period.

Considerable research efforts on improving the efficiency

of MCMC samplers have been focused on reducing the

burn-in period (see, e.g. Haario et al. 2001; Green and Mira

2001; Vrugt et al. 2009a among others). The choice of the

proposal distribution q : :jð Þ and the updating strategy are

key to obtain the speed up of the algorithm convergence. A

common strategy which is also pursued to accelerate con-

vergence of the MCMC sampler relies on characterizing

the modes of the posterior pdf p njmð Þ (Vrugt and Bouten

2002). Assuming a unimodal pdf, the mode corresponds to

the Maximum A Posteriori (MAP) value, defined as

nMAP ¼ arg max
n

p njmð Þð Þ ð12Þ
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The MAP characterization enables the MCMC sampler

to be initialized approximately around the most likely

values associated with the posterior distribution of the

model parameter set (Vrugt and Bouten 2002).

Here, we employ the DREAM(ZS) software to generate

samples from the conditional posterior distribution of n

(Laloy and Vrugt 2012). This adaptive algorithm runs

multiple chains in parallel to explore the random parameter

space. Vrugt et al. (2009b) compared the DREAM algo-

rithm with the generalized likelihood uncertainty estima-

tion (GLUE) method. As a key feature, DREAM(ZS)

generates candidates by sampling from an archive of past

states collected in a sample Z. Thus, only a few parallel

chains are required for posterior sampling and a marked

reduction of the burn-in period is achieved. The efficiency

of the algorithm has been successfully tested on several

highly dimensional, complex and nonlinear problems.

These studies pointed out that the computational effort can

be demanding in cases where the process model be asso-

ciated with long simulation times. In these instances one

can consider reducing computational costs either by

resorting to a surrogate model of the process considered

(Kennedy and O’Hagan 2001; Higdon et al. 2008; Cui

et al. 2011; Laloy et al. 2013) or by developing a strategy

to reduce the dimensionality of the stochastic inverse

problem. Here we focus on the latter strategy and explore

its effectiveness by way of a suite of computational

examples.

5 Model selection criterion

The strong heregeoneity of the domain we consider leads to

a KLE characterized by a high number of terms. Inferring

the posterior joint pdf (10) through MCMC for these types

of high-dimensional problems is practically unaffordable.

It is then desirable to further reduce the dimensionality of

the inverse problem before running the MCMC sampler.

We propose doing so via the use of a model selection

criterion. As an example, here we rely on the Kashyap

information criterion, KIC (Kashyap 1982), other alterna-

tives (e.g., AIC (Akaike 1974), AICc (Hurvich and Tsai

1989) or BIC (Schwarz 1978) being fully compatible with

our procedure.

The expression for KIC is derived from the Bayesian

Model Evidence (BME) defined as

p mjMkð Þ ¼
Z

KLk

p mjMk; nð Þp njMkð Þdn ð13Þ

where fMk; k ¼ 1; . . .;Nkg is a set of competing alterna-

tive models and Mk depends on KLk quantities collected in

vector n. BME (13) is a metric quantifying how likely

model Mk is, given the data m. The competitive models we

consider in our framework are all the possible KLEs.

The analytical evaluation of the integral in (13) is not

straightforward, especially for high-dimensional parameter

spaces. An approximate form of (13) can be obtained by

employing the Laplace approximation. The latter assumes

that the posterior distribution of the parameters in n is

Gaussian and highly peaked around its local maximum a

posteriori (MAP) estimate nMAP. Expressing p m Mkjð Þ
through a Taylor series expansion centered at the MAP,

retaining terms up to second-order and taking the expo-

nential of the resulting expansion yields (see Schöniger

et al. 2014)

p m Mkjð Þ ¼ p nMAP Mkj
� �

p m Mk; n
MAP

�
�

� �
2pð ÞK=2 Hj j�1=2

ð14Þ

where H is the Hessian matrix evaluated at the MAP,

usually approximated by the Fisher information matrix F.

One then defines KIC as

KICk ¼ �2 ln p mjnMAP;Mk

� �� �
� 2 ln p njMkð Þð Þ

� K lnð2pÞ þ ln Fj jð Þ ð15Þ

Note that p njMkð Þ corresponds to the prior assigned to

the KL terms denoted in (10) by p nð Þ and p mjn;Mkð Þ is the
likelihood denoted p mjnð Þ in (10).

