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Abstract Extreme flood events have detrimental effects on

society, the economy and the environment. Widespread

flooding across South East Queensland in 2011 and 2013

resulted in the loss of lives and significant cost to the

economy. In this region, flood risk planning and the use of

traditional flood frequency analysis (FFA) to estimate both

the magnitude and frequency of the 1-in-100 year flood is

severely limited by short gauging station records. On

average, these records are 42 years in Eastern Australia and

many have a poor representation of extreme flood events.

The major aim of this study is to test the application of an

alternative method to estimate flood frequency in the form

of the Probabilistic Regional Envelope Curve (PREC)

approach which integrates additional spatial information of

extreme flood events. In order to better define and constrain

a working definition of an extreme flood, an Australian

Envelope Curve is also produced from available gauging

station data. Results indicate that the PREC method shows

significant changes to the larger recurrence intervals

(C100 years) in gauges with either too few, or too many,

extreme flood events. A decision making process is pro-

vided to ascertain when this method is preferable for FFA.

Keywords Extreme event � Flood frequency analysis �
Probabilistic regional envelope curve � Australian envelope

curve � Extreme flood � Eastern Australia

1 Introduction

Flooding is one of the most devastating hazards to life, the

economy and infrastructure in many parts of the world.

Average global flood-related costs are expected to increase

nine-fold from US$6 billion in 2005 to US$52 billion by

2050 (Hallegatte et al. 2013). In Australia, floods are the

most expensive natural hazard, costing an average of

A$377 million per annum (Middelmann-Fernandes 2009).

In the last few years, South East Queensland (SEQ) has

experienced a number of rare flood events including the

floods of 2011 and 2013. The damage left by the flood in

2011 cost the Australian economy an estimated A$30 bil-

lion (Australian Government online 2015). Better under-

standing of the frequency and magnitude of such ‘extreme’

flood events is needed to evaluate flood risk and guide

future planning (Croke et al. 2013).

Currently in Australia, the 1-in-100 year flood is com-

monly used as the design flood in planning processes

(Wenger et al. 2013) and is often invoked as the threshold

discharge (Q) to describe a rare or extreme flood (e.g.

Thompson and Croke 2013). It represents the average

recurrence interval (ARI), expressed as a statistical esti-

mate of the average period in years, between the occur-

rences of a flood of a given size. It is derived from the

annual exceedance probability (AEP) such that an event

with a 1 % AEP is equivalent to a 100-year ARI (ARI100)

event. ARI or AEP are statistical benchmarks used for

flood comparison (Middlemann et al. 2001; Engineers

Australia 2015) however, for high magnitude and infre-

quent events they are highly dependent on record length

and the nature or variability of events recorded. Other

terminology and definitions used to describe extreme floods

include ‘great floods’ by Levy and Hall (2005) for events

with Q exceeding ARI100 in catchments greater than
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200,000 km2. Erskine (1993) defined a catastrophic flood

as having an event peak Q to mean annual flood peak

Q ratio[10, but this is for post event evaluation and reliant

on record length. For these definitions, the events are rare

within the record (Enzel et al. 1993; Benito et al. 2004). To

a broader extent, IPCC (2001) define an extreme event as

an ‘event that is rare within its statistical reference distri-

bution at a particular place and an extreme weather event

that is as, or rarer, than the 90th percentile’.

An alternative method of determining an extreme flood

is based on a graphical representation of flood magnitude

plotted against catchment area and constructing an envel-

ope curve (EC) above the highest plotting points (Creager

1939). Costa’s (1987) world EC has become a benchmark

against which to compare all rainfall-runoff floods (e.g.

Wohl et al. 1994; Nott and Price 1999; Oguchi et al. 2001;

Ruin et al. 2008; Gaume et al. 2009; Croke et al. 2013).

Various methods have been devised for interpolating the

EC. For example, one method is to select the individual

highest observed river stages or discharges (i.e. Floods of

Record) and applying a least squares regression equation

(e.g. Herschy 2002) across them. However, this method is

highly dependent on available records, hence bias to flood

records selected. Additionally, linear regression methods

do not envelope all plotted flood records. Other studies

have also indicated that different climatic regions may have

different upper limits to flood magnitude (e.g. Gaume et al.

2009; Padi et al. 2011) hence the world EC may over

predict the upper limit of flood magnitude in many loca-

tions. Regional Envelope Curves (REC) are constructed to

capture national or regional climatic characteristics to

estimate extreme flood magnitude (Enzel et al. 1993). This

paper examines the application of an Australian EC for

defining an extreme event which can be used to evaluate

the distribution of flood events recorded at a gauge.

The AEP, and hence ARI, have traditionally been

derived by flood frequency analysis (FFA) applied to a

continuous set of systematic records of annual maximum

discharge series. In ungauged and poorly gauged catch-

ments, the Regional Flood Frequency Analysis (RFFA) is

usually applied. This incorporates data from a set of sta-

tions with similar hydrological and climatic characteristics

(homogenous regions). In Australia, design floods for

engineering and planning purposes are typically based on

flood records. These are typically derived from software

such as TUFLOW (Syme and Apelt 1990), NLFIT

(Kuczera 1994) and FLIKE (Kuczera 1999) which incor-

porate discharge records with various other input parame-

ters including rainfall data and catchment characteristics.

FLIKE, for example, performs a Bayesian-type FFA using

gauge records and supports many commonly used flood

distributions (Micevski et al. 2003). The key assumption of

these analyses is that the set of systematic records captures

a good spectrum of flood magnitudes. However, this

assumption is rarely met in short gauging records, thus

decreasing the likelihood of capturing extreme events.

Different probability distributions and parameter esti-

mations method are used in FFA with the Log Pearson type

III (PE3), Generalised Extreme Values (GEV) and the

Generalised Pareto (GPA) Distributions most commonly

used in Australia. Recently, Rahman et al. (2015) reviewed

the Wakeby distribution that can take four or five param-

eters, more than most of the others which typically uses

three or less. The use of more parameters can lead to a

better fitting of the flood records but it is noted that it may

not be applicable to stations with short record lengths

(Rahman et al. 2015).

