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Abstract Spatial data are commonly minimal and may

have been collected in the process of confirming the

profitability of a mining venture or investigating a con-

taminated site. In such situations, it is common to have

measurements preferentially taken in the most critical areas

(sweet spots, allegedly contaminated areas), thus condi-

tionally biasing the sample. While preferential sampling

makes good practical sense, its direct use leads to distorted

sample moments and percentiles. Spatial clusters are a

problem that has been identified in the past and solved with

approaches ranging from ad hoc solutions to highly elab-

orate mathematical formulations, covering mostly the

effect of clustering on the cumulative frequency distribu-

tion. The method proposed here is a form of resample, free

of special assumptions, does not use weights to ponder the

measurements, does not find solutions by successive

approximation and provides variability in the results. The

new method is illustrated with a synthetic dataset with an

exponential semivariogram and purposely generated to

follow a lognormal distribution. The lognormal distribution

is both difficult to work with and typical of many attributes

of practical interest. Testing of the new solution shows that

sample subsets derived from resampled datasets can clo-

sely approximate the true probability distribution and the

semivariogram, clearly outperforming the original prefer-

entially sampled data.

Keywords Geostatistics � Population � Cluster �
Declustering � Bias

1 Introduction

Sampling is the process of collecting a limited number of

measurements from a population for the purpose of making

inferences about such a population. A sampling is said to

be preferential when targeting a certain population class at

a higher rate than in the underlying frequency. In spatial

statistics, such practice results in clusters of sampling

locations. Some estimation methods, such as kriging, have

a built-in capability to handle preferential sampling, but

most other formulations and statistical procedures do not,

thus requiring a preprocessing of the data to produce cor-

rect results. This is the case of the estimation of the

underlying cumulative distribution and the semivariogram.

The problems associated with clustered sampling have

been known for some time, with several fixes being for-

mulated. One of the earliest solutions is that of Journel

(1983) who proposed to assign a weight to each measure-

ment that is inversely proportional to the number of

observations per cell in a regular tessellation of the sam-

pling domain. This method requires calculating several

weights sets for different cell sizes. When the preferential

sampling favors high values, the solution is the set of

weights associated with the cell size that produces the

minimum mean cell value. The converse is true for the case

favoring low values (Deutsch 1989). The method is

heuristic, with minima that are not always clear cut, thus,

not guaranteeing an optimal solution. Another early

approach uses the data locations to prepare Voronoi poly-

hedra—polygons in the more common two-dimensional

case—and calculate weights now proportional to the vol-

ume of the polyhedra (Isaac and Srivastava 1989). One of

the main disadvantages of the approach is the large weights

assigned to locations near the periphery of the study areas.

There are several other more mathematically elaborate but
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less frequently applied methods in addition to these two

geometrical approaches (Switzer 1977; Omre 1984; Bour-

gault 1997; Bogaert 1999; Rivoirard 2001; Richmond

2002; Kovitz and Christakos 2004; Pardo-Igúzquiza and

Dowd 2004; Emery and Ortiz 2005, 2007; Pyrcz et al.

2006; Reilly and Gelman 2007; Diggle et al. 2010;

Marchant et al. 2013; Pyrcz and Deutsch 2014). Most

formulations share the disadvantage of having to deal with

weights, thus limiting the computer software able to handle

a declustered data carrying weights. Some methods are

valid only for estimating the frequency distribution, but not

the semivariogram, or vice versa. Above all, none of these

methods tries to extract some benefit out of the preferential

sampling.

In a previous study (Olea 2007), a methodology was

proposed that resulted in retaining one observation per

cluster. The solution works, but it can be considered sub-

optimal from the point of view of the usage of the data.

Here, in addition to providing a better estimation of the

histogram or cumulative distribution and semivariogram,

the preferential sampling is used to evaluate uncertainty in

the modeling by using multiple versions of the original data

according to the procedures below. The objective of this

study is to present a method that (a) produces a declustered

sample without resorting to weights so that the solution can

be handled by a larger number of software applications,

(b) generates a declustered sample that can be used to

model both the frequency distribution and the semivari-

ogram, and (c) uses the clustered data to provide a measure

of uncertainty in the results.

