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Abstract Groundwater is an especially important fresh-

water source for water supplies in the Maku area of

northwest Iran. The groundwater of the area contains high

concentrations of fluoride and is, therefore, important in

predicting the fluoride contamination of the groundwater

for the purpose of planning and management. The present

study aims to evaluate the ability of the extreme learning

machine (ELM) model to predict the level of fluoride

contamination in the groundwater in comparison to multi-

layer perceptron (MLP) and support vector machine (SVM)

models. For this purpose, 143 water samples were collected

in a five-year period, 2004–2008. The samples were mea-

sured and analyzed for electrical conductivity, pH, major

chemical ions and fluoride. To develop the models, the data

set—including Na?, K?, Ca2? and HCO3
- concentrations

as the inputs and fluoride concentration as the output—was

divided into two subsets; training/validation (80% of data)

and testing (20% of data), based on a cross-validation

technique. The radial basis-based ELM model resulted in

an R2 of 0.921, an NSC of 0.9071, an RMSE of 0.5638

(mg/L) and an MABE of 0.4635 (mg/L) for the testing

data. The results showed that the ELM models performed

better than MLP and SVM models for prediction of fluo-

ride contamination. It was observed that ELM models

learned faster than the other models during model devel-

opment trials and the SVM models had the highest com-

putation time.

Keywords Groundwater contamination � Forecasting �
Fluoride � Extreme learning machine � Iran

1 Introduction

Fluoride is an important constituent in groundwater

because, among other things, it is required ..... for the

healthy growth of bones and teeth in human beings (As-

ghari Moghaddam and Fijani 2008; Rafique et al. 2008).

However, long-term intake of high doses of fluoride can

have adverse effects on human health and result in fluo-

rosis, a bone disorder (Cerklewski 1997; Barbier et al.

2010; Patel et al. 2014). The permissible limit for fluoride

concentration in water is 1.5 mg/L according to the World

Health Organization guidelines (WHO 2008). Groundwater

contamination with fluoride is a serious worldwide problem

that has negative effects on public health; globally, around

200 million people from 25 nations are exposed to grave

health risks because of high amounts of fluoride in

groundwater (Ayoob and Gupta 2006).

Fluoride occurs in almost all natural waters from trace

concentrations to as high as 15,000 mg/L in mine water

from the Kola Peninsula (Kraynov et al. 1969; Valenzuela-

Vasquez et al. 2006). The natural concentration of fluoride

in groundwater is governed principally by climate, com-

position of the host rock, and hydrogeology (Gupta et al.

2006; Valenzuela-Vasquez et al. 2006). High concentra-

tions of fluoride in the groundwater are also contributed by

anthropogenic activities such as the use of phosphatic

fertilizers, pesticides, sewage and sludge, as well as
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depletion of the groundwater table (EPA 1997; Ramanaiah

et al. 2006; Kundu and Mandal 2009). Many factors can

control the release of fluoride to groundwater, including the

mineralogy of the rock (e.g. granite rocks), hydrogeologi-

cal conditions, groundwater chemistry (e.g. presence or

absence of ion complexes, precipitation of ions and col-

loids, and anion exchange capacity of aquifer materi-

als), the interaction period of groundwater with a particular

formation, and the dissolution kinetics of fluoride-bearing

minerals (Patel et al. 2014).

Groundwater quality modeling enables the identification

of groundwater quality trends and their influencing vari-

ables, which are important components of water resources

management. In the last decades, numerically and physi-

cally based groundwater models were the most common

groundwater modeling tools (Javadi and Al-Najjar 2007).

However, the performance of these models depends on an

adequate understanding of the hydrological behavior of the

process in question, and the availability of detailed data on

groundwater system properties. These two conditions are

often absent, especially in developing regions, resulting in

unsatisfactory model performance (Coppola et al. 2005;

Alagha et al. 2014).

Numerical models are employed to simulate hydrolog-

ical and hydrogeological problems, but these models are

less user-friendly and lack knowledge transfer in model

interpretation, which is leading to a large gap between

model developers and practitioners. The advancement in

Artificial Intelligence (AI) over the past two decades makes

it possible to integrate these technologies into numerical

modeling systems in order to bridge the gaps (Chau 2006).

Also, AI techniques have rendered it possible to simulate

human problem—solving expertise in this narrowly—de-

fined domain by integrating descriptive knowledge, pro-

cedural knowledge and reasoning knowledge (Mirabbasi

2015; Chau 2006).

Recently, AI models have been used to predict

groundwater contamination. For instance, Chowdhury et al.

(2010) developed artificial neural network (ANN) models

for spatial mapping of arsenic contamination of ground-

water in Bangladesh. Alagha et al. (2014) applied AI

models such as ANN and support vector machine (SVM) to

predict nitrate contamination of the Gaza coastal aquifer.