6 Strategy for dimensionality reduction
of the inverse problem

As stated in Sect. 4, the approach we employ to reduce the

dimensionality of the inverse problem relies on represent-

ing the Y field via a sparse truncated KL parameterization.

The strongly heterogeneous random fields we consider are

characterized by a small correlation scale, relative to a

characteristic length scale of the flow domain. Values of

Y in these fields tend to alternate rapidly in space in a rough

rather than a smooth manner and treating them through

KLE still requires considering a notably high-dimensional

parameter space to capture the major details of the

underlying field. This element constitutes a critical chal-

lenge and tends to hamper the effectiveness of character-

izing the Y field through Bayesian inference approaches

based on MCMC samplers. To alleviate this difficulty, we

propose a strategy to further reduce the dimensionality of

the parameterization of the problem. We construct models

with different degrees of complexity through sparse KLE

and evaluate their performance in the presence of available

observations. We associate the degree of complexity of a

model with the number of parameters which are retained in

(7). Our model selection strategy is driven by available

information content and is based on the use of model

Stoch Environ Res Risk Assess (2017) 31:2313–2326 2317

123



selection criteria of the kind illustrated in Sect. 5 which we

employ to guide the identification of the eigenmodes (i.e.,

the number of parameters) of the sparse KLE which are

most influential to the interpretation of the observed data.

We start by recasting the truncated KLE (7) as

Y x;xð Þ � lY þ
XK

i¼1

hi xð Þui xð Þ ð16Þ

where, hi ¼
ffiffiffiffi
ki

p
ni and the parameter prior is now defined

as hi �N 0; kið Þ. Since the set of eigenfunctions ui xð Þf gKi¼1

are orthogonal within the spatial domain D, (16) is a

variance decomposition of Y x;xð Þ, i.e.,

ED Y x;xð Þ � lYð Þ2
h i

¼ 1
�D

Z

D

Y x;xð Þ � lYð Þ2dx

¼
XK

i¼1

h2i xð Þ ð17Þ

Note that the spatial variance depends on x, i.e., on the

random realization (or draw) considered. Suppose that the

MAP estimate hMAP is considered. Then, (17) indicates that

hMAP
i

� �2
is a measure of the contribution of the ith eigen-

mode to the spatial variance of the stochastic field. The key

idea underlying the approach is that eigenmodes with

negligible contribution to (17) can be discarded from the

expansion (16) so that dimensionality reduction of the

inverse problem can be achieved. We do so according to

the procedure detailed in the following where we assume,

for the sake of simplicity, that the posterior pdf (10) is

unimodal.

1. Start by retaining the first K eigenmodes of the

covariance function that capture most of the energy of

the stochastic process. As an example, in our demon-

stration we select

XK

i¼1

ki= �Dr
2 � 0:90 ð18Þ

2. Find the maximum a posteriori estimate,

hMAP ¼ argmax
h

p h mjð Þð Þ; here, we do so by relying

on the Levenberg–Marquardt (LM; Levenberg 1944;

Marquardt 1963) algorithm.

3. Compute the value of a given model selection crite-

rion. As a reference metric, we consider the KIC

(Kashyap 1982) criterion (15) reformulated here as,

KICK ¼ �2 ln p mjhMAP;K
� �� �

� 2 ln p hjKð Þð Þ
� K ln 2pð Þ þ ln Fj jð Þ ð19Þ

Here, K indicates the number of terms retained in the

KL expansion, p m hMAP;K
�
�

� �
is the likelihood function

evaluated at the MAP estimate (Schöniger et al. 2014);

p hjKð Þ is the prior pdf of the current K KL-terms

(recall that p hijKð Þ�N 0; kið Þ); Fj j is the determinant

of the so-called Fisher information matrix evaluated at

the MAP.

4. Compute the contribution of the ith eigenmode to the

spatial variance of the stochastic field, as quantified by

the partial variance hMAP
i

� �2
for i = 1,…,K.

5. Sort the eigenmodes ki;ui xð Þð Þ according to their

partial variance [from largest to smallest hMAP
i

� �2
; see

(17)].

6. Keep the Knew most significant eigenmodes, such that

XK
new

i¼1

ðhMAP
i Þ2

XK

i¼1

ðhMAP
i Þ

,

� 0:90 ð20Þ

7. If Knew ¼ 1, then go to step 8 of the procedure;

otherwise, set K ¼ Knew, construct a new sparse KLE

and go to step 2.

8. Finally, set Kopt ¼ argmin
K

KICKð Þ and use

DREAM(ZS) to sample the sparse KLE coefficients

according to the target pdf p h mjð Þ.