2 Methodology

Preferential sampling of a regionalized variable implies

selection of data locations intending to target certain range

of values of the underlying attribute, say, high values

(Diggle et al. 2010). While the practice may have justifi-

cations, such as higher mining venture profit, it has some

drawbacks as a sampling practice. The solution to this

often forced situation is to preprocess the data to prepare a

non-preferential sample adequate for those operations in

the modeling that are distorted by preferential sampling. In

two-point geostatistics, such operations involve the esti-

mation of the population cumulative distribution and the

semivariogram. Further stages in the modeling, such as

kriging and stochastic simulation, can properly handle

preferential samples. Hence, use of declustered datasets

should be limited to the estimation of the cumulative fre-

quency and the semivariogram. Then, the modeler should

go back to using the original preferential sampling for

running kriging or a simulation.

Given the way a preferential sample is collected, only a

few locations actually exhibit a preferential selection

because the common practice is to predominantly have a

non-preferential sampling where a measurement is not

expected to result in a value satisfying the special

requirement, say, the observation is high. Hence, spatial

data should be split into two classes. Spatially scattered

observations, zs sið Þ, at location si 2 X across the region of

interest are the first type of data; they should be unbiased

outright, thus supposedly not requiring preprocessing,

assumption that should not be taken for granted. Let zc sið Þ
be the remainder of the data that were preferentially sam-

pled and are not randomly scattered. Considering that

preferential sampling results in clusters of data locations,

simultaneous scrutiny by attribute value and distance to the

closest neighbor should reveal the data in need of

preprocessing.

2.1 Declustering procedure

Let subset zs sið Þ be of size ns, let c be the number of

clusters, and let M be an odd number of resamples. Then:

Step 1 Prepare a cumulative distribution of distance to

the closest neighbor for the entire sample.

Step 2 Look for a sudden break in the distribution; this is

the critical distance to split the data into two classes:

scattered locations and clusters.

Step 3 Prepare a Q–Q plot to confirm that the distribu-

tions of the attribute for the two classes are indeed

different (e.g., Olea 2008). If not, stop because there is

no preferential sampling; mere clustering does not

distort the estimation of the cumulative distribution

and the semivariogram. Otherwise, continue.

Step 4 Set a counter, k, equal to 1.

Step 5 Prepare resample dataset zk sið Þ by copying all ns
values in subset zs sið Þ.
Step 6 From each of the c clusters within zc sið Þ, select at
random one value per cluster and add it to zk sið Þ, thus
resulting in a subset of size ns þ c.

Step 7 Increase k by 1.

Step 8 If k\M, go to Step 5. Otherwise, stop.

The set ofM resamples zk sið Þ is the input data to be used
in the estimation of the cumulative distribution and semi-

variogram. In case the clusters are of significantly different

sizes, Step 6 can be generalized by creating a rule to draw

values according to cluster size instead of always taking

one observation per cluster. For example, the average

distance between sampling locations, da, can be used to

define an area d2a . One can retain one measurement per

multiple of j � d2a in the areas with clusters, where j is a

scaling constant to be set by the modeler.
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2.2 Modeling of the cumulative distribution

Each of the M resamples zk sið Þ can be regarded as a partial

realization of an unknown random function. Do the fol-

lowing with these data:

Step 1 Sort each of the M resamples zk sið Þ and prepare a

table in which each column is one of the resamples.

Step 2 Find the median of the quantile at each of the

ns þ c rows and identify the observations matching the

value. If the matching is not unique, select one

observation randomly.

Step 3 For easier visualization of the results, prepare a

joint display of the cumulative frequencies for all

M resamples and the median values.

Considering that the number of resamples is odd, the

median for any row is always exactly the M þ 1ð Þ=2ð Þth
value by magnitude. Because there is no interpolation, each

median is one of the values in the dataset. The process of

obtaining the media is trivial for the rows away from the

values preferentially sampled because all values are the

same, but variability increases approaching the values

resampled from the clusters.

This set of medians will be collectively denoted by

zq sið Þ; i ¼ 1; 2; . . .; ns þ c. The median was selected

over the mean for two reasons: (a) the median is the

minimum absolute error estimate of the true quantile, thus

less sensitive large discrepancies, and (b) in general, the

mean does not coincide with the value of any observation.

