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Abstract In this paper we introduce a novel functional

clustering method, the Bagging Voronoi K-Medoid Alig-

ment (BVKMA) algorithm, which simultaneously clusters

and aligns spatially dependent curves. It is a nonparametric

statistical method that does not rely on distributional or

dependency structure assumptions. The method is moti-

vated by and applied to varved (annually laminated) sedi-

ment data from lake Kassjön in northern Sweden, aiming to

infer on past environmental and climate changes. The

resulting clusters and their time dynamics show great

potential for seasonal climate interpretation, in particular

for winter climate changes.

Keywords Functional data � Clustering � Dependence �
Misalignment � Sediment data

1 Introduction

Concern for global warming and future climate changes,

and the impact of human activities related thereto, has

increased the urge to understand how the climate has varied

over the last centuries and millennia. For instance, climate

models used to predict future climate (Pachauri et al. 2014)

rely on a good understanding of past climate variability.

Since instrumental meteorological records of the climate

are scarce prior to mid nineteenth century it becomes

necessary to rely on natural climate archives such as tree-

rings, ice cores, corals, as well as lacustrine and marine

sediments to reconstruct climate at long-term scales (see,

e.g., Mann et al. 2008). Information about past changes in

the seasonality of the climate and in particular winter cli-

mate is still scarce. This is a significant shortcoming, given

how the recent climate change has affected different sea-

sons unequally, (e.g., Beniston 2005), not the least at

higher latitudes.

Varved (annualy laminated) lake sediments have the

potential to play an important role for understanding past

seasonal climate with their inherent annual time resolution

and within-year seasonal patterns. Several attempts to

produce high-resolution (annual) reconstruction of climate

from varve properties include work on Swedish and Fin-

nish lakes by Petterson et al. (1999), Tiljander et al.

(2003), Ojala and Alenius (2005), Ojala et al. (2008) and

Petterson (1999). However, none of them have fully taken

into account the information contained in the shape of the

seasonal patterns. Such data can be seen as a collection of

functions (seasonal sediment profiles) whose changes

through time it is of interest to study with respect to cli-

mate. Functional data analysis (see, e.g., Ramsay and Sil-

verman 2005) provides successful statistical tools for

environmental, weather, and climate studies. For instance,
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with respect to some recent applications, functional kriging

techniques have been used to analyze particle-size curves

pertaining to ground samples collected in an aquifer (Me-

nafoglio et al. 2014), the estimated distribution of maximal

temperature (in the month of January) recorded in 29

Canadian weather stations (Salazar et al. 2015), and daily

PM10 concentrations recorded by a monitoring network in

Northern Italy between October 2005 and March 2006

(Ignaccolo et al. 2014). Functional-on-functional regres-

sion techniques have been used to model depth measures of

ocean temperature as functions of salinity and fluorescence

depth measures recorded in 1585 stations in Southern

Atlantic (Fernández-Pascual et al. 2015). Functional ran-

dom fields have been used to analyze oxygen concentra-

tions in sedimentary columns (Dabo-Niang et al. 2010) and

basal area growth curves for forest trees (Comas et al.

2013). Finally, functional clustering techniques have been

used to analyze lake surface water temperature profiles

along 5 years for 256 American lakes (Finazzi et al. 2015)

and the yearly seasonal patterns of varved lake sediment of

lake Kassjön in northern Sweden (Arnqvist et al. 2016).

In particular, in Arnqvist et al. (2016) the aim was to

cluster the seasonal patterns into homogeneous groups, that

correspond to different yearly weather types, characterizing

the area of lake Kassjön. Their results revealed a clustering

structure and it was also noted that the data are affected by

horizontal misalignment, mainly imputable to the different

sedimentation rates within and across different years which

can act as confounding factors when applying clustering

techniques, see, e.g., Gaffney and Smyth (2004).

In climatology, focus is typically on the long-term

weather trends, i.e., climate, rather than weather fluctua-

tions. In order to capture climate evolution in data such as

the Kassjön sediment, there is a need for a functional

clustering method that is able to jointly deal with the

temporal dependence, the misalignment, and the presence

of clusters that characterize the underlying seasonal

patterns.