Hence, step 8 yields the optimal sparse KLE, analyzed

on the basis of the chosen information criterion (19). The

Bayesian inference of the values of the reduced subset of

parameters hi
� 	Kopt

i¼1
is then performed with the MCMC

DREAM(ZS) sampler.

Note that while we assume here that the target pdf (10)

is unimodal, the procedure can be extended to the case of

multimodal distributions by searching in step 2 for all

optimum values obtained using multiple starting points in

the LM algorithm.

7 Results and discussion

7.1 Setting of the inverse problem

We analyze and exemplify the performance of our

approach upon relying on a set of computational studies

performed on synthetic systems. We consider a two-di-

mensional square domain of side L = 10 m discretized

with a mesh formed by 10,000 uniform square elements.

The steady-state flow problem described by (1) is solved

under permeameter-like boundary conditions correspond-

ing to uniform (in the average) groundwater flow driven by

a given head drop. As a test bed for our approach, and

following the discussion of Sect. 3, we consider the

exponential covariance function (6) with a given correla-

tion length g/L = 0.1 and a variance r2 ¼ 1. An uncon-

ditional realization of the heterogeneous Y field which we

consider as reference is generated using the KLE with 400
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terms. Figure 1 depicts the cumulative sum of the nor-

malized eigenvalues (9) for the setting considered. These

results suggest that a number of terms K & 150 is required

for the KLE to capture about 90% of the system variance.

The steady-state forward flow problem is then solved for

the generated reference Y field. Values of Y and hydraulic

head are jointly sampled at 25 diverse locations randomly

selected in the system and constitute the entries of the

vector m of observation data. We assume that both head

and Y measurements are noisy. Measurement errors are

considered to be uncorrelated in space and are modeled as

zero-mean Gaussian random variables, characterized by

known standard deviations, denoted as rh and rY , respec-
tively for head and Y data. Figure 2 depicts the reference

Y field and the 25 locations at which observations of both

Y and hydraulic head are collected in our example.

Following Bayes’ theorem, the posterior pdf of the KLE

modes is given by

p h m;K; rh; rY ;C
�
�

� �
/ exp � SS1 hð Þ

2r2h
� SS2 hð Þ

2r2Y

� �

� exp � 1

2
hTC�1h

� � ð21Þ

where T is transpose and C is the covariance matrix defined

by

C ¼
k1 0 � � �
0 . .

. ..
.

0 � � � kK

2

6
4

3

7
5 ð22Þ

Here, SS1 hð Þ and SS2 hð Þ respectively are the sum of

squared differences between observed and modeled (rely-

ing on K modes of the KLE) head and Y values.

Measurement error standard deviation of pressure heads is

set to rh ¼ 0:05 m, which corresponds to 5% of the largest

head variation hmax � hminð Þ in the domain. Two scenarios

corresponding to different values of standard deviation of

measurement errors of Y are investigated, i.e., rY ¼ 0:1 and

0.5, respectively corresponding to 2 and 10% of the largest

Y variation Ymax � Yminð Þ across the domain.

Consistent with the assumptions in the approach

underlying (18), the information matrix F embedded in

KIC (19) is rendered by (Schöniger et al. 2014)

F ¼ JTR�1 Jþ C�1 ð23Þ

where J is the Jacobian matrix evaluated at MAP and R the

covariance matrix defined as

R ¼ r2YINobs=2 0

0 r2hINobs=2


 �

; ð24Þ

Nobs being the number of data collected in the vector m and

INobs=2 the identity matrix of size Nobs/2.

We remark that Bayesian inversion with MCMC using

the KLE of the Y field associated with K = 150, which

allows capturing approximately 90% of the variance

associated with the postulated exponential covariance

function (6), was unaffordable due to the large number of

parameters. The following section is devoted to the illus-

tration of our application of the dimensionality reduction

strategy described in Sect. 5.

7.2 KLE with dimensionality reduction

We apply the model reduction strategy described in Sect. 6

starting from the KLE associated with K = 150. The

components of the MAP vector hMAP are estimated through
Fig. 1 Cumulative sum of the normalized eigenvalues [see (9)] for

the exponential covariance with g/L = 0.1 and variance r2 ¼ 1

Fig. 2 Reference spatial field of the log-transmissivity field, Y xð Þ.
Crosses indicate locations where head and Y values are jointly

sampled
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the LM algorithm and the corresponding value of KIC (19)

is computed following steps 1–4 of the algorithm described

in Sect. 6. The algorithm is continued until only one term

remains in the sparse KLE. This screening phase required

about 370 model calls and is computationally cheap as

compared to the cost required by MCMC samplers (around

50,000 model calls).