2.3 Modeling of the empirical semivariogram

When it comes to estimating the empirical semivariogram,

there are two alternatives: use the sample zq sið Þ or use all

the M resamples. Here, estimation of the semivariogram

depends on the same assumptions that apply to samples

without preferential sampling, such as, minimum size

guaranteeing a sufficient numbers pairs of data for a reli-

able estimations and some form of stationarity (Olea 2006;

Chilès and Delfiner 2012).

2.3.1 Semivariogram for the quantiles

Step 1 Chose an estimator to calculate the empirical

semivariogram and select all necessary parameters, such

as direction and distance increment.

Step 2 Estimate the empirical semivariogram c�p using

sample zq sið Þ.
Step 3 Display the results.

This solution is straightforward, but it has the inconve-

nience of not taking advantage of all values in the clusters

to model uncertainty in the results.

2.3.2 Semivariogram for the resamples

This approach is more demanding but provides a dispersion

of the results.

Step 1 Chose an estimator to calculate the empirical

semivariogram and select all necessary parameters, such

as direction and distance increment.

Step 2 Estimate the empirical semivariogram for each

one of the M resamples zk sið Þ.
Step 3 For each distance class, select the median value

that collectively provides an estimate c�k .
Step 4 Graphically display each resampled semivari-

ogram and estimate c�k .

3 Case study

3.1 Preparation of the data

This section shares a synthetic example that I prepared for

helping to clarify ideas and illustrate the methodology.

Real examples have the inconvenience of containing

properties not always possible to reproduce mathemati-

cally. The main disadvantage is that, unless the sampling is

exhaustive, the answer is unknown, thus preventing the

ability to compare results to the target population. In real

life, sampling to exhaustion is costly, time consuming and

impractical. For these reasons, a synthetic dataset is used

here.

Figure 1 shows the pixel map and histogram of a syn-

thetic exhaustive sample especially prepared to have both

an adequate and challenging dataset to model. There are 45

rows and columns of pixels in the map, thus the sample

size is 2025. In particular:

• The attribute is isotropic.

• The attribute is second order stationary.

• The study area is a square.

• The side of the square is more than 2.5 times the size of

the semivariogram effective range.

• The attribute follows a positively skewed distribution.

• For the sake of generality, no units are specified for

distance and for the attribute.

• A minor requirement is to have the attribute in the

range (0, 100) primarily to facilitate display.

Anisotropy and lack of stationarity are not central

problems in the estimation of the cumulative distribution or

the semivariogram; here they have been avoided to focus

on important issues. The condition of a square study area is

consistent with the isotropy requirement. The proportion

(side of the study area)/range is necessary to properly

investigate the semivariogram range. Skewed distributions
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are more difficult to model than symmetric ones. Originally

the exhaustive sample was generated as a normally dis-

tributed realization and then it was skewed through a log-

arithmic transformation. This exhaustive sample will be

used exclusively to evaluate results, not to assist the esti-

mation in any manner.

Important considerations about the dataset to be used in

the modeling are:

• The sample size after declustering should be below 100

to have a challenging semivariogram modeling (Web-

ster and Oliver 1992);

• Before starting the preferential sampling, a first set of

observations was drawn to conform a stratified sample

by taking at random one value within squares of 5 by 5

pixels;

• The preferential drawing was prepared by taking four

values immediately North, South, East and West. About

10 clusters were considered a reasonable number for

this exhaustive sample. 11 clusters resulted by prefer-

entially sampling all sites in the stratified sample with a

value above 6;

• Below the semivariogram range, it should be possible

to have at least four distance classes at regular intervals

and with enough pairs of data to calculate empirical

semivariograms.

I am purposely trying to avoid blaming the preparation of

the sample for failures in performance by the methodology.

In most cases, a stratified sampling is intermediate in effi-

ciency between a regular and a random sampling (Webster

and Oliver 2007; Chilès and Delfiner 2012). Hence, a

stratified sample is neither the best configuration nor a

subpar option. The minimum number of distance classes in

the estimation of the empirical semivariogram is another

requirement to make sure that, if the method does not per-

form well, it is not because of a trivial problem. Figure 2

contains graphical displays for the preferential sample.