Alternatives to the use of gauge discharge records are

rainfall-based techniques, such as Design Event Approach

(DEA) which is commonly used in Australia (Mirfenderesk

et al. 2013). This method translates the ARI for a given

rainfall input to a similar ARI for a flood output by con-

sidering the probabilistic nature of rainfall depth but, no

other model inputs, which can lead to bias in ARI

derivation (Caballero and Rahman 2014). More recently, a

Monte Carlo simulation method, known as the Joint

Probability Approach (JPA), has been developed to address

this shortcoming. The JPA allows for a design flood to be

generated by a variety of hydrological inputs. This method

has shown to be a theoretically superior method of design

flood estimation than the DEA and appropriate for the ARI

up to 100 years (Rahman et al. 2002). The use of rainfall-

based techniques such as the DEA and JPA are useful if

floods are predominately caused by heavy rain events as it

is a direct translation of rainfall to flood discharge.

In contrast to event-based approaches, using either

gauge records or rainfall records, another alternative

method to estimate design flood recurrence intervals is the

use of continuous simulation. Developed from a need for

longer records, the continuous simulation method is noted

by Boughton and Droop (2003) to be reliable for

2–10 years ARI events whereas the rainfall-runoff methods

are more reliable for larger events.

Determining a comprehensive gauge record is prob-

lematic when (i) only relatively short gauging records are

available, (ii) there remains a lack of extreme events within

these records, and (iii) subtropical climates present high

hydrological variability. It is widely accepted that short

gauging station records are less likely to capture the full

range of likely flood magnitudes. The effect of short

records was evident at Spring Bluff gauge (#143219A) in

SEQ which recorded the 2011 flood in the Lockyer Valley.

It had a record length of 26 years prior to the 2011 flood.

Using the annual flood series up to 2010, the ARI of the

2011 flood was 2000 years (Thompson and Croke 2013).

Three more years of flood data (including the 2011 and
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2013 floods) incorporated into the annual flood series

results in an ARI of 55 years (Sargood et al. 2015). The

question therefore is: how to determine whether records at

a gauge or a homogenous region capture a wide enough

distribution of events, including extreme events? These

have a direct impact on accuracy of extrapolated and pre-

dicted extreme flood events.

A method to improve extreme flood information at-site

is the Probabilistic Regional Envelope Curves (PRECs)

(e.g. Castellarin et al. 2005, 2007; Guse et al. 2009, 2010b).

The method uses homogenous regions to provide additional

extreme Q information to the existing gauged record, but

unlike the RFFA, the PREC method only incorporates the

extreme events. The PREC method assigns an exceedance

probability to the REC, where its inverse, i.e. recurrence

interval, is derived with a paired PREC Q. Guse et al.

(2010a) have developed a method to integrate PRECs into

distribution functions to improve traditional FFA.

In this study, the PREC method is applied to data from a

subtropical region of eastern Australia which has pre-

dominantly short gauging records (*30 years). The

method is compared with the traditional FFA. An Aus-

tralian REC developed using an objective statistical

method is then used to provide a measure of robustness to

the PREC method.

2 Study area

The Southeast corner of Queensland encompasses two

Natural Resource Management (NRM) regions, namely

South East Queensland Region and Wide Bay Burnett

Region (SEQWBB). This region is bounded by the Great

Dividing Range to the West and drains east to the Pacific

Ocean (Fig. 1). This region is dominated by Paleozoic and

Mesozoic-paleozoic age geology (Blewett et al. 2012) and

is considered tectonically stable currently. The SEQWBB

covers an area of almost 77,000 km2 with average daily

temperatures ranging from 6 to 27 �C and mean annual

rainfall ranging between 650 and 2850 mm (Bureau of

Meteorology (BoM) Australia 2015). It is made up of 14

catchments (11 on mainland) (Table 1) and includes the

major rivers of the Brisbane, Mary and Burnett which flow

past major agricultural towns. The cities of Brisbane,

Maryborough, and Bundaberg are situated at their respec-

tive river mouths (Fig. 1).

SEQWBB has a subtropical climate with no distinct dry

season under the Köppen classification and it has a wet

summer and a low winter rainfall seasonal rainfall classi-

fication (BoM Australia Online). Cyclones that develop

over the warm waters off the North and Northeast coast of

Queensland do occasionally move inland and southwards

into this region and result in devastating storms. The East

Coast Lows (ECLs) that bring about intense rainfall occa-

sionally affect the southern part of the region (BoM 2015).

This is a region of high hydrological variability as

characterised by the high Flash Flood Magnitude Index

(FFMI), which is the log of Standard Deviation of the

Annual Maximum Series (AMS), compared to the wet

tropics and temperate regions of the east coast of Australia

(Rustomji et al. 2009).

The region has a total of 269 closed and open gauging

stations with on average 30 years of gauging records. One

station has remained open for 106 years (Miva Station

#138001A, Mary catchment) and four stations have just

over 100 years of record when combining closed and open

stations (Table 1).

3 Methods

This section describes the derivation of an Australian EC,

the construction of the PRECs (Castellarin et al. 2005) and

the integration of spatial extreme flood information (i.e.

PREC flood quantiles) into an improved flood series for

gauging stations under study (Guse et al. 2010a). A total of

91 gauging stations with at least 30 years of records

(combined both closed and open stations) are investigated.

3.1 Australian envelope curve

A total of 2669 maximum Q records from open and closed

gauging stations were compiled from six climate zones

(Köppen classification) throughout Australia (Fig. 1a;

Table 2). To create an objective and statistically robust EC,

non-linear quantile regression analysis was conducted

which uses log-transformed peak Q (m3 s-1) and catchment

area (A km2) of all the gauging stations. An optimisation

function produces the best-fit line of the 99.99th quantile

and this was applied using the ‘quantreq’ R package v5.19

(Koenker 2015). The equation and the parameters of the

exponential curve for the upper limit Q are,

Q ¼ Asym

1þ exp mid�Að Þð Þ
scal

� � ð1Þ

where Q is log-transformed discharge, A is the log-trans-

formed catchment area, and the model parameters are

asymptote (Asym), mid-point (mid) and scale (scal). Asym

is the asymptote value, mid is the inflection point of the

curve, and scal is the scale parameter.

3.2 Derivation of an extreme event

The majority of gauging stations have short record lengths

and potentially high uncertainty associated with large ARI

Stoch Environ Res Risk Assess (2017) 31:2011–2031 2013
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Fig. 1 Area of study—a Distribution of gauging stations used for the

Australian Envelope Curve. Southeast Queensland, Australia (orange

outline). b The locations of major catchments (demarcated by black

outlines) and their main rivers (blues) and the distribution of gauging

stations used in this study

2014 Stoch Environ Res Risk Assess (2017) 31:2011–2031
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events. The ARI100 Q estimates of the four stations

(Table 1) with the longest record length ([100 years) were

used to compare against the Australian EC to determine a

suitable quantile to define an extreme event.

