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Abstract In this paper, we address the problem of getting

order statistics for georeferenced functional data by means

of depth functions. To reach this aim, we introduce the

concept of spatial dispersion function for functional data in

a specific location of the geographic space. Then we gen-

eralize the notion of modified half-region depth to spatial

dispersion functions. Through the use of spatial dispersion

functions we show how the data ordering criterion depends

not only on the functional but also on the spatial compo-

nent. The proposal is applied to two wide simulation

studies and to real data coming from sensors.

Keywords Georeferenced functional data � Depth
functions � Spatial dependence � Geostatistics

1 Introduction

Multivariate ordering has attracted particular interest over

the years. To generalize the ranking process to the multi-

variate setting several and different definitions of data

depth have been introduced. A depth function is a non

parametric tool for ordering multivariate data according to

their centrality in the data cloud. It measures how deep a

point in Euclidean d-space is, that is, how close it is to the

center of the data cloud.

The main notions of multivariate data depth proposed in

the literature start from Tukey (1975) and Liu (1990). The

former defines what is known as half-space depth (also

called Tukey depth or location depth), the latter introduced

a list of desirable proprieties that the depth definitions

should meet. Later a vast theory of depth functions has

been developed in Rd by Dyckerhoff (2002), Mosler (2002)

and Zuo and Serfling (2000).

Recently with the aim to extend the concept of data

ordering to functions, depth notions were proposed in

Functional Data Analysis (FDA) Ramsay and Silverman

(2005), as well.

FDA deals with situations in which the observations are

functions by nature, such as temporal curves or spatial

surfaces, where the basic unit of information is the entire

observed function.

In this framework, depth functions provide a natural

ordering of curves, which makes it possible to define ranks

and order statistics.

There have been several alternative notions of depth for

functional data: in Fraiman and Muniz (2001), it is given a

concept of depth for functional observations based on the

integrals of univariate depths; in Cuevas et al. (2007) it is

proposed a projection-based depth for functions; in Cuesta-

Albertos and Nieto-Rayes (2008) the depth corresponds to

the univariate depth of the function values randomly taken

at several instants; in Lopez-Pintado and Romo (2009) it is

proposed a definition of depth for functional observations

based on the graphic representation of the curves; in

Lopez-Pintado and Romo (2011) it is defined an Half-Re-

gion Depth (HRD) and its modified version (MHRD) based

on the notions of hypograph and epigraph for functional

data, with computational advantages when compared to the

depths previously proposed in the literature; in Claeskens
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et al. (2014) it is proposed a generalization of the previous

proposals by constructing a depth function for K-variate

samples of curves named Multivariate Functional Depth

(MFD). Recently in Nieto-Reyes and Battey (2016) a for-

mal definition of statistical depth for functional data on the

basis of six properties, recognizing topological features

such as continuity, smoothness and contiguity, is provided.

Most of the notions of depth in infinite dimensional

spaces have been analyzed, in terms of their properties

under various stochastic models, in Chakraborty and

Chaudhuri (2014).

In particular, it has been shown that infinite dimensional

extensions of most of the depth functions, including HRD,

have degenerate behavior while the modified version of

HRD, does not suffer from such issue.

Continuous monitoring mechanisms in time and space

for several applicative domains has opened up new fron-

tiers that merge Functional Data Analysis and spatial data

analysis with the aim of analyzing data which have both a

functional and spatial component. Consistently with Deli-

cado (2010) and Romano et al. (2015), we refer to them as

spatially dependent functional data.

Let’s think for instance to remotely sensed data

observed over a number of years across the surface of the

earth. Remote sensors collect functional data by detecting

the energy that is reflected from the Earth (the space). One

could be interested to search for the spatial distribution of

reflectance by characterizing it by a center-outward

ordering.

In this and other applicative frameworks, the classic

ordering, defined by one of the depth measures for func-

tional data, could lead to a define a median curve as rep-

resentative of an area without considering the effect of its

spatial dependence with the others.

This median curve will account for a unique source of

variability, the time. However a curve that has a different

shape but is geographically far from the median curve will

have the same incidence in the depth computation.

For this reason, for each site, we define a function

describing the spatial dependence between a curve located

in a point of the geographic space and all the other curves

located at several spatial distances. We name such function

spatial dispersion function.

Following the modified Half-Region Depth definition in

Lopez-Pintado and Romo (2011), we propose its general-

ization to spatial dispersion functions with the aim of

ordering the georeferenced functional data.

By applying this graph-based approach on the spatial

dispersion functions, we include both, the spatial and the

functional component, in the ordering criterion for geo-

referenced functional data.