3.2 Declustering the data

Figure 3 reveals the two necessary features to have a

preferential sample that, in this case, we already know by

construction: there is clustering for a distance below 1.4

and the probability distribution for the clusters and the

scattered locations are markedly different. In this example,

as it is often the case, in the preparation of the dataset, there

has been a deliberate attempt to better sample the upper tail

of the frequency distribution. Consequently, upon reaching

Step 3 in the procedure in Sect. 2.1, it is confirmed that

there is indeed a case of preferential sampling.

In this case, ns ¼ 70 and c ¼ 11. I decided to prepare 101

resamples, soM ¼ 101. The final product upon applying the

procedure in Sect. 2.1 is a set of 101 resamples zk sið Þ, each
of size 81. Table 1 displays the results upon completing the

procedure in Sect. 2.1, but because of the limitation of

space, there is only a partial display. Row 71 is the first one

displaying values taken from the clusters. Note that there is

a limit of no more than 5 unique values per row because that

is the size of all clusters that are resampled.

3.3 Estimation of the cumulative distribution

Because of space limitations, Table 2 is a partial display of

the complete tabulation obtained after completing Steps 1

Fig. 1 Synthetic exhaustive example used to illustrate the methodology: a pixel map; b histogram
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and 2 of the procedure in Sect. 2.2. Now all observations in

a resample are sorted by increasing value. The lowest value

in the clusters is 1.632, which is smaller than the highest

value of 5.813 among the scattered locations. Hence, lat-

eral change in values starts earlier than in Table 1. The

values under ‘‘Row median’’ refer to zq sið Þ.
Figure 4 is the graphical summary of Step 3, Sect. 2.2.

As seen in Table 2, below row 48 all values in a row are

equal, so are the resamples and the median. Figure 4 shows

all those values coded as scattered observations. Dispersion

in values is not noticeable until the 77th percentile

�100 � 62=81ð Þ and is only important above the 85th

percentile �100 � 69=81ð Þ. Expanding the dispersion to

incorporate uncertainty in the range of values covered by

the scattered data would require bootstrapping them.

Figure 5 is a posting of all observations in the last col-

umn of Table 2 making the solution zq sið Þ to the estimation

of the cumulative distribution. Note that three of the

clusters retained two observations, while another three

clusters are not represented. This is a result of overlapping

in the intervals of values for scattered and clustered loca-

tions (Fig. 3b), always a realistic possibility. Hence, clus-

tering is not completely precluded in what is called here the

‘‘declustered’’ solution.

Fig. 2 The preferential sampled subset of the full synthetic dataset: a posting of data locations; b histogram

Fig. 3 Confirmation of preferential sampling: a cumulative distribution of distance to closest neighbor; b Q–Q plot
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Table 1 The 101 resamples,

each one of size 81
Seq. no. z1 sið Þ z2 sið Þ z3 sið Þ … z67 sið Þ z68 sið Þ z69 sið Þ … z99 sið Þ z100 sið Þ z101 sið Þ

1 0.049 0.049 0.049 … 0.049 0.049 0.049 … 0.049 0.049 0.049

2 0.051 0.051 0.051 … 0.051 0.051 0.051 … 0.051 0.051 0.051

3 0.066 0.066 0.066 … 0.066 0.066 0.066 … 0.066 0.066 0.066

… … … … … … … … … … … …
69 5.744 5.744 5.744 … 5.744 5.744 5.744 … 5.744 5.744 5.744

70 5.813 5.813 5.813 … 5.813 5.813 5.813 … 5.813 5.813 5.813

71 9.692 2.514 9.692 … 2.514 4.640 4.640 … 6.043 4.722 6.043

72 18.537 25.256 18.537 … 7.496 9.003 25.256 … 13.603 13.603 7.496

73 6.287 6.287 19.406 … 19.406 6.287 5.262 … 8.755 6.287 19.406

74 18.949 18.949 18.949 … 9.358 52.363 18.390 … 7.960 9.358 18.949

75 5.378 5.430 10.523 … 5.430 4.759 5.378 … 4.047 4.047 5.378

76 18.887 18.887 11.910 … 18.887 7.048 18.887 … 11.910 18.887 9.133

77 1.632 1.632 2.556 … 2.671 4.026 4.026 … 4.026 4.026 1.632

78 3.150 6.110 19.641 … 2.747 19.641 10.889 … 3.150 19.641 6.110

79 23.356 17.121 23.676 … 23.356 23.356 9.344 … 23.676 17.121 23.676

80 8.271 10.458 7.639 … 7.639 10.458 7.639 … 8.271 18.098 18.098

81 2.229 37.262 2.229 … 2.229 15.337 37.262 … 2.229 37.262 15.337

The scattered data are sorted by increasing value, but the values drawn from the clusters, which start at row