There is a large corpus of consolidated literature dealing

with clustering, alignment, and spatial dependence of

functional data which is cleverly summarized in top journal

special issues and review articles. Nevertheless, within this

literature these three sources of variability have mostly

been tackled separately, with very few exceptions jointly

dealing with more than one. A common feature of these

latter works is to point out the importance of taking into

account all sources of variability which functional data are

likely to be affected by, to achieve an accurate and realistic

modeling of the phenomenon under investigation.

To be more specific, methods for simultaneous cluster-

ing and alignment of functional data (without addressing

potential spatial dependence between functions) have been

proposed by, e.g., Liu and Müller (2004), Gaffney and

Smyth (2004), Sangalli et al. (2010a, b, 2014). Methods for

clustering spatially dependent functional data (without

addressing potential misalignment of the functions) have

been proposed by, e.g., Ignaccolo et al. (2008), Romano

et al. (2010, 2015), Secchi et al. (2011, 2013), Giraldo

et al. (2012) and Menafoglio et al. (2016). We are not

aware of any methodological work for the alignment of

spatially dependent functional data, nor of any work for

simultaneous clustering and alignment of spatially depen-

dent functional data.

In this paper, we propose a novel method, the Bagging

Voronoi K-Medoid Alignment algorithm (BVKMA), that

jointly handles clustering, misalignment, and spatial

dependence of functional data. Up to our knowledge, this

method is the first proposal in the literature that jointly

deals with these three sources of variability. Furthermore,

with the purpose of capturing the underlying different cli-

mate regimes, we use this new method to re-analyse the

seasonal patterns of the sediment data from Kassjön firstly

analyzed in Arnqvist et al. (2016) by means of a functional

K-mean clustering (applied to landmark registered curves,

without taking into account spatial dependence). The pro-

posed method is purely metrical thus exploring the three

sources of variability in a nonparametric fashion, avoiding

both parametric distributional assumptions pertaining to

amplitude and phase variability and a parametric modeling

of the dependency structure. Moreover it allows many

different families of warping functions to address the

misalignment, and it is flexible with respect to the choice of

distance measures used to quantify the similarity of curves

and to the number of clusters.

In Sect. 2 we describe the Lake Kassjön sediment data

and the undertaken preprocessing. Section 3 describes the

functional clustering methods used, with emphasis on the

new method that simultaneously takes into account

dependence and misalignment. In Sect. 4 we present the

result of applying the methods to the Kassjön sediment

data. A simulation study is presented in Sect. 5 and a

discussion of the results and methods is found in Sect. 6.

2 Data and preprocessing

The varved sediment to be analyzed is taken from the

bottom of Lake Kassjön (63� 55’ N, 20� 01’ E), situated in

northern Sweden, Petterson (1999). A subsequence of the

sediment is shown in Fig. 1. These patterns reflect to a

large extent weather conditions and internal biological

processes in the lake the year the varve was deposited at the

bottom of the lake. The annual varve patterns have the

following origin. During spring, in connection to snow

melting and spring runoff, minerogenic material is trans-

ported from the surrounding landscape into the lake via

72 Stoch Environ Res Risk Assess (2017) 31:71–85

123



four small streams, which gives rise to a bright colored

layer (high greyscale values). During summer, organic

material produced mainly by the lake organisms, sinks to

the bottom and creates a darker layer (lower greyscale

values). Finally, under the ice cover during winter, fine

organic material is deposited, resulting in a thin blackish

layer (lowest greyscale values). The minerogenic input

reflects the intensity of the spring run-off, which is

dependent on the amount of snow accumulated during the

winter, and hence the minerogenic input reflects the long-

term record of variability in past winter climate, Petterson

et al. (2010). The seasonal profiles have the potential to

carry important weather information on a seasonal level: A

pronounced spring peak (in terms of gray scale values) may

indicate a winter with rich amounts of snow, a low spring

peak a winter with less snow. A substantial flatter part after

the spring peak would correspond to a thick organic sedi-

ment layer perhaps indicating a warmer summer. Peaks

appearing after the first (spring) peak may indicate fall

storms with heavy rain.