Cho et al. (2011) developed an ANN model for prediction

of contamination potential of groundwater arsenic in

Cambodia, Laos and Thailand. Al-Mahallawi et al. (2012)

used neural networks for the prediction of nitrate ground-

water contamination in rural and agricultural areas. Sahoo

et al. (2006) applied ANN to assess pesticide contamina-

tion of shallow groundwater in Illinois, USA. Sirat (2013)

applied backpropagation neural networks (BP-NN) to data

taken from 1302 domestic and rural hydraulic wells in the

Mid-continent of the USA, including Illinois, Iowa and 12

other states to predict contamination of groundwater with

pesticides.

Some researchers have used AI models for fluoride

contamination of groundwater. For example, Dar et al.

(2012) applied ANNs for fluoride contamination of the

Mamundiyar basin, India. Amini et al. (2009) used several

hybrid methods by combining two classification tech-

niques, classification tree and knowledge based clustering,

and three predictive techniques (multiple regression,

logistic regression and adaptive neuro-fuzzy inference

system) for groundwater fluoride modeling using a global

fluoride database. Nadiri et al. (2013) used a supervised

committee machine artificial intelligence model for pre-

dicting groundwater fluoride concentrations of the Maku

area. Chitsazan et al. (2016) applied hierarchical Bayesian

model averaging to combine the predictions of multiple

artificial neural networks (ANNs) for fluoride contamina-

tion of the Maku area. As can be seen, AI models are

generally able to predict the contamination of groundwater.

However, to date, no research has been published that uses

an extreme learning machine (ELM) model to predict

groundwater quality, especially groundwater contamina-

tion. For other applications, Zhang et al. (2015) proposed a

self-adaptive differential evolution extreme learning

machine (SADE-ELM) model for classification of water

quality parameters in the Huaihe River, China. Imen (2015)

applied artificial neural network, ELM and genetic pro-

gramming for the long-term observation of total organic

carbon (TOC) concentrations throughout Lake Mead in the

United States. Dongwen (2013) used ELM to forecast total

phosphorous and total nitrogen of a reservoir in Yunnan

province, China.

Earlier studies in the Maku area (Asghari Moghaddam

and Fijani 2008, 2009; Asghari Moghaddam et al.

2005, 2007) have indicated high concentrations of fluoride

in the groundwater. The main objective of the present study

is to investigate the ability of an extreme learning machine

to predict the fluoride contamination of groundwater in the

Maku area of northwest Iran. The usefulness of the ELM

model was verified against the multilayer perceptron and

support vector machine (SVM) models.

2 Methodology

2.1 Multilayer perceptron

A detailed description of ANN models is given in Haykin

(Haykin 1999). However, in brief, ANNs consist of an

input layer of source nodes, one or more hidden layers of

computation nodes or neurons and one output layer. The

input layer nodes distribute the input information to the

next layer (i.e. the first hidden layer). The hidden and
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output layer nodes process all incoming signals by apply-

ing factors to them (termed weights). Each layer also has

an additional element called a bias node. Bias nodes simply

output a signal to the nodes of the current layer. All inputs

to a node are weighted, combined and then processed

through a transfer function that controls the strength of the

signal released through the node’s output connections.

Some of the most popular transfer (activation) functions

are Sigmoid, Gaussian, Hyperbolic, Tangent and Hyper-

bolic Secant (Malekmohammadi et al. 2011; Barzegar et al.

2016c).

The proposed method for the ANN to be used in this

study was the Multilayer Perceptron, in which the neurons

are disposed in successive layers (feed-forward). Back-

propagation is the most popular algorithm used for training

a feed-forward ANN (Jain and Srinivasulu 2004; Fernando

and Shamseldin 2009; Goyal et al. 2014). The structure of

the MLP neural network model is shown in Fig. 1. In this

figure, i, j and k denote input layer, hidden layer and output

layer neurons, respectively, and w is the applied weight by

the neuron. The explicit expression for an output value of a

three-layered MLP is given by Belayneh and Adamowski

(2012), Nourani et al. (2013), Barzegar and Asghari

Moghaddam (2016) and Barzegar et al. (2016b, c):

yk ¼ f�
XMN

i¼1

Wkj � fh
XNN

i¼1

WjiXi þWj0

 !
þWk0

" #
ð1Þ

where Wji is a weight in the hidden layer connecting the ith

neuron in the input layer and the jth neuron in the hidden

layer, Wj0 is the bias for the jth hidden neuron, fh is the

activation function of the hidden neuron, Wkj is a weight in

the output layer connecting the jth neuron in the hidden

layer and the kth neuron in the output layer, Wk0 is the bias

for the kth output neuron, fo is the activation function for

the output neuron, Xi is the ith input variable for the input

layer and yj is the computed output variable. NN andMN are

the number of the neurons in the input and hidden layers,

respectively. The gradient descent, conjugate gradient,

Levenberg–Marquardt, and other learning algorithms can

be used for training the MLP model (Kisi et al. 2015;

Barzegar and Asghari Moghaddam 2016).