Until now, only the proposal Balzanella and Elvira

(2015) addresses this issue. It introduces the spatial

dependence among the curves in the definition of the band

depth through the spatial covariance function which plays

the role of weight among georeferenced functional data.

The band depth is, then, constructed by evaluating the

inclusion of the whole curve inside several possible bands

graphically obtained by the curves.

However, this last approach could fail for two main

reasons. Firstly, the considered spatial covariance function

measures the spatial dependence of all the curves in the

space and does not consider each single contribute that a

curve gives to the whole spatial variability. Secondly, the

proposed band depth suffers from degeneracy for some

standard probability models in function spaces as stated in

Chakraborty and Chaudhuri (2014).

The approach proposed in this paper overcomes these

problems.

It allows to characterize the distribution of the georef-

erenced functions by defining order statistics. We get, for

instance, a median spatial dispersion function which

assumes the role of representative of the spatial variability

in the area. It is a a different concept than the classic

variogram since the latter corresponds to the average of the

dispersion functions. Moreover, the variogram does not

support the detection of a representative site in the geo-

graphic space. Instead, being the spatial dispersion function

linked to a georeferenced functional data, it is possible to

detect a representative of the geographic space in terms of

the spatial and the functional component.

The organization of the paper is the following: Sect. 2

introduces the Georeferenced functional data. Section 3

introduces the concept of spatial dispersion functions and

illustrates the modified Half-Region Depth definition for

spatial dispersion functions.

Section 4 shows an application on simulated and real

data. A discussion of the results is provided in the con-

clusions Sect. 5.

2 Georeferenced functional data

Let vsðtÞ; s 2 D � Rd and t 2 T � R, be a spatial func-

tional random variable. Following Bohorquez et al. (2016)

and Bohorquez et al. (2016a), a spatial functional dataset

vs1ðtÞ; . . .; vsiðtÞ; . . .; vsnðtÞ
� �

is the observation of n func-

tional variables vs1ðtÞ; . . .; vsiðtÞ; . . .; vsnðtÞ
� �

at the n sites

s1; . . .; si; . . .; snð Þ 2 D

Each function, defined on T ¼ ½a; b� � R, is assumed to

belong to an Hilbert space

L2ðTÞ ¼ vsi : T ! R; such that

Z

T

v2siðtÞdt\1
� �

:

with the inner product hvsi ; vsji ¼
R
T
vsiðtÞvsjðtÞdt.
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Especially, for a fixed site si, the observed functions can

be expressed according to the following model:

vsiðtÞ ¼ lsiðtÞ þ �siðtÞ; i ¼ 1; . . .; n ð1Þ

where �siðtÞ are zero-mean residuals and lsið�Þ is the mean

function.

For each t, we assume that the process is a second-order

stationary: that is, the mean and variance functions are

constant and the covariance depends only on the distance

between sampling sites.

Formally we have:

EðvsðtÞÞ ¼ mðtÞ and VðvsðtÞÞ ¼ r2ðtÞ, 8 t 2 T; s 2 D:

CovðvsiðtÞ; vsiþh
ðuÞÞ ¼ Cðh; t; uÞ where h ¼ siþh � sik k

8 si; siþh 2 D and 8 t; u 2 T

These assumptions imply that there exists a mapping

h ! cðh; t; uÞ, called variogram, such that:

Varðvsiþh
ðtÞ � vsiðuÞÞ ¼ Eððvsiþh

ðtÞ � vsiðuÞÞ
2Þ ¼ cðh; t; uÞ

¼ Covð0; t; uÞ � Covðh; t; uÞ

By considering the integral on T of the expression above,

using Fubini’s theorem and following Delicado (2010), a

measure of spatial variability can be considered as:

cðhÞ ¼ 1

2
E

Z

T

ðvsiðtÞ � vsjðtÞÞ
2
dt

� �
; for si; sj 2 D

It corresponds to the trace-variogram introduced in Deli-

cado (2010), estimated as:

ĉðhÞ ¼ 1

2jNðhÞj
X

i;j2NðhÞ

Z

T

ðvsiðtÞ � vsjðtÞÞ
2
dt; ð2Þ

where: NðhÞ ¼ fðsi; sjÞ : ksi � sjk ¼ hg, and NðhÞj j is the

number of distinct elements in N(h).

For irregularly spaced data there are generally not

enough observations exactly separated by h so, N(h) is

modified to fðsi; sjÞ : ksi � sjk 2 ðh� e; hþ eÞg, with

e[ 0.

The estimation of the trace-variogram using (2), con-

sistently with Delicado (2010), involves the computation of

integrals that can be simplified by considering that the

functions are expanded in terms of some basis functions.