The annual seasonal patterns of the sediment, covering

approximately 6400 years, were recorded as greyscale

images, following the method described by Petterson et al.

(1993, 1999). The greyscale values range from 0 to 255,

where 0 and 255 corresponds to black and white, respec-

tively. The raw data set is a series of averages of five-pixel

slices selected from representative parts of the varved

sediment images, cf. Figure 1b-c, Petterson et al.

(1993, 1999). Varve delimiters were initially set manually

by two experts, studying the sediment core using stereo

Fig. 1 a Annual sediment from lake Kassjön. b Data to be analyzed

is based on slices of five pixels width selected from representative

parts of the sediment. c Grey-scale values for the slice in b together

with the mean grey-scale values (solid line) of the 5 pixels for each

time point. The manually determined yearly delimiters (black dotted

lines) have been horizontally shifted 1–4 steps to the darkest

neighboring value (solid red lines)

Stoch Environ Res Risk Assess (2017) 31:71–85 73

123



microscopes. A varve is defined from the beginning of one

spring layer to the beginning of the next, since the shift

from the winter layer to the spring layer is the sharpest

transition in varves of this type (Petterson et al. 1993). The

varve delimiters should thus correspond to the thin blackish

layer produced when ice covers the lake. When converting

the manually determined delimiters to the greyscale values,

some were horizontally shifted (1–4 pixels), to make sure

they corresponded to the darkest pixel-values in the

neighborhood. In this way, the final raw data was obtained,

being composed by a time series of greyscale vectors (of

different lengths) associated to years from 4486 B.C. to

A.D. 1901. Of the 6388 varves, 62 of them had no grey-

scale values recorded and were therefore treated as miss-

ing, see Arnqvist et al. (2016) for details.

The yearly data consist of several components which

may be important carriers of (weather) information, e.g.,

varve thickness, mean greyscale value, and the corre-

sponding within-year dynamics around it. The yearly

dynamics gives insight into the seasonal variation and

hence allows to draw inference on a more detailed level,

removing the effect of the potentially confounding mean

greyscale level, see Arnqvist et al. (2016). Therefore the

raw sediment data is normalized by centering each year

around zero. Without loss of information the yearly time

scale is converted to a reference one by uniformly dis-

tributing the time instances on the interval [0, 1] (such that

for each year the first time instance is associated to 0 and

the last one to 1), which corresponds to a first affine time

transformation.

Since the greyscale value of each pixel provides a local

evaluation with error of a continuous underlying (sedi-

mentation) process, a functional description of these data

comes natural. Starting from the normalized final raw

sediment data, we build the functional data set by

smoothing (separately for each year) the yearly normalized

data through a penalized B-spline approach using a least

squares fitting criterion and a penalization based on the

squared L2 norm of the second derivative (see, Chap. 5,

Ramsay and Silverman 2005). We use cubic splines with

32 basis functions and equally spaced knots on the interval

[0, 1]. The penalty constant was set to k ¼ 0:000140625,

for more details see Arnqvist et al. (2016).

3 Clustering methods for misaligned and/
or dependent functional data

We propose a novel functional clustering method called the

Bagging Voronoi K-Medoid Alignment (BVKMA) algo-

rithm, which jointly handles misalignment and (temporal)

dependence in the functional data. This method integrates

two functional clustering methods, the K-Medoid Align-

ment method (KMA) and the Bagging Voronoi K-Medoid

strategy (BVKM). We first describe the main ideas of these

two methods followed by a presentation of the BVKMA

method.