Figure 3 depicts the dependence of KIC on the number

of modes (1 B K B 150) retained in the sparse KLE and

resulting from the application of the reduction procedure

described in Sect. 6. This figure indicates that KIC identi-

fies a minimum corresponding to the use of solely 19, or 12

components of the sparse KLE, respectively for rY ¼ 0:1

and 0.5. In other words, the information content embedded

in the available noisy measurements allows identifying a

sparse KLE representation of the Y field based on a reduced

number of components, i.e., K = 19, or 12 in the cases

analyzed. This result is consistent with the general idea that

a reduced number of parameters is required to interpret

data associated with large measurement errors. We note

that we obtain results of similar quality by relying also on

diverse quantities, such as AIC (Akaike 1974) or BIC

(Schwarz 1978) criteria (not shown). When sorted in order

of importance, the modes retained at the optimum corre-

spond to the components identified by the sets of indices

{i = 2, 17, 21, 49, 7, 38, 69, 8, 28, 79, 41, 33, 36, 20, 40,

80, 78, 13, 10} or {i = 2, 8, 36, 49, 17, 30, 21, 79, 38, 122,

129, 6}, respectively for rY ¼ 0:1 and 0.5. We recall here

that modes are selected and ranked according to their rel-

evance [see (17) and step 5 in the reduction algorithm].

Finally, the resulting Y field parameterizations are employed

to appraise the posterior pdf (21) throughDREAM(ZS). Figure 4

depicts the inferred posterior marginal pdfs of the first three

KL modes identified by the set of indices listed above and

resulting from stochastic model calibration via MCMC for

the two scenarios examined. These results reveal that the

mode values are appropriately estimated. Their associated

posterior pdfs are unimodal, with an approximately sym-

metric shape, and encompass a narrow range of values for

both values of rY considered. Results of similar quality are

obtained for the remaining modes retained in these sets (not

shown).

Figure 5 depicts the results of the MCMC-based inver-

sion evaluated at the measurement locations for h and Y and

for both values of rY tested. The 95% uncertainty bounds

(corresponding to the 97.5 and 2.5 percentiles of the distri-

butions) representing parametric uncertainty (narrow

bounds in the figure) are depicted in Fig. 5 together with the

total predictive uncertainty (wide bounds in the figure), the

latter taking into account parametric uncertainty as well as

measurement errors. The results of Fig. 5 suggest that vir-

tually all observations are comprised within the 95% total

uncertainty range for both values of rY . As expected, the

total uncertainty characterizing Y estimates tends to increase

with rY . The parametric uncertainty is slightly larger for

rY ¼ 0:1 than for rY ¼ 0:5, respectively involving 19 and

12 modes at the optimum.

Figure 6a, b depict the MAP estimate of the spatial field

Y, respectively for rY ¼ 0:1, and 0.5. Figure 6c, d depict

the spatial distribution of the width of the 95% total

uncertainty ranges of h, respectively for rY ¼ 0:1, and 0.5.

The corresponding graphical depiction for the width of the

95% uncertainty ranges of Y is shown in Fig. 6e, f. Direct

comparison of Figs. 6a, b and 2 suggests that the identified

(optimum) sparse KLEs yield a good MAP approximation

of the reference log-transmissivity field, with a good

Fig. 3 Selection of the optimal number of modes, Kopt, based on the KIC model selection criterion (16) for the values of standard deviation of

data measurement errors: (left) rh ¼ 0:05, rY = 0.1 and (right) rh ¼ 0:05, rY = 0.5
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Fig. 4 Inferred posterior probability distribution of selected KL eigenmodes after statistical calibration with MCMC for the values of standard

deviation of data measurement errors: (left column) rh ¼ 0:05, rY = 0.1 and (right column) rh ¼ 0:05, rY = 0.5
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quality representation of the spatial pattern of poorly and

highly conducive regions, for both cases. It is nevertheless

noted that, even as the MAP estimate can be deemed sat-

isfactory, the predictive total uncertainty (Fig. 6c–f) asso-

ciated with the stochastic field tends still to be large at

locations far from measurements. This feature is especially

evident for rY ¼ 0:5:

7.3 Predictive performance

Figure 5 suggests that the calibrated models provide a sat-

isfactory representation of the observations in a probabilistic

sense. We now analyze their predictive performance at

diverse locations in the domain. The reference values at

unsampled locations can be compared against the corre-

sponding MCMC predictive distributions of h(x) and Y(x).