The trace-variogram, as the classic variogram for purely

spatial data, is used to describe the spatial variability

among functional data across an entire spatial domain and

not related to a specific location of the space.

Moreover since it has been integrated for every pair of

curves, it is scalar and modeled with usual spatial

variogram models which allow to include geometric ani-

sotropy Bohorquez et al. (2016a).

3 Modified half-region depth for spatial dispersion
functions

We introduce a depth function with the aim of providing an

ordering of the georeferenced functional data on the basis

of the spatial dependence of each georeferenced curve with

the others.

To address this challenge, we introduce the concept of

spatial dispersion function dsiðhÞ Romano et al. (2016) and

use half-region depth to construct order statistics for geo-

referenced functional data.

A spatial dispersion function is a transformation of vsiðtÞ
(for i ¼ 1; . . .; n) which allows to know how the data

recorded at a site contribute to the definition of the spatial

variability of the whole geographic area.

For each curve vsiðtÞ, at a pivot spatial location si, the

spatial dispersion function around si can be defined as:

dsiðhÞ ¼
X

si;sj2Nsi ðhÞ

Z

T

ðvsiðtÞ � vsjðtÞÞ
2
dt

� �

ð3Þ

for each sj 6¼ si 2 D.

From the previous expression, we still define the nor-

malized spatial dispersion function as:

�dsiðhÞ ¼ 1

NsiðhÞj j
X

si;sj2Nsi ðhÞ

Z

T

vsiðtÞ � vsjðtÞ
� 	2

dt ð4Þ

with NsiðhÞ ¼ si; sj
� �

: si � sj


 

 ¼ h

� �
� NðhÞ be the

number of couple of curves at each lag h.

The normalized spatial dispersion function shows how

the dissimilarity between the phenomenon recorded at si
and the phenomenon recorded at each sj 6¼ si changes with

the growing of the spatial distance h. If there is some

spatial dependence, the sites closest to the reference one

have low values of normalized spatial dispersion whereas

sites far away from si have high values of normalized

spatial dispersion.

The shape and intensity of �dsiðhÞ reveals the behavior of
the georeferenced curve recorded at si as part of the global

monitored phenomenon. In this sense the normalized spa-

tial dispersion function captures the information about the

effect of the spatial correlation function.

Once we have estimated the spatial dispersion functions

for a sequence of k values hk, these values reflect a smooth

variation, thus, we fit data using a basis system by least

squares estimation. Note that the fitted dispersion functions

are always a valid normalized spatial dispersion functions

since we search only for their functional approximation.
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The spatial dispersion functions, quantify the spatial

variability in the geographic space due to vsiðtÞ as we can

observe by looking at the properties these functions have.

Since we have assumed that the functional random

process is second-order stationary, the spatial dispersion

function and its normalized form have some interesting

characteristics. The first one is related to the monotony of

the normalized dispersion functions.

In particular, if 8 h; h0 2 Rþ such that h� h0 �!
�dsiðhÞ� �dsiðh0Þ 8 si 2 D. This still involves that

cðhÞ� cðh0Þ.
Moreover (through straightforward algebraic operations)

it is possible to show that

EðdsiðhÞÞ ¼ cðhÞ si 2 D ð5Þ

and

cðhÞ ¼ 1

2 NðhÞj j
Xn

i¼1

�dsiðhÞ2 NsiðhÞj j: ð6Þ

where NðhÞ ¼ [NsiðhÞ and NðhÞj j ¼
P

i N
siðhÞj j.

That is, the variogram function is the weighted average

of the normalized spatial dispersion functions �dsiðhÞ, with
NsiðhÞ weights as well as the variogram is the average of

the dispersion functions.

Our proposal consists in using the normalized spatial

dispersion functions as core tool for providing a ranking of

the of the georeferenced functional data and, thus, for

getting appropriate order statistics.

Especially, we define the notion of modified half-region

depth generalizing the half-region depth Lopez-Pintado

and Romo (2011) to the normalized spatial dispersion

functions.

Let D be the set of normalized spatial dispersion func-

tions, for all si 2 D, the graph of a function �dsiðhÞ is the

subset of the plane Gð�dsiðhÞÞ ¼ ðh; �dsiðhÞÞ : h 2 Rþ� �
.

The hypograph and the epigraph of a function �dsðhÞ can
be defined as:

hyp �ds
� �

¼ h; �d
� �

2 Rþ �Rþ : �d� �dsðhÞ
� �

epið�dsÞ ¼ h; �d
� �

2 Rþ �Rþ : �d� �dsðhÞ
� �

These correspond, respectively, to the region over and

under the normalized spatial dispersion function �dsðhÞ 2 D,
as shown in Fig. 1.