3.3 Construction of empirical probabilistic regional

envelope curves (PRECs)

The PREC method (Fig. 2) was first developed by

Castellarin et al. (2005), and later applied by Castellarin

(2007) to Italian catchments and Guse et al. (2009) and

Guse et al. (2010b) to catchments in Germany. It is based

on the well-known index flood approach (Dalrymple 1960)

which requires the identification of homogenous regions

for sites, and the relationship between a given flood Q and

the recurrence interval (i.e. the growth curve) can be pro-

duced (Castellarin et al. 2001). As such, a PREC can only

be constructed if a region is considered homogenous. The

mean AMS is used as the index flood in this approach. It

attempts to substitute extreme flood information from the

homogenous region into a site’s AMS records to produce

estimated exceedance probabilities and the recurrence

interval for a given flood Q.

3.3.1 Formulation of candidate sets of catchment

descriptors

Homogenous regions are defined by sets of catchment

descriptors which consist of hydroclimatic, geophysical

and infiltration properties (Table 3). Individual contribut-

ing upstream catchment areas of respective gauging sta-

tions are first produced using hydrological datasets from

the Australian Hydrological Geospatial Fabric (Geofabric).

Geospatial hydrological data for the region was created and

the catchment areas were subsequently generated with

Geofabric’s Sample Toolset v1.5.0 for ArcGIS tools (BoM

2015).

Table 1 Catchments of study

area
Catchment Area (km2) Population Gauges Gauge with C100 years of records

Gauge Years

Baffle 4084.7 – 2

Brisbane 13,541.7 1,533,367 85 143001A,B,C 106 (combined)

Burnett 33,195.4 138,836 57 136002A,B,C,D 103 (combined)

Burrum 3371.7 56,350 10

Kolan 2904.5 – 7

Logan-Albert 4149.8 318,693 32

Maroochy 1535.0 247,185 13

Mary 9465.8 93,411 35 138001A 106

138002A,B,C 102

Noosa 1952.2 88,689 1

Pine 1484.4 422,500 12

South Coast 1303.9 560,266 15

Total 76,989.1 3,459,297 269

Table 2 Summary of gauging stations information used to derive the Australian envelope curve

No. of stations Average stations’

record length

Data source Data end period

Australia 2669 35

Queensland 951 28 QLD, DNRM Dec-13

Western Australia 456 35 WA, Department of Water Dec-13

Northern Territory 203 28 NT, Department of LRM Aug-13

Victoria 483 50 VIC, DEPI Feb-15

South Australia 137 25 SA, DEWNR Feb-14

New South Wales 423 44 NSW, DEPI Dec-13

Tasmania 12 48 BoM Dec-13

ACT 4 56 ACTEW Jan-15

Stoch Environ Res Risk Assess (2017) 31:2011–2031 2015
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Daily rainfall data from January 1889 to April 2015 of

215 rainfall stations was used for the hydro-climatic

descriptors. Ordinary kriging was performed to interpolate

each of these five hydro-climatic descriptors (Table 3) and

the mean values of each catchment area are derived.

Geophysical descriptors are derived from a 25 m DEM of

the region. Landuse groupings was categorised as either

arable or built-up areas. Arable land includes natural veg-

etation, agricultural and grazing land. Mining occupied

\1.3 % of the region and therefore not included in the

analysis.

The derived values of the descriptors for each of the

stations’ catchment are used as predicator variables of

homogenous regions standardised with Z-scores. All neg-

ative correlations to the index flood are converted to pos-

itive so the values can be combined and a positive

correlation can be made with the index flood. Similar to

Guse et al. (2010b) all possible subsets with up to three

descriptors are first produced by summing up the values

and a correlation analysis is performed and values of at

least 0.6 between a subset and the unit index flood is the

criteria to retain the subset. A total of six candidate subsets

remained (Table 4). A check for multi-collinearity between

the candidate subsets is done using the Variance Inflation

Factor formula (Hirsch et al. 1992). All six subsets had

values of less than two, which are well below the most

common rule-of-thumb values of 10 (O’Brien 2007) and

therefore are all included in the analysis.

Fig. 2 Summary of PREC derivation and integration to flood series

Table 3 Catchment descriptors used in this paper, modified from Guse et al. 2010b

Category Descriptors Code Data source

Hydro-climatic Mean of annual total rainfall (mm) TRF SILO (Scientific Information for Land

Owners) database,

Department of Science, Information

Technology and Innovation (DSITI),

Queensland Government

Mean of annual maximum series (mm) AMS

Maximum total 5 days rainfall, RF5D

Maximum daily rainfall (mm) MRF

Number of days in a year with rainfall

greater than 50 mm

RF50mm

Geophysical Elevation (m) Elevation Queensland database,

https://data.qld.gov.au/Range of elevation, normalised against

catchment area (10-3 m-1)

Range

Slope (%) Slope

Infiltration properties Arable (%) Arable Queensland Land Use Mapping Program

(QLUMP), Queensland GovernmentBuilt-up Area (%) Built

Table 4 Subset of catchment descriptors and the correlation coeffi-

cient ([0.60) to the unit index flood of all the gauging stations

Subset Descriptor 1 Descriptor 2 Descriptor 3 Correlation

1 Range AMS Arable 0.64

2 Range AMS Built 0.64

3 Range TRF Arable 0.65

4 Range TRF Built 0.65

5 Range RF50mm Arable 0.66

6 Range RF50mm Built 0.66

2016 Stoch Environ Res Risk Assess (2017) 31:2011–2031
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3.3.2 Construct homogenous regions using the region

of influence

The Region of Influence approach (Burn 1990) is used to

construct the homogenous regions. Stations with similar

physiographical characteristics based on their Euclidean

Distance between the site of interest and each of the other

sites are grouped together (pooling groups). Using the

nsRFA package (Viglione, 2014) in R, homogenous groups

are formed by pooling the nearest station (i.e. lowest

Euclidean Distance) to the station of interest. The next

nearest station is added until the limit of the homogeneity

(in this case set at 2) is reached. Homogeneity limit is

based on the Heterogeneity test (Hosking and Wallis 1993)

and values greater than 2 are considered heterogeneous.