2.2 Support vector machine

The support vector machine (SVM) is a popular estimator

introduced by Vapnik (1995). Based on Vapnik’s theory,

the SVM functions are offered by Eqs. (2–6), where

R = {xi, di}i
n is used for assuming a set of data points, the

input space vector of the data sample is shown by xi, and

the desired value and data size are defined as di and n,

respectively. The procedure of an SVM regression esti-

mator (f) is written as (Zaji et al. 2016; Amirmojahedi et al.

2016; Mojumder et al. 2016; Ebtehaj et al. 2016; Al-

Shammari et al. Al-Shammari et al. 2016; Shamshirband

et al. 2016):

f xð Þ ¼ wu xð Þ þ b ð2Þ

RSVMs Cð Þ ¼ 1

2
jjw2jj þ C

1

n

Xn

i¼1

L xi; dið Þ ð3Þ

where u(x) is a high dimensional space feature that maps

the input space vector x, w is a weight vector, b is a bias

and C 1
n

Pn
i¼1 L xi; dið Þ represents the empirical error. The

parameters w and b can be estimated with a regularized risk

minimization function after introducing positive slack

variables ni and n
�

i , which represent upper and lower excess

deviation, respectively.

Minimize RSVMs w; n
�ð Þ ¼ 1

2
jjw2jj þ C

Xn

i¼1

ni � n�i
� �

ð4Þ

Subject to

di � wu xið Þ þ bi � eþ ni
wu xið Þ þ bi � di � eþ n�i
ni; n

�
i � 0; i ¼ 1; . . .; l

8
<

: ð5Þ

where 1
2
jjw2jj is the regularization term, C is the error

penalty factor used to regulate the difference between the

regularization term and empirical error, e is the loss func-

tion, which equates to the approximation accuracy of the

training data point and l is the number of elements in the

training data set.

Equation (2) can be resolved by proposing a Lagrange

multiplier and optimality constraints, therefore obtaining a

generic function given by Eq. (6):

f x; bib
�
i

� �
¼
Xn

i¼1

bi � b�i
� �

K xi; xj
� �

þ b ð6Þ

where K(xi, xj) is recognized as the kernel function and it is

equal to K xi; xj
� �

¼ u xið Þu xj
� �

. The latter term is an inner

product of the two vectors, xi and xj, in the feature spaceFig. 1 The structure of the MLP model
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u(xi) and u(xj), respectively. This inner product space is a

vector space that has an additional structure termed as the

inner product. This relates each pair of vectors with a scalar

quantity known as the inner product of the vectors. The

structure of the SVM model is shown in Fig. 2.

In this study, a radial basis function (RBF)

K xi; xj
� �

¼ exp �cjjxi � xjjj
� �

; c[ 0; c ¼ 1=ð2r2Þ, linear

function K xi; xj
� �

¼ xixj, polynomial basis function

K xi; xj
� �

¼ xixj
� �

þ c
� �d

(c C 0, d is the degree of the

polynomial kernel), and sigmoid function K xi; xj
� �

¼
tanh cxixj þ c

� �
c[ 0; c� 0ð Þ were applied as the kernel

functions.

2.3 Extreme learning machine

Extreme learning machine (ELM) was first proposed by

Huang et al. (2004) as a fast learning technique with high

generalization performance that uses single-hidden layer

(feature mapping) feed-forward neural networks (SLFNs)

(Huang et al. 2004, 2006; Abdullah et al. 2015). The ELM

chooses the input weights randomly and determines the

output weights of the SLFN analytically (Aghbashlo et al.

2016). It is capable of determining all the network

parameters analytically, which prevents trivial human

intervention (Shamshirband et al. 2016). The main objec-

tives of the ELM are to reach the smallest training errors,

the smallest norm of output weights, and good general-

ization performance (Huang et al. 2006).

The network structure of the ELM model is shown in

Fig. 3. For N different training samples

xi; yið Þ 2 Rn � Rm i ¼ 1; 2; 3; . . .; nð Þ, the number of hidden

nodes is L. The SLFN model, which has the activation

function f(x), can be expressed as (Ding et al. 2016; Liu

et al. 2016; Aghbashlo et al. 2016):

XL

i¼1

bifi xj
� �

¼
XeL

i¼1

bif ai � bi � xð Þ; j ¼ 1; . . .;N ð7Þ

where ai ¼ ai1; ai2; . . .; ain½ 	T is the input weight vector

connected to the hidden layer node, i, bi is the bias value of

hidden layer nodes, bi ¼ bi1; bi2; . . .; bim½ 	T are the output

weight vectors connected to the hidden layer node, and i,

ai, xj is the inner product of ai� xj,.
Equation (7) can be rewritten compactly as follows:

XL

i¼1

bifi xj
� �

¼ Hb ð8Þ

H ¼
f a1 � x1 � b1ð Þ . . . f aL � x1 � bLð Þ

..