71, are in the order of visitation of the 11 clusters

Table 2 A subset of 10 of the 101 resamples sorted by increasing value plus the median for every row

Seq. no. z1 sið Þ z2 sið Þ z3 sið Þ … z67 sið Þ z68 sið Þ z69 sið Þ … z99 sið Þ z100 sið Þ z101 sið Þ Row median

1 0.049 0.049 0.049 … 0.049 0.049 0.049 … 0.049 0.049 0.049 0.049

2 0.051 0.051 0.051 … 0.051 0.051 0.051 … 0.051 0.051 0.051 0.051

3 0.066 0.066 0.066 … 0.066 0.066 0.066 … 0.066 0.066 0.066 0.066

… … … … … … … … … … … … …
48 1.561 1.561 1.561 … 1.561 1.561 1.561 … 1.561 1.561 1.561 1.561

49 1.632 1.632 1.766 … 1.766 1.766 1.766 … 1.766 1.766 1.632 1.766

50 1.766 1.766 1.794 … 1.794 1.794 1.794 … 1.794 1.794 1.766 1.794

… … … … … … … … … … … … …
69 4.964 5.359 5.359 … 4.550 4.964 5.262 … 4.550 4.964 5.378 5.359

70 5.359 5.430 5.651 … 4.964 5.359 5.359 … 4.964 5.339 5.631 5.378

71 5.378 5.651 5.744 … 5.359 5.651 5.378 … 5.359 5.651 5.744 5.651

72 5.651 5.744 5.813 … 5.430 5.744 5.651 … 5.651 5.744 5.813 5.744

73 5.744 5.813 7.539 … 5.651 5.813 5.744 … 5.744 5.813 6.043 5.813

74 5.813 6.110 9.692 … 5.744 6.287 5.813 … 5.813 6.287 6.110 6.287

75 6.287 6.287 10.523 … 5.813 7.048 7.639 … 6.043 9.358 7.496 8.755

76 8.271 10.458 11.910 … 7.496 9.003 9.344 … 7.960 13.603 9.133 9.692

77 9.692 17.121 18.537 … 7.639 10.458 10.869 … 8.271 17.121 15.337 11.910

78 18.537 18.887 18.949 … 9.358 15.337 18.390 … 8.755 18.098 18.098 18.098

79 18.887 18.949 19.406 … 18.887 19.641 18.887 … 11.910 18.887 18.949 18.949

80 18.949 25.256 19.641 … 19.406 23.356 25.256 … 13.603 19.641 19.406 23.676

81 23.356 37.262 23.676 … 23.356 52.363 37.262 … 23.676 37.262 23.676 37.262
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3.4 Estimation of the semivariogram

I used the traditional estimator

c� hð Þ ¼ 1

2 � NðhÞ �
XNðhÞ

i¼1

z sið Þ � z si þ hð Þ½ �2 ð1Þ

where z sið Þ is an observation at location si, and NðhÞ is the
number of pairs of observations within a distance class on

average h units apart (e.g., Chilès and Delfiner 2012).

Omnidirectional modeling will suffice because the attribute

is isotropic and second order stationary (Olea 2006).

Figure 6 shows the results when using as data the

median resample zq sið Þ displayed in Fig. 4 and Table 2.

Figure 7 displays the results for the more demanding

modeling in Sect. 2.3.2. The 9 dots are part of the empirical

semivariograms of 8 different resamples, with a maximum

of 2 from the same resample, #69. Substantial fluctuations

in results despite that at least 70 out of the 81 values (86 %)

used in the calculations are the same should not be a

complete surprise when comparing to sensitivity analyses

reported in the literature (e.g., Webster and Oliver 1992).