The process is repeated for all gauging stations and each

candidate subsets derived in previous step.

3.3.3 Deriving PREC slope and intercept

A linear regional EC is produced for each of the

homogenous pooling groups. Maximum Q records of all

the stations in each group are normalised and related to

catchment area (A) in a double-log scale. The equation of

the regional EC is defined as (Castellarin et al. 2005),

Log
QFoR

A

� �
¼ aþ b � Log Að Þ ð2Þ

where slope b is the linear regression of the unit index flood

against A, and the intercept a is achieved by a parallel

upshift of the regression line to envelope all unit maximum

Qs. Regional EC’s were derived for all groups with at least

four stations to improve the representativeness of the linear

regression using the pREC package (Castellarin et al. 2013)

in R. Nine stations were removed as they did not form any

homogenous regions with at least three other stations and

they could not form at least one regional EC.

3.3.4 Estimating PREC recurrence interval

An exceedance probability, the inverse of the recurrence

interval of the PREC, is assigned to each data pair of unit

maximum Q and A. The overall sample years of the AMS

of all stations in a given homogeneous region is used to

estimate the recurrence interval (Castellarin et al. 2005). To

overcome cross-correlation and overlap in flood informa-

tion in the AMS of the stations, the number of effective

sampling years of data is calculated. This is determined by

first deriving a regional cross-correlation coefficient func-

tion (Eq. 3, Castellarin (2007)) where optimisation is

achieved for each station pair (i,j) using the distances

between catchment centroids (d) and correlation coeffi-

cients between the AMS (k). The effective sampling year is

then calculated using Eq. 4 (Castellarin 2007). The Hazen

plotting position (Stedinger et al. 1993) is used to deter-

mine the recurrence interval TPREC (Eq. 5) following the

methods of Castellarin (2007).

Pi;j ¼ exp � k1di;j
1þ k2di;j

� �
ð3Þ

neff ¼ n1 þ
XYsub
s¼1

neff ; s ¼ n1þ
XYsub
s¼1

Lsls

1þ qb
h i

Ls
Ls � 1ð Þ

with b ¼ 1:4
Lslsð Þ0:176

1� qð Þ0:376
h i

Ls

ð4Þ

TPREC¼ 2�neff ð5Þ

A recurrence interval (TPREC) is assigned to each PREC

while each station in the homogeneous region will have a dis-

charge (QPREC) associated with the catchment size. For each

station, PREC flood quantiles (paired values of TPREC and

QPREC) from all the PREC realisations are derived. However,

flood quantiles that are more than three times larger from the

same TPREC estimated by the index flood method are removed

because they are deemed to have high performance error (Guse

et al. 2010a) and as a result two stations were excluded.

3.4 Integration of PREC flood quantiles

PREC flood quantiles are integrated into a synthetic AMS

of a gauging station based on the method proposed by Guse

et al. (2010a) and outlined in Fig. 2. A suitable parent

distribution is first selected and the lower (Tl) and upper

(Tu) TPREC are determined from the range of TPREC derived

in previous steps. Thereafter, a synthetic flood series is

produced where the PREC flood quantiles are inserted.

3.4.1 Selecting a parent distribution for the flood series

A parent distribution for the flood series is required for curve

fitting of individual stations. A L-moment ratio diagram is

used to determine the most suitable parent distribution (Peel

et al. 2001).This has shown tobeanappropriate indicationof a

distribution that describes the regional data (Vogel andWilson

1996).Distribution types evaluated here are:GEV,GPA,PE3,

Generalised Normal (GNO) and Generalised Logistic (GLO).

Once the appropriate distribution type is determined, the

observed AMS of each station is fitted to the distribution.

3.4.2 Derive synthetic flood series

A synthetic AMS is derived for the incorporation of PREC

flood quantiles as it was not possible to add a QPREC

directly to the AMS (Guse et al., 2010a). Each station’s

Stoch Environ Res Risk Assess (2017) 31:2011–2031 2017
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synthetic flood series is generated with the three parent

distribution parameters (n, a, j). Tu Random numbers

between 0 to 1 (Psim) are generated for this set. The total

number is determined at Tu to provide a data series that

extends over 1000 values and also this was the maximum

of the TPREC for the region. This allows for the derivation

of the synthetic flood series. The random generation of the

Psim numbers are repeated until a difference of less than

1 % in the Q value of Tu is achieved. This is to ensure

consistency between the observed and simulated distribu-

tion (see Guse et al. 2010a).

In addition, a binomial function is calculated to estimate

the number of T[ Tl floods that are expected to occur

within Tu years. The largest probability range of 4–5 floods

are used as the number of floods that will be substituted

from the synthetic flood series values. The substitution

requires these 4–5 values to have exceedance probability

(PE) greater than the (1 - 1
T
) for representations of T[ Tl

years.

3.4.3 Integrating PREC into the simulated flood series

To integrate the PREC flood quantiles into the simulated

series, 4–5 Q values of the synthetic series that are larger

than the PE are replaced by the QPREC values. Taking into

account that a larger TPREC has a lower chance of occurring

than a smaller TPREC, a binomial function is used to consider

the mean occurrence of a specific QPREC with a recurrence

interval within Tu years. A vector, VPREC, is generated with

PREC Qs assigned the number of times that it has the lar-

gest probability of occurring (see Guse et al. 2010a). This

leads to PREC Qs with higher TPREC assigned less often to

the vector. The replacements of the QPREC values are ran-

domly chosen without replacement from this vector. In the

case where there are less than 4–5 values in the vector, the

removed values are randomly chosen and reinserted. This

ensures that the new series has Tu values again. Using

L-moments, a new distribution can be fitted to the new flood

series. The random process of selecting the PREC Qs

implies that the upper-tail end of change can be significantly

different depending on the randomly selected 4–5 values.

As such, the process of random selection and substitution is

repeated 100 times and the distribution parameter set that

estimated the median Q for T = 1000 was used.

4 Results

4.1 Australian envelope curve

The updated world EC (Li et al. 2013) encapsulates the

maximum recorded Q values for Australia (Fig. 3). The

Australian EC displays an upper catchment area limit to its

applicability based on the K index of Francou and Rodier

(1967) which is used to assess if a flood is larger than

others across different catchment areas. K values should

increase with catchment size up until a maximum before it

decreases. A sharp drop in K values occurs from

130,000 km2 and these relate to 15 gauging stations in two

of Australia’s largest and driest basins: Murray Darling

Basin (11 stations) and Lake Eyre basin (4).