.
. . . ..

.

f a1 � xN � b1ð Þ . . . f aL � xN � bLð Þ

2

64

3

75

N� L

ð9Þ

b ¼
bT1
..
.

bTL

2
64

3
75

L�m

T ¼
yT1

..

.

yTL

2
64

3
75

N�m

ð10Þ

where H is the output matrix of the hidden layer,b is the

output weight matrix, and T is the label matrix.

Not all parameters need to be adjusted when the exci-

tation function f(x) is infinitely differentiable at any inter-

val. At the start of the training process, SLFNs are assigned

random values to the input weight a and hidden layer node

bias b. When input weights and hidden layer node biases

are determined by random assignment methods, the hidden

layer output matrix H from the input samples can be

obtained. Thus, training SLFNs are transformed into

solving least square solutions.

By introducing regularization theory into the ELM

model, the cost function can be expressed as:

minLELM ¼ 1

2
jjbjj2 þ C

2
jjT � Hbjj2 ð11Þ

The least squares solution of Eq. (11) is:

V � CHT T � Hbð Þ ¼ 0 ð12Þ
Fig. 2 The structure of the SVM model

Fig. 3 The structure of the ELM model
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When the number of training samples is more than the

number of hidden layer nodes,

b ¼ 1

C
þ HTH

� ��1

HTT ð13Þ

When the number of training samples is less than the

number of hidden layer nodes,

b ¼ HT 1

C
þ HHT

� ��1

T ð14Þ

When the number of hidden layer units is large enough

in the ELM algorithm, the regression accuracy of the

algorithm is always stable.

In this study, the activation functions were defined by

sine (fsin), sig (fsig), hard-limit (fhardlim), radial basis

(fradbas) and triangular basis (ftribas), as in the following

equations:

fsin ¼ a; b; xð Þ ¼ sin axþ bð Þ ð15Þ

fsig ¼ a; b; xð Þ ¼ 1

1þ expð� axþ bð ÞÞ ð16Þ

fhardlim a; b; xð Þ ¼ 1; if axþ b\0

0; otherwise

�
ð17Þ

fradbas a; b; xð Þ ¼ exp � axþ bð Þ2
	 


ð18Þ

ftribas a; b; xð Þ ¼ 1� axþ bj j; if � 1� ðaxþ bÞ� 1

0; otherwise

�
ð19Þ

2.4 Performance evaluation of the models

The performance of the developed models for training and

testing sets was evaluated by following measures of

goodness-of-fit: the coefficient of determination (R2),

Nash–Sutcliffe efficiency coefficient (NSC), root mean

squared error (RMSE) and mean absolute bias error

(MABE), shown in Eqs. (20–23), respectively. R2 expres-

ses the degree of the relation when two variables are lin-

early related. If R2 is close to 1, there is good correlation

between the observed and predicted values. The Nash–

Sutcliffe coefficient of efficiency (NSC), an indicator of the

model fit, is a normalized measure (-? to 1) that com-

pares the mean square error generated by a particular

model simulation to the variance of the target output

sequence. An NSC value of 1 indicates perfect model

performance, an NSC value of zero indicates that the

model is, on average, performing only as well as the use of

the mean target value as prediction, and an NSC\ 0

indicates an altogether questionable choice of the model

(Nash and Sutcliffe 1970). A perfect fit between observed

and predicted values would have an RMSE of 0.

R2 ¼
XN

i¼1

Pi � �Pð Þ Oi � �Oð Þ
" #2 XN

i¼1

Pi � �Pð Þ2 Oi � �Oð Þ2
" #�1

ð20Þ

NSC ¼ 1�
PN

i¼1 Oi � Pið Þ2
PN

i¼1 Oi � �Oð Þ2
ð21Þ

RMSE ¼ N�1
XN

i¼1

Pi � Oið Þ2
" #0:5

ð22Þ

MABE ¼ 1

N

XN

i¼1

Pi � Oij j ð23Þ

where N is the number of observations, Pi is the predicted

value, Oi is the observed data, and �P and �O are the mean

values for Pi and Oi, respectively.

3 Study area and data

3.1 Study area

The Maku area is located in the north of West Azerbaijan

province in the northwest of Iran. It lies between 44�210
and 45�100 east longitude and 35�100 and 39�340 north

latitude, covering an area of approximately 1600 km2. The

study area is covered up to 400 km2 by basaltic lavas. It is

bounded in the west by Turkey and in the east by the Aras

River, as shown in Fig. 4. The most important cities in the

area are Maku, Poldasht and Bazargan. The climate of the

area is cold and arid. The annual average precipitation is

about 300 mm and the maximum and minimum precipi-

tation occur in May and September, respectively (Asghari

Moghaddam and Fijani 2009). Mean daily temperatures at

the Maku Synoptic Station (1411 m amsl) vary from

-7.4 �C in January up to 17.2 �C in July, with an annual

average of 10.4 �C (Asghari Moghaddam and Fijani 2009).