The estimated Cumulative Distribution Functions (CDFs)

obtained for h and Y are respectively depicted in Figs. 7 and

8 together with the corresponding reference value for rY ¼

0:1; 0:5: Only a set of selected locations in the domain are

displayed, as representative of the range of results obtained

in our simulations. It can be noted that at some locations the

reference value is comprised within the range of values

associated with non-negligible probability for the two CDFs

depicted. Otherwise, there are locations at which this

behavior can be observed for only one of the two posterior

CDFs, which is most frequently linked to the largest vari-

ance of the measurement errors. Nonetheless, there are some

locations (far from measurements) where the reference

values are not captured by either of the CDFs obtained from

our inversion. Hence, the parameterization strategy based on

the identification of a reduced dimensionality KLEmay lead

to collections of solutions which do not encompass the ref-

erence solution at some unsampled locations (far from

measurements). To improve the quality of the estimation,

one can, for instance, increase the number of measurements

and/or the threshold for the selection of eigenmodes in the

MAP to yield an augmented number of KL eigenmodes, thus

Fig. 5 MCMC predictive uncertainty of the statistically calibrated

reduced models. First row data are corrupted through Gaussian errors

with standard deviation rh ¼ 0:05 (for heads) and rY = 0.1 (for log-

transmissivity). Second row data are corrupted with Gaussian errors

with rh ¼ 0:05 (for heads) and rY = 0.5 (for log-transmissivity)
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Fig. 6 Results of the sparse KLE inversion with DREAM(ZS)

MCMC. Data are characterized by (left column) rY = 0.1 or (right

column) rY = 0.5. First row (a, b) MAP estimate of the Y field. The

last two rows include the width of the 95% total predictive uncertainty

range for (c, d) pressure head and (e, f) log-transmissivity
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Fig. 7 Comparison between

cumulative distribution

functions of pressure heads at

selected unsampled locations

[red 19 modes reduced sparse

KLE (rY = 0.1); green 12

modes reduced sparse KLE

(rY = 0.5)]. Blue dashed lines

indicate reference values.

Coordinate pairs in parenthesis

correspond to the locations

selected in the domain

Fig. 8 Comparison between

cumulative distribution

functions of log-transmissivity

at selected unsampled locations

[red 19 modes reduced sparse

KLE (rY = 0.1); green 12

modes reduced sparse KLE

(rY = 0.5)]. Blue dashed lines

indicate reference values.

Coordinate pairs in parenthesis

correspond to the locations

selected in the domain
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contributing to improve the quality of the inverse solutions

(as compared to the reference solution).

8 Conclusions

We develop an operational strategy to obtain computa-

tionally affordable and Bayesian estimates of satisfactory

quality of heterogeneous transmissivity fields in the pres-

ence of sampled data available at a set of locations in an

aquifer. We do so by relying on a scheme based on mod-

eling the (natural) logarithm of transmissivity as a

stochastic Gaussian process which is parameterized

through a truncated KLE. We consider strongly heteroge-

neous transmissivity fields, such as those characterized by

short-range (with respect to the domain size) correlation,

for which Bayesian inference becomes highly challenging

and computationally demanding due to the large number of

terms which are required to be retained in the KLE.

Our strategy starts from a highly-parameterized field and

yields a set of sparse KLEs with reduced dimensionality, the

MAP estimate of the eigenmodes in each sparse KLE being

obtained through inverse modeling of flow against noisy

data. Selection of the optimal number ofmodes to be retained

in the expansion is driven by a model selection criterium,

which is informed by available observations. The posterior

statistical distribution of the corresponding eigenmodes is

then obtained upon relying on the DREAM(ZS) MCMC

sampler developed by Laloy and Vrugt (2012).

The approach is illustrated by relying on a suite of

computational examples where noisy transmissivity and

head values are sampled from a given transmissivity field.

The new methodology yields a satisfactory inversion of the

stochastic field with a good representation of the observa-

tions in a probabilistic sense. At some unsampled locations

(far from measurements), the collection of estimated

solutions may not encompass the reference values. The

quality of the estimation could be improved for instance by

increasing the number of measurements and/or the

threshold for the selection of KL eigenmodes in the MAP.
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