Separating the data set into different climatic regions

based on the Köppen classification showed that the records

from the temperate and equatorial region plot well below

the Australian EC. Records from subtropical gauges

showed a very similar curve to that of the Australian curve,

as do the curves for tropical and grassland climatic regions.

As such, the Australian EC is used to show the existing

empirical limits of Q records for the area of study.

The non-linear quantile regression of the 99.99th

quantile produced an Australian EC (Fig. 4) which

encapsulates all the 2669 gauging stations’ maximum

gauged Q. It is clear that using this method produces an EC

that takes into consideration all available maximum records

and provides a closer envelope fit than the world EC.

However, there is still divergence between the largest

catchment area and the Australian EC. The function for the

Australian EC is,

f xð Þ ¼ 10

Asym

1þ EXP mid�logðxÞð Þ
scal

" #

ð6Þ

where x is the catchment area, and the derived parameters

are Asym = 4.825, mid = 0.749 and scal = 1.431.

4.2 Extreme floods

The estimated Qs of ARI100 of the four gauging stations

with the longest (over 100 years) records were used to find

the nearest Australia EC quantile. The nearest quantile

values within 1 % error to the Q value of the respective

ARI100’s estimated Qs are 96, 82, 91.5 and 90.1 respec-

tively. As a result, the average value, i.e. the 90th percent

quantile is used as the definition of an extreme Q event for

this paper. The decision to use this quantile is further

supported by IPCC definition of extreme events mentioned

previously.

The 90th quantile nonlinear regression equation is,

f xð Þ ¼ 10

4:80

1þ EXP 1:35�log xð Þð Þ
1:77

" #

ð7Þ

Using the definition of the 90th quantile of the Australia

EC as the minimum benchmark to define an extreme event

(Fig. 5), 56 % of gauges have not captured an extreme event
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in their record period. For these stations, incorporation of

additional flood records is critical for improving FFA.

4.3 Homogenous regions for PREC

Defining homogenous regions is a prerequisite for

expanding gauge flood records. Figure 6 shows the distri-

bution of gauging stations and their homogeneity with

other gauges in the region. Gauges with higher homo-

geneity have greater number of other gauges that can form

homogenous regions and therefore have greater potential of

improving flood records. Many of the gauges in the Burnett

and Logan-Albert catchments have high homogeneity

while in the Mary few gauges have comparatively similar

physiographical characteristics.

4.4 Integrating probabilistic regional envelope

curves

The integration of PREC flood quantiles into gauge records

first requires the derivation of the upper and lower limits of

TPREC and the determination of the parent distribution

function (Fig. 2). The range of TPREC derived from esti-

mating the PREC recurrence interval is 243–1311 therefore

Tl and Tu are determined as 243 and 1311 respectively for

the integration of PREC flood quantiles.
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4.5 Parent distribution

Based on an L-moment ratio diagram (Fig. 7), the GPA

Distribution was selected as the most suitable distribution

function to fit the flood series. This was also found as the

most suitable distribution in other studies investigating

Australia’s flood frequency analysis (Rahman et al. 2013;

Rustomji et al. 2009).

4.6 Flood frequency analysis supplemented

by probabilistic regional envelope curve

Based on the pooled flood records from homogenous

regions, PREC flood quantiles were generated for 80

gauging stations and integrated into FFA to produce new

curves of flood peak Q regressed against ARI. Three gen-

eral outcomes were observed based on comparison between

the methods: (1) no change to the predicted ARI (\5 %

difference for 42 % of stations, Fig. 8a), (2) a positive shift

in ARI for a given Q (29 % of stations, Fig. 8b) and, (3) a

negative shift ARI for a given Q (29 % of stations,

Fig. 8c). A positive change in ARI indicates that for a

given flood peak, for example 14,000 m3 s-1 (Fig. 8b) the

FFA predicted ARI of 300 y shifts upwards to 500 years

based on PREC prediction. Hence, the predicted proba-

bility of an occurrence of a 14,000 m3 s-1 peak magnitude

flood has decreased or becomes less likely. A negative

change in ARI indicates that for a given flood peak, for

example 7000 m3 s-1 (Fig. 8c) the FFA predicted ARI of

1000 y shifts downwards to 600 y based on PREC pre-

diction. Hence, the predicted probability of an occurrence

of a 7000 m3 s-1 peak magnitude flood has increased or

becomes more likely. Overall, the results show *60 % of

the stations have[5 % change in the estimated Q between

the traditional FFA and the PREC method.

The degree of difference in predicted flood magnitude

between the methods for a given ARI increases with

increasing ARI and the number of gauging stations that

exhibit change also increases (Table 5). However, the

maximum change in predicted flood magnitude asymptotes

at 150 % of the Q predicted by FFA for ARI1000. In

summary, stations with a positive shift in the ARI for a

given Q will have a decrease in estimated Q for a given

ARI.

4.6.1 Combining probabilistic regional envelope curves

and the Australian envelope curve

The non-linear 99.99th and 90th quantile regression can

be added to the PREC plots to provide context to the

distribution of a station’s AMS and determine whether

extreme events have been captured. The 99.99th and 90th

quantiles are the Australian EC and the minimum dis-

charge value that defines an extreme event for the given

station respectively (Fig. 8). Stations with an existing

record of extreme events (e.g. Fig. 8a, b), that is events

recorded above 90th quantile, either have no change

between traditional FFA and PREC or an increase in ARI

indicating the event is less likely to happen. In both of

these examples, the PREC curve intersects the Australian

EC at *ARI1000 interval. Gauging stations which have

not recorded an extreme event (e.g. Fig. 8c) have

decreases in ARI for a given Q based on the PREC.

Fig. 5 Curve defining an

extreme event based on the non-

linear 90th quantile regression.

Points above the curve indicate

gauging stations that have

recorded an extreme event
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Similarly, the intercept with the Australian EC decreases

towards ARI1000 for the PREC.