The main rivers in the study area are Sari Su and Zangmar,

which flow from west to east.

The Maku area includes formations of Precambrian to

Quaternary ages. The major formation in the area is lava,

which mainly consists of basaltic rocks. The great extent of

young lava in the extreme northwest of Iran is

attributable to the volcanic activity of Ararat in Turkey

(Asghari Moghaddam and Fijani 2008). Young alluvium

clay to gravel sheets, spreading as fan deposits from the

mountain flanks and flood plains, are the recent unconsol-

idated materials filling the lowlands and river beds (As-

ghari Moghaddam and Fijani 2007, 2008). The Maku area

aquifers have a range of lithologies, including basaltic-al-

luvium, alluvium and karstified limestone. However, the

basaltic-alluvium aquifer forms the main water-bearing
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Fig. 4 Location of the study area and sampling points
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layers of the area (Asghari Moghaddam and Fijani 2009).

Detailed discussion regarding the geology, hydrogeology

and hydrochemistry of the Maku area is presented in

Asghari Moghaddam et al. (2005), Fijani (2007) and

Asghari Moghaddam and Fijani (2007, 2008, 2009).

Groundwater is the main water source used for various

purposes such as drinking, agriculture and industry in the

study area. Fluoride contamination is considered to be the

main water quality problem in the Maku area, where the

average concentration of fluoride is 2.85 mg/L (Asghari

Moghaddam and Fijani 2008, 2009). The volcanic rocks in

the study area contain silicate minerals, apatite and fluo-

rapatite, and the weathering of these minerals is likely to be

the main source of fluoride in the groundwater of the study

area (Asghari Moghaddam et al. 2005; Fijani 2007).

3.2 Data collection and pre-processing

In this study, the chemical analyses of 143 water samples

were used. Water was collected from 39 sampling sites

over water sources (wells, springs, qanats, etc.) in a 5-year

period, from 2004 to 2008. The locations of the sampling

sites are shown in Fig. 4. The largest and smallest data sets

were in August 2006 (38 samples) and July 2004 (8 sam-

ples), respectively. The water samples were analyzed in the

Hydrogeology Laboratory of the University of Tabriz. The

electrical conductivity (EC) and pH were measured in situ

in the field. Fluoride concentration in water samples was

determined using the method of SPADNS—using a Spec-

tro 40 spectrophotometer at 570 nm—and the other ions

(Ca2?, Mg2?, Na?, K?, HCO3
-, CO3

2-, SO4
2- and Cl-)

were determined by standard methods (American Public

Health Association 1998). The accuracy of the water

analysis was within the limit of ±5% according to the

cation–anion balance (Domenico and Schwartz 1990). In

this study complete hydrological data sets (e.g. ground-

water flow and stream flow) were not available, except

groundwater level, and there was no correlation between

groundwater level and fluoride contamination. Therefore,

this study may indicate the suitability of certain AI models

for hydrological modeling, particularly in regions where

detailed and complete data sets about hydrological pro-

cesses are usually unavailable. For example, in this case

study, there are many data sets of major ions, but the flu-

oride concentrations are not available for such data sets.

Therefore, AI models can be used for prediction of the

unavailable fluoride concentrations.

One of the most important steps in developing a pre-

diction model is the selection of the input variables. For the

selection of input variables, certain fluoride-related vari-

ables were chosen. For this purpose, principal component

analysis (PCA) was used. PCA can be used to reduce the

complexity of input variables when there are large volumes

of information and better interpretation of variables is

recommended (Noori et al. 2010, 2011). It can be seen

from Table 1 that Na?, K?, Ca2? and HCO3
- concentra-

tions have the greatest effect on the first component (PC1).

Therefore, these four variables were selected as inputs of

the developed models. The high positive loading of the

HCO3
- in PC1 could be due to the release of hydroxyl and

bicarbonate ions simultaneously during the leaching and

dissolution process of fluoride bearing minerals into the

groundwater. Groundwater with high K? and Na? con-

centrations likely occurs as a result of silicate mineral

hydrolysis of volcanic rocks as a source of fluoride in the

study area. High concentrations of Na? increase the solu-

bility of the fluoride bearing minerals. Also, the presence of

Na?, K? and HCO3
- variables in PC1 could be an indi-

cation of ion-exchange and carbonate weathering. The

negative loading of the Ca2? reflects precipitation of flu-

orite (CaF2) mineral, due to the high solubility product of

fluoride (Rafique et al. 2008).