Following these notions, we define the fraction of

functions in the hypograph and in the epigraph of �dsðhÞ,
with respect to the set D, as follows:

S1ð�dsÞ ¼
Pn

i¼1 IðGð�d
siÞ � hypð�dsÞÞ
n

S2ð�dsÞ ¼
Pn

i¼1 IðGð�d
siÞ � epið�dsÞÞ
n

where I(.) is the indicator function.

The half-region depth (SB) for the spatial dispersion

function �dsðhÞ, with respect to D , is:

SBð�dsÞ ¼ min S1ð�dsÞ; S2ð�dsÞ
� �

The computation of the Half-Region Depth for the nor-

malized spatial dispersion function �dsiðhÞ allows to get an

ordering according to decreasing values of SBð�dsÞ. Thus,
we obtain �ds½1� ; . . .; �ds½i� ; . . .; �ds½n� order statistics, where �ds½1� is
the median, while �ds½n� is to the most outlying normalized

spatial dispersion function. Based on this ordering, we can

still generalize the classic box-plot representation by

defining the first and third quartile corresponding to the 25

and 75 % central region, as �ds½0:25n� and �ds½0:75n�

The definition of the hypograph and the epigraph above,

use an indicator function which evaluates if a normalized

spatial dispersion function is wholly under or over �ds.
Moreover, a more flexible definition is proposed in Lopez-

Pintado and Romo (2011): the modified Half-Region Depth

(MHRD), which considers functions only partially inclu-

ded into the hypograph or in the epigraph. Such definition

can be still extended to normalized spatial dispersion

functions by introducing two measures SLð�dsÞ and ILð�dsÞ
that evaluate, respectively, the proportion of lag values h

for which �dsi (with ði ¼ 1; . . .; nÞ) is greater or smaller than
�ds. Formally:

SLð�dsÞ ¼ 1

nkðIÞ
Xn

i¼1

k h 2 I : �dsðhÞ� �dsiðhÞ
� �

ILð�dsÞ ¼ 1

nkðIÞ
Xn

i¼1

k h 2 I : �dsðhÞ� �dsiðhÞ
� �

where k is the Lebesgue measure on R and I � Rþ.
The logic behind this modified Half-Region Depth def-

inition is the following: if a normalized dispersion function

presents a shape strongly different from the shape of other

normalized dispersion functions, few or no spatial disper-

sion functions would be included in its epigraph or hypo-

graph and a low depth will be associated to it. In this case

the normalized spatial dispersion function allows to detect

a georeferenced functional outlier.

On the contrary, a normalized spatial dispersion func-

tion that is representative of the sample of dispersion

functions, is characterized by a high proportion of inclusion

in its epigraph and hypograph. This involves that the depth

value is the highest and the spatial dispersion function is

the median.

In this context a crucial role is played by the shape of the

normalized spatial dispersion functions.

The shape of dispersion function contains information

related to how a curve located in a point of the geographic
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space differs from the other curves in the space. Thus,

looking at normalized spatial dispersion function shape, it

is possible to define order statistics in terms of both func-

tional and spatial components.

In particular, we can summarize the main advantages of

using this normalized spatial dispersion functions in the

ordering of georeferenced curves as follows:

– They allow to define a distribution of the functional

data and robust location estimates, such as the median

and the quartile functions;

– They provides a measure of the centrality of function

located in a site with respect to others related to the other

sites, since they provide an ordering starting from the

degree of spatial dependence of a curve in a site with the

others. The rank-order can be defined from the deepest to

the least deep.Where the deepest corresponds to themost

representative of the spatial dispersion functions, and the

lowest as the most extreme observation, that may be

considered outlier. For example, if we observe high

values of normalized spatial dispersion for each lag

distance h, the curve vsiðtÞ is strongly different to all the
the other curves in the dataset. This allows to select it as

outlier. Still, if focusing on the slope of �dsi we detect an
anomalous behavior, we can highlight that the curve

vsiðtÞ has a spatial dependence structure which differs

from the other curves in the dataset.

While theoutliers of thefirst case shouldbealsodiscovered

by traditional dissimilarity based approaches, the second

case shows that spatial dispersion functions, which depend

on the location of the curves, allow to capture anomalies

hidden to traditional distance based approaches.

– The function �ds½1� can be considered as a representative

of the spatial dependence in a geographic area since it

is such to satisfy:

�ds½1� ¼ argmax�ds1 ;:::;�dsn SBð�dsÞ ð7Þ

– It has the main advantage of including in the ordering

process the two data components: the functional and

the spatial ones;

The properties of Distance invariance, Maximality, Strictly

decreasing w.r.t. the deepest point, Upper semi-continuity,

Receptivity to convex hull width across the domain, Conti-

nuity, valid for the modified Half-Region Depth for func-

tional data, are still valid for spatial dispersion functions.