4 Discussion

Figure 8 and Table 3 allow an evaluation of the results in

terms of the cumulative distributions. The declustered

sample zq sið Þ is a significant improvement over the clus-

tered sample. The maximum discrepancy between the

clustered and the exhaustive sample is 23.9 percentage

units at 4.550, which, according to Fig. 3b, is in the range

of values common to clusters and scattered values. The

maximum discrepancy between the declustered and the

exhaustive sample is only 10.8 percentage units at 0.337.

Curiously, the most persistent large deviations are for

attribute values below 1, which is in the range of values of

exclusive occurrence among scattered locations and hap-

pens to be the best interval for the clustered sample. The

source of such a discrepancy in the declustered sample

seems to be an excess of observations in the intervals

0.065–0.080 and 0.32–0.35.

Resample #69 (z69 sið Þ) could be considered another

candidate to be a solution to the estimation problem given

its close approximation to the median values of the

experimental semivariograms in Fig. 7. Indeed, z69 sið Þ,

Fig. 4 Simultaneous display of all 101 cumulative distributions.

Although not clear because of unavoidable overlappings, there are

101 resamples, all starting at the lowest value of 0.049. Up to 1.561

all resamples are the same and have been coded as ‘‘scattered

observation’’ because all values come from subset zs sið Þ

Fig. 5 Posting of the declustered dataset, zq sið Þ, partially displayed

in the last column of Table 2. Circles around dots indicate observa-

tions retained from the clusters

Fig. 6 The empirical semivariogram of the median resample zq sið Þ.
The segmented line shows the asymptotic value for the underlying sill
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found solely from considerations about estimation of the

semivariogram, slightly outperforms solution zq sið Þ.
An issue not specifically related to the declustering

methodology is the reduction in the range of observations,

a typical problem associated with any sampling. As it can

be seen in Table 3, the extreme values for the exhaustive

system are 0.015 and 80.116. The minimum value for the

clustered data is 0.049, which is the same for the declus-

tered sample because no corrective action was taken at the

low range of values in this example in which the prefer-

ential sampling is determined by the extreme high values.

The largest value in the clustered data is 52.363. This value

as well as an observation of 41.948 did not appear enough

times in the resamples, consequently they vanish in the

calculation of the median for the maximum value of the

resamples—the last line in Table 2—where, by chance, the

value 41.948 does not even show among the only 9

resamples displayed, despite being in about 20 other

resamples. However, as it can be observed in Fig. 8, the

loss of values at the tails did not have an important impact

in approximating the underlying cumulative distribution

and none in terms of estimating the most important per-

centiles. Selecting the maximum value instead of median

for the bottom row in Table 2 is always a possibility to

expand the range of values in the declustered solution, but

changes are marginal, without assurance to reproduce the

always non-robust prediction of the true maximum value

(Beirlant et al. 2004).

Considering that each of the 101 resamples zk sið Þ is a

sample that could have been collected when planning a

sampling without preference, Fig. 7 shows the empirical

semivariograms that could have been obtained under those

circumstances. The results are a reminder of the risk of

modeling semivariograms with a minimum number of

points, which is in many circumstances a realistic situation

in need of better estimation methods. Inspection of Figs. 7

and 8 show a positive side of preferential sampling, which

has always been regarded as a detrimental sampling prac-

tice: for small size samples, adequate processing of prefer-

entially sampled data can produce more accurate estimates

of frequency distributions and semivariograms than those

derived from samples of comparable size devoid of clusters.

Modeling of the semivariogram is always more chal-

lenging than approximating the cumulative distribution

because the semivariogram is a second order moment.