Before developing the models, the data set values were

normalized between 0.2 and 0.8, using Eq. (24):

Normalized X ¼ C1

Xi � Xmin

Xmax � Xmin

þ C2 ð24Þ

in which Xmax and Xmin are the maximum and minimum of

the data sets. In the current study, the C1and C2 values were

assigned as 0.6 and 0.2, respectively. Therefore, the data

were normalized into the range [0.2, 0.8]. This normal-

ization was employed following the suggestion of Cigi-

zoglu (2003), who showed that scaling input data between

0.2 and 0.8 gives ANNs the flexibility to estimate beyond

the training range.

To develop the MLP, SVM and ELM models, the cross-

validation technique (Chang et al. 2013; Fijani et al. 2013;

Barzegar et al. 2016b) was used to divide the data sets into

training and testing sub sets. The data sets were divided into a

Table 1 Principal component analysis (PCA) to determine the input

variables

Variables PC1 PC2 PC3

EC 0.547 0.720 -0.025

pH 0.221 0.045 0.826

Ca2? -0.767 0.160 -0.389

Mg2? 0.104 0.861 -0.052

Na? 0.877 0.370 0.066

K? 0.841 -0.037 0.001

HCO3
- 0.900 0.101 -0.174

CO3
2- 0.258 -0.052 0.430

Cl- 0.038 0.926 0.028

SO4
2- -0.201 0.707 -0.084

F- 0.920 -0.087 0.080
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training/validation set (80% of the data) and a testing set (the

remaining 20% of the data). Statistical analysis of the

training/validation and testing data sets are listed in Table 2.

4 Development of the models

4.1 MLP model

As previously mentioned, 80% of the data set was con-

sidered for training/validation and the remaining 20% for

testing. For the MLP model, the training/validation set was

further divided into 80% training and 20% validation, so

overall, 64% of the data were used for training, 16% were

used for validation, and 20% were used for testing.

The neural network training was implemented through

the MATLAB Neural Network toolbox. In this study, the

three-layered feed-forward neural network was trained with

the Levenberg–Marquardt algorithm (TrainLM). This

algorithm is a variation of Newton’s method and is

designed to second-order training speed without having to

compute the Hessian matrix (Adamowski and Sun 2010).

Traditionally, the trial and error method is used to select

the optimal number of hidden neurons (Belayneh et al.

2014, 2016; Adamowski and Sun 2010; Barzegar et al.

2016a, b). However, Wanas et al. (1998) and Mishra and

Desai (2006) empirically considered equations log(N),

where N is the number of training samples, and 2n ? 1,

where n is the number of input neurons to determine the

number of hidden neurons. In this study, the optimal

number of hidden neurons was determined to be between

log (N) and (2n ? 1). Two hidden neurons and nine hidden

neurons were determined by using the Wanas et al. (1998)

and Mishra and Desai (2006) methods, respectively;

thereafter, the optimal number was chosen via trial and

error. The number of neurons in the hidden layer was

seven. The transfer function between layer one and layer

two was TANSIG, while PURELIN was used for the last

layer. Learning rates and momentum factors of 0.1 and 0.2,

respectively, were chosen by trial and error. The magnitude

of the gradient and the number of validation checks used to

terminate network training are presented in Fig. 5a. At an

epoch of 16 iterations, the gradient was 7.069 9 10-4,

barely above the 1 9 10-4 threshold below which training

will stop, and at six, the validation checks also indicated

training should stop. The performance plot (Fig. 5b) shows

the value of the function in terms of training, validation,

and testing behaviors, versus the iteration number. The best

validation performance was at epoch 10, based on a mean

square error equal to 1.743 9 10-3. The MLP model

was trained in 0.45 s. When the training of the model was

completed, the testing data served as model input and

fluoride concentration values were predicted.

4.2 SVM model

In this study, DTREG (Data Regression) was utilized for

the SVM modeling. The models were created by using the

Epsilon-SVR kernel type. Both grid and pattern search—as

well as tenfold cross-validation re-sampling methods—

were employed to find optimal parameter values. During

grid search, the program (DTREG) evaluates values of

each parameter within the predefined search area. On the

other hand, a pattern search (also known as a line search or

compass search) starts from the centre of the search area

and tries steps in both directions for each parameter. The

centre of the search area is then moved to the new point if a

better model fit is obtained. The process is repeated until

the specified tolerance rate is reached (Sonebi et al. 2016;

Al-Anazi and Gates 2010).

Model parameters such as C have a search range of

0.1–5000, kernel parameter c of 0.001–50, and e (Epsilon) of
0.001–100. By selecting the pattern search technique using

10 search intervals which would require 1000 model evalu-

ations and 1e-008 tolerance for stopping the iterative opti-

mization process and the optimal values through the grid

search, we could create a fluoride prediction model with

higher stability and lower RMSE. The optimal calibration

constants and kernel parameters for developing SVMmodels

are shown in Table 3. After constructing the SVM models,

the testing data set was used for testing the models.