4 Applications

In this section we are going to apply the proposed method

to three different situations. We propose, at first, two

applications on simulated data, in order to show the per-

formance of the method on datasets generated according to

a widely simulation scheme for spatio-temporal data and

for spatial functional data. Then, we perform an application

on a real world dataset in which temporal data, recorded by

a sensor network, have a spatial dependence.
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Fig. 1 Hypograph and epigraph of a normalized spatial dispersion function �ds
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4.1 Depth measurement on spatio-temporal

simulated data

The first testing of the proposed method has been per-

formed generating the data following the simulation

scheme introduced in Sun and Genton (2011) and used in

Romano et al. (2015).

Data are drawn from a zero-mean, stationary spatial-

temporal Gaussian random field, vsðtÞ (with s 2 D and

t 2 T) whose covariance function C h; uð Þ ¼

cov vsiðt1Þ; vsjðt2Þ
n o

depends on the spatial distance h ¼
jjsi � sjjj and on the functional distance u ¼ jjt1 � t2jj, for
any couple of si,sj and t1; t2. The spatial temporal vari-

ability is defined starting from the following four covari-

ance models (consistently with the setup in Sun and Genton

(2011)):

1. Purely spatial covariance function, defined for two

generic locations si; sj, that are apart by h ¼ jjsi � sjjj,.
presents the form:

CsðhÞ ¼ 1� mð Þ exp �c hj jð Þ þ mI h ¼ 0f g ð8Þ

where c[ 0 controls the intensity of the spatial cor-

relation, and m 2 0; 1ð � is the nugget effect. We set

m ¼ 0 for all the cases, so that there is no nugget effect.

2. Space-time separable correlation function of the form:

CSEP h; uð Þ ¼ cov vsiðt1Þ; vsjðt2Þ
n o

¼ Cs hð ÞCT uð Þ

ð9Þ

where Cs hð Þ is expressed by (8) and CT uð Þ is a sta-

tionary, functional covariance function, of the Cauchy

type, having the form:

CT uð Þ ¼ uþ a uj j2a
� 	�1

ð10Þ

with a time span u ¼ jjt1 � t2jj. Here a[ 0 is the scale

parameter in time, that is fixed to a ¼ 1 in all the

datasets, and a, is the parameter that controls the

strength of the functional variability.

3. Symmetric but generally non-separable correlation

function of the form:

CSim h; uð Þ ¼ 1� m
1þ au2a

�
exp � c hk k

ð1þ au2aÞ
b
2

( )

þ m
1� m

I h ¼ 0f g
� ð11Þ

where the parameter 0� b� 1 controls the degree of

non-separability. b ¼ 0:9 has been set for all the

datasets, to have the maximum possible non-

separability.

4. General stationary correlation model of the form:

C h; uð Þ ¼ ð1� kÞCSim h; uð Þ þ k 1� 1

2m
h1 � mu

 �

þ

ð12Þ

where h1 is the first component of the spatial separa-

tion vector h and 0� k� 1 controls the asymmetry. For

the datasets generated according to this correlation

model, k has been set to 0.5

For each covariance function, we have generated a dataset

made by 196 curves, each one of 50 time points in [0, 1].

The Table 1 shows the parameters used for the simulation

of each dataset.

Aim of the analysis of these data is, at first, to evaluate

how the introduction of the spatial component impacts on

the depth measurement. To tackle this problem, we com-

pare the modified Half-Region Depth for normalized spa-

tial dispersion functions with the weighted band depth for

georeferenced functional data (Balzanella and Elvira 2015)

and with the modified Half-Region Depth on the time

functions (Lopez-Pintado and Romo 2011).

In order to perform the comparison some preliminary

steps are needed.

The first step is to get a functional description of the

spatio-temporal data by fitting them through a B-spline and

using a least squares fitting criterion. We use cubic splines

basis functions and equally spaced knots in the interval [0;

1].

As introduced in Sect. 3, the proposed strategy, still

requires to compute a normalized spatial dispersion func-

tion �dsiðhÞ for each site si (for i ¼ 1; . . .; nÞ. Such compu-

tation, has to be performed ensuring that at each lag

distance h there is a sufficient number of curves to compare

thus, it is a common practice to set non overlapping

intervals ½h� �; hþ �� and to calculate the dispersions

using the sites whose spatial distance is included in such

interval. In order to set � we adopt the widely used rule of

the thumb for variogram estimation (Journel and Hui-

jbregts 2004) which suggests to ensure that the minimum

number of curve pairs falling into each interval is 30. The

application of this criterion to our data involves that � ¼
0:13 and the number of intervals is 10.