4.6.2 Spatial variability in prediction between methods

Figure 9 shows the relative deviation of change in esti-

mated Q for ARI100. Stations with negative values are

stations with positive shift in their ARIs but a lower Q es-

timated from the PREC method. Conversely, stations with

positive values have a negative shift in their ARIs and a

higher estimated Q. There is no distinct spatial trend for

stations which either exhibited no change, a positive or

negative shift in ARI for a given flood magnitude or a shift

in ARI for a given flood magnitude. However, from North

to South, there is a general transition from stations with

positive to negative shifts in their ARIs estimation between

the two methods. In addition, the majority of gauging

stations in the Mary Catchment show a positive shift in the

Fig. 6 Extent of homogeneity

of physiographical

characteristics between the

gauges in the Region. HR

represents the number of gauges

in the region that are

homogenous to a gauge
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ARI based on the PREC method. 11 of the 15 stations

showed the PREC method estimated Q for ARI100 to be

lower than the FFA derived estimate and the remaining 4

have comparatively low positive relative deviations.

4.6.3 Effect of gauging station record length

The greatest variability in prediction between the two

methods occurs in stations with the shortest record length

(Fig. 10). As record length increases, differences in pre-

diction between both methods decrease. The convergence

in prediction between methods falls within 5 % (i.e. con-

fidence interval for no change) at 60 years. This indicates

that for gauging stations with C60 years of record, the

more complex PREC method generally does not provide

any additional information over the simpler FFA method.

However, the majority of gauging stations have record

lengths shorter than 60 years.

4.7 Magnitude and frequency of annual maximum

series data

The cumulative frequency distribution of grouped AMS

stations from each of the three categories, namely (i) de-

crease in ARIs, (ii) increase in ARIs and, (iii) no change in

ARIs, is shown in Fig. 11. They are summed to exhibit

general trends in the frequency distribution of flood sizes

and are separated using the 10th percent quantile of the

Australian EC. All three groupings show a general decrease

in the number of years of AMS data from low to high

quantile. This is analogous to the return period of estimated

Q values in a typical gauging station. Stations with

decreased ARI (e.g. Fig. 8c) have a higher proportion of

lower quantile AMS values and a lower proportion of

higher quantile AMS values. The reverse is seen for sta-

tions with increasing ARI (e.g. Fig. 8b). ‘Stations with no

change’ shows a smoother distribution/transition from low

to high quantile.

In terms of extreme events, stations with negative

change to the ARI100 Q estimation have about four times

(1 % of total summed AMS against 4 %) more extreme

events in the summed AMS data compared to stations with

positive change. For individual station records, 74 % of the

stations that exhibit a reduced ARI100 Q estimate have at

least one extreme flood during the record period. Of these,

35 % have three to six AMS values (i.e. at least three

extreme flood events) that fulfil the criteria of the extreme

flood definition. In contrast, 80 % of gauging stations that

exhibit an increased ARI100 typically have no extreme

floods during the record period.

5 Discussion

The PREC method as applied in this study is one approach

to determining FFA and seeks to provide better spatial

information on extreme floods. This method informs users

of the relative frequency of extreme flood events through

the integration of extreme flood records from stations

within a homogenous region. Additional information of

extreme events can significantly adjust the magnitude of

estimated discharge of floods with high return periods. The
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reluctance of planners to move away from the ARI100 as

the design flood threshold (Babister and Retallick 2011)

highlights the need to better understand and improve the

upper end distribution of the ARI. The starting point for

this is a clear and quantifiable estimate of what constitutes

an extreme flood.

5.1 Application and evaluation of the Australian

envelope curve

The 90th quantile of the EC provides an extreme flood

definition that satisfies various definitions used in other

literature. The non-linear quantile regression method to

derive the EC provides a better estimate than previous

methods using linear regression for Flood of Records (e.g.

Herschy 2002) or a series of linear best-fit lines to envelope

all maximum Qs (e.g. Costa 1987; Li et al. 2013). In

addition, the quantile regression method allows for the ‘fit-

for-purpose’ definition of an extreme flood event in this

study.

The Australian EC produced in this study provides a

first-order upper limit of flood magnitude based on con-

temporary gauging records. The Australian EC sits close

to, but under the updated World EC of Li et al. (2013). This

shows that while the Australian contemporary flood record

has events that plot close to the World EC, there is still

capacity for events significantly larger than recorded to

date. Maximum flood peak Qs for catchments between 20

and 130,000 km2, lie close to the EC. However, for

catchments outside this range, maximum peak flood Qs

diverge from the world curve indicating that it may be

over-estimating the upper limits of flood magnitude and

what constitutes an extreme event. These gauges lie in the

lower catchments which are in semi-arid to arid regions.

Flood producing rain falls in the upper catchments and

transmission losses through wide floodplains downstream

limit flood magnitudes in the lower catchment (Knighton

and Nanson 2001; Costelloe et al. 2006).

5.2 Application of the PREC method

With almost 60 and 74 % of the stations showing signifi-

cant changes to the FFA estimate of ARI100 and ARI1000

respectively (Table 5), the use of the PREC method has

relevance in planning and policy. As a result of the 2011

flood, the Queensland Government has allowed the use of
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Fig. 8 Representative PREC method plots illustrating the three

possible results of integrating the PREC into the FFA to determine

ARI: a no change in ARI (e.g., Helidon station), b positive shift in

ARI (e.g., Eidsvold Station) and c negative shift in ARI (e.g.,

Stonelands Station)

Table 5 Summary of station results in estimated discharge between PREC method and traditional FFA

Change in predicted flood magnitude between FFA

and PREC method

100 year ARI 1000 year ARI

% of stations Max. % change % of stations Max. % change

Decrease 29 23 36 39

Increase 29 25 38 50

No change (B5 %) 42 26
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different design flood thresholds. However, the 1-in-

100 year flood remains the typical threshold used (Croke

et al. 2013). As the degree of change in the estimated flood

magnitude increases with the ARI, the uncertainty of

higher ARIs increases and needs to be addressed. Flood

risk in areas that are deemed outside the ARI100 flood

inundation area will potentially be at risk by a 1-in-

100 year flood. Conversely, using 1-in-100 year design

flood in landuse planning and allocation will be affected

when the FFA is overestimating the Q. The scale of these

problems increases as the magnitude of the ARI used

increases. Larger ARIs, CARI1000 are used to evaluate the

Fig. 9 Percent difference in the

flood magnitude for ARI100

between the FFA and PREC

method
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Population at Risk (PAR) component in the risk assess-

ments of dam design and constructions (DEWS, Queens-

land 2012). Significant error in the FFA derived 1-in-

1000 year flood can have devastating effects, especially if

the estimated Q of the ARI is grossly underestimated. The

dams will not have the necessary capacity to hold the water

during extreme flood events of such magnitude. A less

serious implication results if the ARI is overestimated.