4.3 ELM model

The ELM models were developed in a MATLAB envi-

ronment. Three layers were used to build the architecture

Table 2 Statistical analysis of

the training/validation and

testing data sets

Variables Training/validation data set Testing data set

Min Mean Max SD Min Mean Max SD

Na? 0.7 138.2 325.7 87.4 1.4 145.1 335.6 101.6

K? 0.7 8.6 18.5 4.4 1.3 8.45 17.9 5.2

Ca2? 5.6 73.3 146.8 2.8 19.2 67.61 123.5 26.6

HCO3
- 187.7 565.8 914.4 2.1 104.8 552.1 857.2 224.1

F- 0.2 2.7 7.9 1.7 0.46 2.9 6.4 1.8
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Fig. 5 Training state and

performance of the developed

MLP neural network model

Table 3 Optimal training

constants and kernel parameters

for developing SVM models

Kernel function Calibration constants Kernel parameters Time (s)

e C C c d

Linear 0.001 3865.48 – – – 12.32

Sigmoid 0.001 449.68 0.07 0.003 – 13.33

Polynomial 0.001 0.1 0.06 4.516 3 76.94

RBF 0.001 0.178 – 14.674 – 24.56
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for fluoride contamination prediction in designing the

ELM. The number of neurons was 4 (input) for each of the

developed ELM models. The ELM output layer had one

neuron representing the predicted fluoride. The number of

hidden nodes is changeable for better accuracy, and the

number of hidden neurons was selected via a trial and error

method. The number of neurons between 1 and 50 were

tested in hidden layers of the ELM models. In each trial,

the number of nodes in the hidden layer was increased

gradually until the optimal nodes were reached. A taxon-

omy of activation functions was tried one-by-one, which

included ‘‘sigmoid’’, ‘‘sine’’, ‘‘radial basis’’, ‘‘triangular

basis’’ and ‘‘hard-limit’’. The optimal hidden neurons for

different activation functions are listed in Table 4. After

training the models, the testing data set was used to test the

developed models.

5 Results

The performance of the MLP, SVM and ELM models for

prediction of fluoride contamination in both training and

testing stages is presented in Tables 5, 6 and 7, respec-

tively. The statistical evaluation criteria revealed that all

the models for the prediction of fluoride concentration

yielded satisfactory results. Therefore, these models are

acceptable—due to high R2 and NSC values and low

RMSE values—for predicting fluoride contamination in the

Maku area. The values of R2 and NSC which were close to

unity, and fairly low RMSE and MABE in all the models—

for both the training and testing sets—emphasized good

generalization and predictive abilities of the three modeling

approaches for the given data set. However, relatively

lower prediction errors obtained by models in the training

set as compared to the testing set indicated that these

models exhibited relatively better generalization as com-

pared to the predictions.

Table 4 Optimal hidden neurons for developing ELM models

Activation function Hidden neurons Time (s)

Sigmoid 20 0.015

Sine 22 0.01

Hard-limit 42 0.124

Radial basis 16 0.124

Triangular basis 16 0.062

Table 5 Results of MLP model

during training and testing
Model Training Testing

R2 NSC RMSE

(mg/L)

MABE

(mg/L)

R2 NSC RMSE

(mg/L)

MABE

(mg/L)

MLP 0.9191 0.9179 0.4914 0.3607 0.8152 0.8019 0.8232 0.6131

Table 6 Results of SVM

models for training and testing

stages

Kernel function Training Testing

R2 NSC RMSE

(mg/L)

MABE

(mg/L)

R2 NSC RMSE

(mg/L)

MABE

(mg/L)

Linear 0.8721 0.8885 0.5925 0.4316 0.8521 0.7774 0.8727 0.7124

Sigmoid 0.8851 0.8806 0. 5727 0. 4097 0.8524 0.7793 0.8688 0.7078

Polynomial 0.8932 0.891 0.5661 0.4001 0.8709 0.7866 0.8543 0.7181

RBF 0.9014 0.9122 0.5082 0.3146 0.8833 0.8658 0.6775 0.5596

Table 7 Results of ELM

models for training and testing

stages

Activation function Training Testing

R2 NSC RMSE

(mg/L)

MABE

(mg/L)

R2 NSC RMSE

(mg/L)

MABE

(mg/L)

Sigmoid 0.9213 0.92 0.4852 0.3812 0.901 0.8899 0.6138 0.522

Sine 0.9229 0.9213 0.4812 0.3789 0.9084 0.8947 0.6002 0.4988

Hard-limit 0.913 0.9126 0.5069 0.3907 0.901 0.8863 0.6236 0.4925

Radial basis 0.9453 0.9449 0.4024 0.3157 0.921 0.9071 0.5638 0.4635

Triangular basis 0.926 0.9254 0.4684 0.3584 0.9087 0.9018 0.5797 0.4772
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Table 5 shows the statistical evaluation criteria of

training and testing for the MLP model. The R2, NSC,

RMSE and MABE of the MLP model for the training data

were 0.9191, 0.9179, 0.4914 (mg/L) and 0.3607 (mg/L),

respectively; those for the testing data were 0.8152,

0.8019, 0.8232 (mg/L) and 0.6131 (mg/L), respectively.