Figure 9 confirms the well-known fact that clustering can

Fig. 7 Collection of empirical semivariograms resulting from using

all 101 resamples. The segmented line is the asymptotic value for the

underlying sill. The green dots denote the median value for each

distance class. The green line indicates the empirical semivariogram

for the 69th resample, z69 sið Þ, which is the one with the minimum

discrepancy to the median points in an absolute value sense

Fig. 8 Cumulative frequency distributions. The green dots are the

median values partly displayed to the right of Table 2

Table 3 Statistics of selected samples. D is the maximum absolute

discrepancy of a cumulative frequency distribution to that of the

exhaustive sample and Dm is the mean of those absolute discrepancies

Exhaustive Clustered zp sið Þ z69 sið Þ

Size 2025 125 81 81

Mean 3.011 6.436 2.999 3.004

Standard deviation 6.029 9.065 5.675 5.716

Maximum 80.116 52.363 37.262 37.262

95th percentile 11.914 24.610 14.695 14.214

Upper quartile 3.089 8.392 2.516 2.789

Median 1.124 2.514 1.124 1.124

Lower quartile 0.406 0.534 0.280 0.280

5th percentile 0.097 0.076 0.070 0.070

Minimum 0.015 0.049 0.049 0.049

D – 23.862 -10.765 -10.765

Dm – 12.334 3.563 3.607
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completely mask spatial correlation when it comes to

modeling semivariograms (e.g., Bourgault 1997); the

semivariogram for the clustered data may be pure nugget

effect. By comparison, in general terms, declustering

improvements in the estimation of the semivariogram are

even more remarkable than those obtained for the cumu-

lative frequency. Paradoxically, dataset zq sið Þ, found

without considering estimation of the semivariogram,

provides as good a result as z69 sið Þ or the set of median

points in Fig. 7, indicating an overall conformity between

the two alternatives in Sect. 2.3. Under closer scrutiny,

when comparing the results to the semivariogram of the

exhaustive sample, the stand-alone result in Fig. 6 does not

look as good anymore. The low semivariogram values for

short distances would be consistent with an excess of small

values in the lower data interval of the scattered data.Fig. 9 Comparison of four empirical semivariograms

Fig. 10 Final results after postprocessing the declustered sample: a posting of data; b histogram and tabulation of statistics; c cumulative

frequency, and d semivariogram
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The subset of scattered data, zs sið Þ, is not completely

devoid of bias, a bias in the sampling space must be

corrected in order not to compromise the quality of the

declustering results. As mentioned at the beginning of this

Sect. 4, there are two unique concentrations of values that

were detected in this case by analyzing increments in the

ranked data, one of 6 points between 0.068 and 0.081 and

another group of 4 points between 0.033 and 0.035 with

increments below 0.005, which is two orders of magni-

tude below the average increment of 0.34 in variable

space. Consequently, the decision was made to eliminate

at random 4 points in the first group and 2 in the other.

Figure 10 displays the results showing significant

improvements. Inspection of Figs. 8 and 10c indicates a

reduction not only in maximum deviation, but also in

terms of the average discrepancy. In the case of the

semivariogram, there was a significant change for the

better, particularly below the semivariogram range, which

is the most important interval. Given the importance of

correctly estimating the probability distribution and

semivariogram of any attribute for further adequate

modeling, say, stochastic simulation, analysts should not

fall short in their attempts to obtained the most accurate

approximations for the underlying histogram and

semivariogram.

The final point is that sometimes good declustering

requires paying attention to additional details beyond spa-

tial declustering, which, in the case presented here, has

been to address the clustering in variable space among the

spatially scattered locations reveled as sudden steps in the

cumulative distribution (Fig. 8).

5 Conclusions

Adequate preprocessing of preferential sampling for the

purpose of estimating the cumulative frequency and the

semivariogram can turn a liability into an asset. By

resampling the clusters of a preferential sample of size 125,

without introducing special restrictive assumptions in the

methodology, it is observed in this particular case that:

• It is possible to generate a large number of different

resamples of smaller size than the original sample.

• For any quantile, it is also possible to find the median of

all resamples. The set of median values is a minimum

absolute error approximation to the underlying cumu-

lative frequency distribution.

• The resamples can be used to generate an equal and

corresponding number of empirical semivariograms.

For the distances considering in the modeling, the

median is now a minimum absolute error estimate of

the empirical semivariogram.

• The resample whose empirical semivariogram more

closely approximates the set of median points was

another reasonable approximation to the cumulative

frequency distribution.

• The two modeled semivariograms more closely fit the

exhaustive sample semivariogram for large distances

than near the origin.

• The set of all resamples provides measures of uncer-

tainty in the results associated with the preferential

sampling.

Further improvements were obtained by addressing

bias in attribute space at the subset of scattered data by

eliminating 6 observations in two concentrations of

values.
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