Table 1 Parameters for simulated datasets

Dataset id Correlation model Value of c Value of a

1 Purely spatial 0.01

2 Separable 0.6 0.2

3 Non-separable 0.4 0.5

4 General stationary 0.1 0.3
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As stated in Sect. 3, in order to ensure continuity in the

normalized spatial dispersion functions, we have still per-

formed a linear interpolation of each function.

The normalized spatial dispersion functions for the first

simulated dataset and the corresponding variogram function

are shown in Fig. 2. Looking at the curve shape, we can see

that there is a spatial dependence in the data. This is because

both, the variogram and the most of the normalized spatial

dispersion functions grow with the increase of h.

At the same time, the approach proposed in Balzanella

and Elvira (2015) still needs the computation of the vari-

ogram function as a weight function in the depth mea-

surement. As for the computation of the normalized spatial

dispersion functions, we set non overlapping intervals ½h�
�; hþ �� which ensure that the minimum number of curve

pairs falling into each interval is 30.

The depth values for the three compared approaches are

shown in Fig. 3.

The left column of the figure shows the depth values

obtained through the proposed strategy on the four datasets,

the central column shows the depths obtained by the Band

Depth weighted by the spatial covariance, finally, the third

column illustrates the results for the modified Half-Region

Depth computed directly on the curve data.

In the figure, we have used a color map through which

each site is represented as a colored box in the squared

spatial grid with higher temperature colors corresponding

to higher depths. Thus, the blue cells correspond to sites

having a very low depth while yellow cells have a high

depth value.

Looking at the results, the method proposed in this paper

and the modified half-region depths get depth values in the

range ½0�0:5� for all the datasets. The depths obtained by

the Band Depth weighted by the spatial covariance are,

instead, in the range ½0�0:8�. In all the cases there is no site
which emerges for its high centrality (depth). Still, there is

only a partial agreement between the compared methods.

This is due to the different way of including the spatial

information for the first two methods and because the third

one does not consider it.

It is still interesting to note that if we consider a low

depth value as a measure outlyingness, only in few cases,

the same potential outliers are discovered by all the

methods.

A further aid to the evaluation of our proposal comes

from using the functional boxplot introduced in Sun and

Genton (2011). We will use it in order to highlight the

differences among the data in terms of normalized spatial

dispersion.

We recall that this tool extends the classic boxplot to

functional data by visualizing five descriptive statistics: the

envelope of the 50 % central region (in magenta) which

extends the concept of interquartile range, the median

curve (in black), the maximum e minimum curves (in

blue). In order to make our analysis, we still plot (in red) on

the plane the average spatial dispersion, which corresponds

to the variogram, as well as the whole set of normalized

spatial dispersion functions. The results of our method, for

all the datasets, are available in Fig. 4.

A first analysis focuses on the behavior of the normal-

ized spatial dispersions. We can see that the sites in the

dataset 1 have a higher spatial dependence than the other

datasets since the slope of the normalized spatial dispersion

functions is higher. This is confirmed by the median curve

which grows faster than in the other datasets over the

whole set of lag distances. This information is difficult to

obtain by simply looking at the original curves in the time

domain.

A further difference among the analyzed datasets, is the

range of the normalized spatial dispersion functions.

Especially, the top and bottom curves in blue, highlight that

the third dataset is the one with the widest range. Still, the
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interquartile region, which represents the 50% of the

highest depth values, is wider in the first dataset than the

other three ones.

Some specific consideration is needed if we look at the

behavior of the normalized spatial dispersion function

having the highest depth. Since it can be interpreted as a

representative of the spatial variability in the area, it is

useful to perform a comparison with the variogram plotted

in red.

A first aspect to note is that the variogram is sensitive to

outliers. This is because it is a weighted average of the

normalized spatial dispersion functions. Similarly to the

univariate case, the median does not shows this issue.

Moreover, through the median function, it is possible to set

the site s½1� as representative of the area. On the contrary,

the variogram is not associated to a spatial location, thus, it

is not possible to obtain a representative site.

As shown in Fig. 4, it is possible to note that the for all

the datasets, the median differs from the variogram.

Especially, this is evident in the first and second dataset for

high values of h.

We have performed a further test in order to highlight

the influence of the spatial dependence on the depth mea-

surement by introducing an outlier in the data. Especially,

we have generated a function made by 50 observations

obtained by a Gaussian random process with parameters

l ¼ 0 and r ¼ 4. Unlike to the classic depth measurement

of Lopez-Pintado and Romo (2009) and (2011) our strategy

measures the depth of a curve incorporating the informa-

tion about the spatial location where it has been recorded.