Figure 6a shows the comparison between the measured

and predicted values of fluoride for the MLP model in the

testing stage.

Table 6 shows a performance comparison of the dif-

ferent kernel functions used for SVM model development.

The RBF and linear kernel functions showed the best and

worst performance, respectively, among the utilized kernel

functions for the SVM models. The R2, NSC, RMSE and

MABE for the linear-based SVM model for training data

were 0.8721, 0.8885, 0.5925 (mg/L) and 0.4316 (mg/L),

respectively, whereas those for the testing data were

0.8521, 0.7774, 0.8727 (mg/L) and 0.7124 (mg/L),

respectively. In the training stage, the SVM model with the

RBF kernel function resulted in an R2 of 0.9014, an NSC of

0.9122, an RMSE of 0.5082 (mg/L), and an MABE of

0.3146 (mg/L). However, for the testing data, the corre-

sponding values were 0.8833, 0.8658, 0.6775 (mg/L) and

0.5596 (mg/L), respectively. The RBF kernel function

significantly reduced the overall prediction errors. It was

demonstrated that the radial basis kernel function (RBF)

performed better than linear, sigmoid and polynomial

kernel functions in terms of performance criteria. This

result was confirmed by Rajasekaran et al. (2008), Yang

et al. (2009), Wu and Wang (2009) and Amirmojahedi

et al. (Amirmojahedi et al. 2016). Figure 6 shows a com-

parison between the measured and predicted values of the

fluoride concentration for the SVM model with the RBF

kernel function in the testing stage. The results show that

the use of nonlinear kernel functions achieved better per-

formance than the linear kernel.

Table 7 shows a comparison of the performance of the

different activation functions utilized for ELM model

development. The radial basis and hard-limit functions

showed the best and worst performance among the acti-

vation functions used for ELM models, respectively. The

R2, NSC, RMSE and MABE for the hard-limit-based ELM

Fig. 6 The performance of the a MLP, b SVM and c ELM models developed for prediction of fluoride concentration in the testing stage
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model for training data were 0.913, 0.9126, 0.5069 and

0.3907 (mg/L), respectively, whereas those for the testing

data were 0.901, 0.8863, 0.6236 and 0.4925 (mg/L),

respectively. The radial basis-based ELM model resulted in

an R2 of 0.9453, NSC of 0.9449, RMSE of 0.4024 (mg/L),

and MABE of 0.3157 (mg/L) for the training data and in an

R2 of 0.921, NSC of 0.9071, RMSE of 0.5638 (mg/L) and

MABE of 0.4635 (mg/L) for the testing data. The perfor-

mance of the ELM with the radial basis function for fluo-

ride contamination prediction in the testing stage is shown

in Fig. 6c. The results show that the ELM models per-

formed better than MLP and SVM models for prediction of

fluoride contamination. Empirical studies have shown that

the generalization ability of ELM is better than that of

SVM models (Huang et al. 2006, 2012; Fernandez-Delgado

et al. 2014; Huang et al. 2014, 2015).

The ELM models had advantages in computation time in

comparison with MLP and SVM models. It was observed

that ELM models learned faster than the other models

during model development trials while the SVM models

had the highest computation time. As analyzed by Huang

et al. (2015), the training of SVM is a quadratic pro-

gramming problem, and thus, it requires high computa-

tional costs. In contrast, the parameters of the ELM hidden

layer need not be adjusted and can be independent of the

training data. Hence, the ELM model only computes the

output weights analytically, and it has a much faster

learning speed and lower computational complexity than

SVM (Wang et al. 2015). The grid search was another

reason for the high computation times of the SVM models

because, by using this method, the model must be evalu-

ated at many points within the grid for each parameter (Al-

Anazi and Gates 2010).

6 Conclusions

This study investigated the ability of three different

machine learning algorithms including MLP, SVM and

ELM to predict the fluoride contamination of ground-

water in the Maku area of northwest Iran. The results

demonstrated that the ELM models outperformed the

MLP and SVM models for prediction of fluoride con-

tamination. This study found that the SVM model with

the RBF kernel function outperformed the linear-, sig-

moid- and polynomial kernel function-based models. The

radial basis and hard-limit functions, among the utilized

activation functions, showed the best and worst perfor-

mance for ELM models, respectively. During model

development trials, it was observed that ELM models

learned faster than the other models while the SVM

models had the highest computation time.
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