Resources used in the construction of the dam, as well as

the ecological and economic costs lost in the construction

Fig. 10 The percent difference between PREC method and FFA method in predicted flood magnitude for ARI100s. Horizontal dashed lines

indicate ±5 % difference. Dotted lines represent the interpolated convergence in prediction between methods

Fig. 11 Cumulative frequency

distribution of AMS data for 3

possible outcome of the PREC

FFA
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of the dam can be deemed as unnecessary. As such there is

great significance for reducing inaccuracy in extrapolating

large return periods of which the PREC method has shown

to be able to perform in *74 % of the stations for

ARI1000.

A decision flow chart (Fig. 12) is proposed to facilitate

the process of using the PREC method for FFA. This flow

chart is designed for users who are concerned with the

ARI100 and beyond.

The estimated ARI of the Australian EC from the tra-

ditional FFA can provide a first order decision if PREC

method should be used. It is recommended to use the PREC

method if the ARI is beyond an order of magnitude from

the 1-in-1000 year return period. This is because stations

with no significant change to the ARI tend to have the

distribution curve intercepting the Australian EC at

*1000. In addition, stations with an increase (decrease) in

ARI tend to have the distribution curve shift upwards

(downwards) towards ARI1000. Significant deviation can

be seen as poor extrapolation and prediction of the upper

end distribution of the ARIs and the associated estimated

discharge. Therefore, the use of the PREC method is rec-

ommended if a station’s FFA shows the distribution curve

intercepting the Australian EC at an ARI that deviates

significantly from the ARI1000.

A second order decision to recommend the use of the

PREC method is if station’s record is less than\60 years.

The additional extreme flood spatial information provided

from homogenous stations increases when record length is

less than 60 years. A further third stage decision can be

made based on the frequency distribution of the number of

extreme events recorded by the station. Based on the

results, PREC is recommended if extreme events do not

make up 1–4 % of the AMS data.

5.3 Evaluation of the PREC method

The derivation of homogenous regions is critical in the

PREC method for the integration of extreme flood infor-

mation. This method has been previously applied in Sax-

ony, Germany (Guse et al. 2010b) but it differs in the

degree of homogeneity of stations (Fig. 6). This highlights

the physiographical complexity of the study area. The high

hydrological variability of this region (Rustomji et al.

2009) partly explains this reduced homogeneity between

stations. In terms of geophysical conditions, the elevation

range of the contributing catchments is the only consistent

predictive variable for forming pooling groups. Generally,

stations on higher elevations have better homogeneity

based on this predictor variable. The greater heterogeneity

for stations on lower elevations is largely a function of the

greater range of catchment area of these stations as this

variable is normalised against catchment area. As a result

of these, there are some stations that do not have sufficient

or have relatively fewer stations in a homogenous region.

One way to overcome this is to expand the area of study

and incorporate more stations to provide more extreme

Q information.

The consequence of short record lengths, specifically the

frequency of extreme events is well illustrated in this study.

For at-site FFA, gauges with short records ‘‘create a most

unfavourable situation for obtaining accurate estimates of

Within an order 
of Magnitude of 
ARI1000

ARI of Australian EC 

Record Length > 60y PREC 
method

NO

NO

% of Extreme Event in AMS
NO

Within 1-4%

at-site FFA

Fig. 12 Decision tree for the

application of PREC method for

ARI100
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extreme quantiles’’ (Hosking et al. 1985, p.89). This is

especially a problem when the return period of interest (e.g.

100 years) is beyond the available gauge record length

(Adamowski and Feluch 1990). However, this does not

necessarily mean that any stations with[60 years records

have an accurate estimate of ARIs. Longer records can be

made up of periods of enhanced, or reduced, extreme

events and as a result distort the estimation of ARI. On the

other hand, about a quarter of the stations exhibit less than

5 % change in the ARI100 prediction even though they

have relatively shorter periods of records. One reason for

this is that some of these stations, with their current

records, have a fairly good magnitude and frequency dis-

tribution of floods. The lack of significant change can also

be partly attributed to stations without any significantly

larger magnitude flood events from other stations in the

homogenous region. This is a limitation of all flood

regionalisation methods, including the PREC method.

Contrary to the concern with the lack of extreme flood

events in gauging records, some stations may have too

many extreme events in their records. This is shown by the

negative change in the ARI100’s estimated Q for about

30 % of the stations. The assumption here is that the

regional spatial information of extreme flood events is a

good indication of what the station may encounter. The

Mary catchment has over 70 % of its stations showing a

positive shift in the ARIs. Three of these stations (138110,

138111 and 138113) have the most number of floods (six)

that fulfilled the definition of an extreme event. In addition,

all have records of less than 60 years. This is an example

where the relatively higher number of floods in a short

record highlights the complex interplay between length of

records and the frequency and magnitude distribution of

flood records.

The PREC method, similar to traditional FFA, assumes

climate stationarity. The issue of climate non-stationarity

and the effects on data used for FFA has been subject to

critical review recently (see Table 1 in Ishak et al. 2013).

Recommendations include incorporating other flood char-

acteristics such as flood volume and flood duration via

multivariate analysis and accounting for climate non-sta-

tionarity in FFA. The assumption that flood volume,

duration and flood peak belong to the same statistical dis-

tribution is a key limitation of the multivariate analysis

(Vittal et al. 2015). Therefore, multivariate FFA and

inclusion of climate models to account for non-stationarity

increases the complexity and uncertainty of FFA beyond

the uncertainty associated under climate non-stationarity

(Serinaldi and Kilsby 2015). In Eastern Australia it has

been shown AEP changes depending on El Niño Southern

Oscillation (ENSO) and its modulation by the Interdecadal

Pacific Oscillation (IPO) (Kiem and Verdon-Kidd 2013),

however the temporal scale of climate cyclicity (decadal) is

less than the scale or ‘horizon’ required for infrastructure

and land use planning which is generally in the order of

100 years or more. Hence, while the AEP of an event will

change from year-to-year based on ENSO-IPO phases, a

longer term planning horizon of the life of the development

is required. Furthermore, given the uncertainty of anthro-

pogenic impacts on climate and consequently flood mag-

nitude and/or frequency, it is imperative that FFA be

sufficiently robust to accommodate known climate cyclic-

ity due to ENSO and IPO by incorporating comprehensive

gauge records into flood series analysis.