In particular, the spatial location of a curve influences the

computation of the corresponding spatial dispersion

function.

In Fig. 5, we show the depth value for the outlier by

moving the generated curve on the geographic spatial grid.

The results are related to the dataset 1.

As before, the x and y axis represent the spatial coor-

dinates, while the colormap allows to show the depth

values for each site. The color of each cell illustrates the

depth value of the outlier when it takes every possible

position of the plane. In this case the depth value is always

in the range ½0�0:2�, however if the outlier is placed on the

boundaries, its depth is lower than if it is placed in the

center. This confirms the impact of the spatial location on

the depth value.

4.2 Depth measurement on simulated spatially

dependent functional data

In this section we evaluate the performance of the depth

measurement strategy on a simulated dataset made by

spatially dependent functional data. The testing procedure
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has the aim of evaluating the effect of ordering the nor-

malized spatial dispersion functions rather than directly the

observed functional data. In particular, we want to show

that using the information about the spatial dependence

among curves affects the ordering of the georeferenced

curves. It is an extreme case study, where the data are

periodic, with the same frequency and having zero average

so that the MHRD are not able to provide an ordering of

functional data.

The process from which samples have been generated is

the following:

vsiðtÞ ¼ fsisinðt� 1000Þgsicosðt� 10Þ si 2 D ð13Þ

The coefficients fsi and gsi are realization of a multivariate

Gaussian distribution with zero mean and covariance

structure capturing the spatial dependence in the data. We

have generated four datasets according to the following

models of spatial dependence: Spherical, Bilinear, Expo-

nential, Gaussian. For each model we assume that the range

is 1.4, the sill is 200 and the nugget is 0.

In Fig. 6 we show the variogram models from which we

have obtained the covariance structure in each dataset.

Similarly to the test above, each dataset is made by 196

curves on a squared spatial grid with range ½0�1� ½0�1�.
The curves of the first dataset are shown in Fig. 7.

We compare the results of the proposed strategy on

normalized spatial dispersion functions with the modified

Half-Region Depth on the curve data.

In order to get the results, we must set the input

parameters. We need, at first, to set the lag distances h

where to measure the spatial dispersion. As for the previous

application on spatio-temporal data, we set non overlap-

ping intervals ½h� �; hþ �� and calculate the dispersions

using the sites whose spatial distance is included in such

interval. In order to ensure that the minimum number of

curve pairs falling into each interval is 30, we set � ¼ 0:13

and the number of intervals to 10.

A further preprocessing step to be performed in order to

get the output of our procedure, is interpolation of the

normalized spatial dispersion functions in order to ensure

continuity. To this aim, we have a used a linear interpo-

lation which makes each spatial dispersion function a

piecewise function.

The first result we show in Fig. 8 is the depth value

associated to each site of the spatial region, for each one of

the four simulated datasets. Similarly to the previous

application on spatio-temporal data, we have used a color

map through which each site is represented as a colored

box in the squared spatial grid with higher temperature

colors corresponding to higher depths.

We can note that the modified Half-Region Depth on the

curve data is not able to provide an ordering of the data.

Every curve has the same depth value since every box has

the same color. This is due to specific characteristics of the

data: the periodicity, the constant frequency and the aver-

age set to 0 for all the functional data involves that there is

always a compensation between the portion of the curves in

the epigraph and in the hypograph. Our method is, on the

contrary, able to highlight the impact of the spatial

covariance so that on all the datasets the locations on the

boundary of the spatial region tend to have lower depth

values.

A more detailed analysis of the results of our ordering

strategy can be performed by looking at the functional

boxplots in Fig. 9.

Focusing on the magenta area representing the

interquartile region, we can see that for low values of h the

normalized spatial dispersion functions have similar val-

ues. This highlights that the simulated functional data tend

to be similar to the observations in their spatial neighbor-

hood. This is a common feature of the four datasets. With

the increase of h, the magenta area becomes wider so that

there is more variability in the similarity between func-

tional data at si and the functional data observed at far

locations. In this sense, we can see that the four datasets

behave differently since the first and fourth dataset keep,

until h ¼ 0:45, a low-width interquartile region while the

second and third dataset have at h ¼ 0:45 wide interquar-

tile regions.

Another aspect worthy of attention is the behavior of the

median function which corresponds, as stated above, to the

deepest spatial dispersion curve. Still, the comparison with

the average spatial dispersion function (variogram) allows

to highlight the capability of the median to provide a robust

representative of the spatial variability of the geographic

area.

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Fig. 5 Depth values for simulated data with outlier on the geographic

spatial grid

96 Stoch Environ Res Risk Assess (2017) 31:87–103

123



Looking at the median (in black) and at the variogram

(in red) for values of h\0:25, the two functions have very

similar values for all the datasets so they provide the same

information about the phenomenon. With the growing of h,

the differences between the variogram and the median

emerge. In particular, in the first dataset the median has
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lower values of spatial variability for h[ 0:3. This is

because the median is not influenced by the highest spatial

dispersion curves. In the second dataset, at h ¼ 0:52 the

median intersecate the variogram so that there is a decre-

ment of the spatial variability for very high values of h. In

the third dataset we can see that the median is very similar

to the variogram for all the values of h so that both the

function provide the same summarization of the spatial

dipendence. Finally, the fourth dataset highlights a strong

difference between the median and the variogram with the

median higher than the variogram for h[ 0:3, still, it is

interesting to note that the median is very near to the

boundary of the interquartile region.

4.3 Depth measurement on real data

In this section, we will show how the proposed strategy can

be used for monitoring the evolution of sensor data. The

test has been performed on a public dataset of real data,

available at http://db.csail.mit.edu/labdata/labdata.html.

The dataset collects the records of 54 sensors placed at

the Intel Berkeley Research lab between February 28th and

April 5th, 2004. Mica2Dot sensors with weather boards

collected timestamped topology information, along with

humidity, temperature, light and voltage values once every

31*s. Data was collected using the TinyDB in-network

query processing system, built on the TinyOS platform.

Fig. 10 Diagram of the sensors
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The dataset includes the x and y coordinates of sensors (in

meters relative to the upper right corner of the lab). The

sensors were arranged in the lab according to the diagram

in Fig. 10.

We have analyzed the temperature records of each

sensor so that we have a set of 54 time series each one

made by 65,694 observations.

Our idea is to split the stream of data into non over-

lapping temporal windows so that the depth measurement

is performed on each window independently.

In order to get windows which collect daily data, we

have set their size to 1775 observation as shown in Fig. 11

for a data subset.

On the data of each window we have run our strategy

which provides an ordering of the subsequences which

accounts for the spatial location of each sensor.

At first, we will focus on the results for the first window.

We show in Fig. 12 the depth of each site as a colored dot

on the map. In this case, the sites having the highest depth

are located in the upper-left part of the geographic space.

On the right, there are the most of the sites having low

depth values.

We still show in Fig. 13 the functional boxplot for the

first data window. This allows to analyze the distribution of

the normalized spatial dispersion functions.

The first issue to note is that the functions having the

lowest depth do not show any spatial dependence. Espe-

cially, the curve on the top has some spatial dependence

only for very low values of h while the curve on the bottom

has a constant behavior with no spatial dependence at all.

Still, the magenta area which highlights the interquartile

region, shows that its wideness is higher for low values of h

than for high values. This explains that the 50% of the

deepest spatial dispersion curves tend to be similar at high

spatial lags.

Looking at the deepest curve in black (median) and at

the average one in red (variogram), we can note that there

is a spatial dependence in the data. This is because both the

curves grow for increasing values of h. However, as shown

on simulated data, the median normalized spatial disper-

sion function is not sensitive to outliers.
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The execution of the ordering procedure on each win-

dow allows to get, for each site, a function in which each

observation is the rank of the site in a window. In Fig. 14,

we show the ranking of the first six time series in the

dataset over the windows. It is interesting to note how the

position in the graded list induced by the depth computa-

tion changes over the windows so that the data recorded at

a site can be highly central in a window and still have a low

depth for the following windows.

If we look at the changes over the time of the position in

the ranking, we can get an overview of the evolution of the

monitored phenomenon. In this sense, the power of this

approach can be found also in its application to streaming

settings.

5 Discussion and conclusion

Spatial Functional Data Analysis is a developing field in

statistics that has emerged in the last decade.

In many applications, the basic underlying observation

is a georeferenced curve. New challenges arise when the

functions are spatially dependent. In this paper, we have

introduced a generalization of the modified-region depth

for spatially dependent functional data. These new notions

account for one of the hottest challenges in this field: the

concept of ranking. By introducing the concept of spatial

dispersion function as a transformation of the functional

data, our proposal has the advantages of furnishing a cri-

terion for ranking simultaneously the spatial and the

functional component of the data. In addition it allows to

define a distribution of the spatial dispersion functions

characterized by robust location estimates, such as the

median spatial dispersion and the quartile functions. This

method has been illustrated by assuming stationarity in the

data, however it can be applied also when the the more

general case of non-stationarity in the data is assumed. As

further research we are going to investigate the introduc-

tion of directional spatial dispersion functions in order to

deal with covariance structures which change according to

the spatial direction.
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