5.4 Further improvement for flood frequency

analysis

The concept of flood frequency hydrology proposed by

Merz and Blöschl (2008a, b) and subsequently quantified

by Viglione et al. (2013) highlights the combined use of

spatial, temporal and causal flood information. The PREC

method presented here reflects the use of spatial flood

information (i.e. extreme flood information from gauging

stations of homogenous regions). The limitation due to a

lack of extreme events, hence uncertainties in the upper

limit of flood magnitudes, in such a regionalisation method

can be addressed with the use of additional temporal flood

information. In a region where historical records are lim-

ited to post-European settlement (early-mid 1800s) the

potential of paleoflood data can be significant.

On average, gauge records in Eastern Australia are

42 years long (Rustomji et al. 2009). The length of avail-

able records is comparatively shorter than in Europe and

North America where for example, cities in England such

as York, and Nottingham have annual records starting from

as early as the mid-19th century (Macdonald 2012; 2013).

For example, in the Midwest United States, Villarini et al.

(2011) used 196 gauging stations that have at least 75 years

of records for flood frequency distribution analysis. The

consequence of using short records is the high level of

uncertainty associated with the Q estimates of design flood

with larger return periods (Kjeldsen et al. 2014). This study

shows that generally the PREC method adds information to

FFA for records of 60 years or less, but the information is

still only being drawn from a relatively short time period of

similar climatic conditions. As reported above, recent

meteorological and climate studies have highlighted dec-

adal-scale cyclicity with ENSO (e.g. Power et al. 1999;

Kiem and Franks 2001) and its modulation by IPO, of

which there has been B2 alternating phases over the

gauging record period (e.g. Kiem et al. 2003; Verdon et al.

2004; Micevski et al. 2006; Power et al. 2006). More

recently, Vance et al. (2013) have developed a high reso-

lution rainfall proxy for subtropical Australia and observed

multi-decadal to centennial scale cycles. These studies
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provide plenty of warning that our short temporal gauge

records may have only captured part of a limb in a longer

term cyclical fluctuation (Gregory et al. 2008).

One well-established method to extend known flood

magnitudes is the use of paleoflood slack water deposits

(SWDs) (Baker 1987). SWDs are sediments deposited in

low energy flow zones during extreme floods. Secondly,

only more extreme floods can deposit sediment overtop of

previous deposits. Finally, for Q estimation it is assumed

that the channel capacity has not changed over time, nor

has the channel bed degraded or aggraded, hence preferred

sites are associated with bedrock or resistant boundary

channels. The method has been applied widely in the

Northern Hemisphere (e.g. Ely and Baker 1985; Webb

et al. 2002; Benito et al. 2003; Thorndycraft et al. 2005;

Huang et al. 2013). Few studies have applied the SWDs to

reconstructing extreme floods in Australia and they are

mostly limited to tropical Australia and restricted in bed-

rock settings (e.g. Wohl 1992a, b; Baker and Pickup 1987;

Pickup et al. 1988; Gillieson et al. 1991). Although these

studies found SWDs enveloped by the Australian EC

(Fig. 13), they are deposited by Q estimates greater than

the highest recorded from the nearest gauges. For example,

Q estimates for 2 SWD sites found in the Herbert Gorge of

17, 000 m3 s-1 was higher than the single outlier value of

15, 335 m3 s-1 recorded in 1967 (Wohl 1992b). In tem-

perate New South Wales (NSW), Saynor and Erskine

(1993) identified SWDs in Fairlight Gorge that are 8 m

higher than the highest recorded peak Q of 16, 600 m3 s-1

that yield a radiocarbon date of 3756 ± 72 years BP.

These paleofloods occurred within the period of ‘modern’

ENSO establishment at *4000 BP (Shulmeister and Lees

1995). Preliminary results of paleoflood reconstruction

from two SWD sites in the study region (Fig. 13) show

floods of greater stage height and magnitude occurring at

165 ± 20 and 600 ± 60 years within two km downstream

of a gauging station (136207A) in the Burnett River

catchment (Fig. 1b). The gauge has a 49 year record, with

a peak Q of 7600 m3 s-1 recorded during an extreme event

in 2013. The SWDs were sampled 0.9 m above the debris

lines created during the 2013 event. The PREC method

showed a positive shift of the ARI100 by 11 % from the

traditional FFA for this station. The two paleofloods

reconstructed from SWDs have estimated Qs ranging

between 8500 and 9000 m3s-1. This data can be added to

the systematic records and assessed with a non-systematic

FFA (e.g. Peak Over Threshold method) and PREC. Cur-

rently, paleofloods are not integrated into FFA, however it

is likely that such information will require further adjust-

ments to existing ARI estimates.

6 Conclusion

In recognition of the growing risk of increased flood fre-

quency and magnitude with future climate change predic-

tions, this project sought to explore the application of a

non-traditional approach to estimating FFA in sub-tropical

Australia. A starting point involved the construction of an

Australian EC which provides robustness in the definition

of an ‘extreme’ event and facilitated the assessment of the

distribution of events recorded in gauging stations. Com-

parison between the PREC method and the traditional at-

site FFA showed that the integration of spatial information
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can better estimate discharges of larger ARIs (C100 years)

in gauges that have no, relatively few, or an excess extreme

discharge records in the AMS. For the region of SEQWBB,

estimations of the frequency of extreme events can be

improved. This has significant implications for existing

flood mitigation approaches that may currently under- or

over-predict flood magnitude for hazard planning. A

decision making flow chart is provided to assess when the

PREC method may be most useful.

With the use of homogenous spatial information, the

PREC method considers a larger scale of Q variability, and

partly addresses the concerns with limited temporal

records. One key limitation of this method is the assump-

tion that the homogenous regions capture a more repre-

sentative distribution of frequency and magnitude of

extreme events for the last 100 years. Gauges with

[60 years of records generally showed no change between

traditional at-site FFA and the PREC method in the esti-

mation of the 100 year floods. However, non-stationarity in

climate is assumed to be accounted for within the relatively

short timescale of these systematic records. In line with

recent concerns about climate non-stationarity, this

assumption can be tested with the integration of multiple

techniques that specifically target the temporal extension of

flood records, such as SWDs from extreme paleofloods.

Further research is advancing the application of SWDs to

regional estimates of flood limits in SEQ.
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