3.1 K-Medoid Alignment: clustering misaligned

functional data

The functional K-Medoid Alignment method introduced by

Sangalli et al. (2010a, b) is a generalization of the func-

tional K-Medoid clustering algorithm (see, e.g., Tarpey and

Kinateder 2003), which jointly aligns and clusters a set of

observed functions. This method is in fact obtained as the

integration of a continuous alignment method based on the

Procrustes procedure into functional K-Medoid. The per-

mitted warping functions in the algorithm belong to a

warping group W, which for example can be a group of

positive slope affine transformations.

The KMA is an iterative method which at each iteration

performs the following steps:

(i) the medoid identification step, in which cluster

medoids are chosen as the curves in each cluster

which are closest to all the other aligned curves in

the same cluster,

(ii) the cluster assignment and alignment step, in

which each curve in the sample is assigned to the

cluster whose medoid is the closest, after being

aligned to each medoid using an optimal warping

function in W,

(iii) and finally the normalization step, which is

performed to ensure that the average warping

undergone by curves assigned to each cluster is

the identity transformation.

The results of this procedure are: a cluster assignment, an

estimated warping function (describing the misalignment)

for each curve in the sample, and a set of K estimated

medoids.

3.2 Bagging Voronoi K-Medoid: for dependent

functional data

An extension of the functional K-Medoid clustering algo-

rithm that can deal non-parametrically with dependent

functions is the Bagging Voronoi K-Medoid algorithm.

This procedure has originally been proposed in Secchi

et al. (2011, 2013) for dealing with spatially dependent

functional data, indexed by the sites of a spatial lattice.

In particular, this method is based on aggregating the

results obtained from B random bootstrap replicates of the

same analysis. This is the so called Bootstrap Phase of the
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method, and each bootstrap replicate is composed of the

following three steps:

(i) generation of a random Voronoi tessellation over

the considered lattice. This means sampling a

random set of sites (years) to be the nuclei of the

tessellation, and then assigning each of the other

sites to the closest nucleus. For a 1-dimensional

lattice of years, a Voronoi tessellation is a random

set of intervals of time over the years.

(ii) identification of a functional representative for

each element of the tessellation. The functional

local representative (i.e., the medoid of the data

associated to the same tessellation element) sum-

marizes the information carried by all functional

data indexed by sites (years) belonging to the

same element of the tessellation.

(iii) clustering of the local representatives Once the

sample of functional local representatives is

obtained, a K-Medoid functional clustering pro-

cedure is applied to obtain a final classification.

For each Voronoi map all sites belonging to the

same tessellation element get the same cluster

label as its local representative.

These three steps are repeated B times. Thus, for each year,

a frequency distribution of cluster assignments along the B

replicates is provided. This is part of the so called Aggre-

gation Phase of the method. The computation of the fre-

quency distribution of cluster assignment along the

bootstrap replicates is made after a relabelling procedure is

applied to match labels along replicates. For each year, the

final label is the result of a majority vote on cluster

assignments along the replicates. The functional represen-

tatives of the final clusters are then constructed as their

corresponding functional medoids. The whole procedure is

visually sketched for a one dimensional lattice in Fig. 2.

Moreover, an entropy criterion (originally proposed in

Secchi et al. 2013) can be used to inspect the variability of

the frequency distribution of cluster assignments, thus

quantifying the uncertainty associated to the classification.

This measure serves as a practical tool in selecting the

appropriate number of nuclei for the Voronoi tessellations

for the application at hand.

3.3 Bagging Voronoi K-Medoid Alignment:

for misaligned dependent functional data

The novel method we here propose jointly handles the

misalignment and (temporal) dependence in functional

data, and it is obtained by merging the K-Medoid Align-

ment and the Bagging Voronoi K-Medoid strategies, which

separately tackle the two issues of interest, respectively.

Moreover, it provides important benefits with respect to the

BVKM, since misalignment can act as a confounding

factor when accounting for dependence alone.

The building blocks of the method are based on BVKM,

but both the bootstrap and the aggregation phase are

modified to deal with misalignment along the lines depic-

ted by KMA. The basic modifications in the bootstrap

phase are

– each functional representative is obtained by applying

1-medoid alignment to the functional data belonging to

the corresponding tessellation element;

– the functional representatives are clustered via KMA.

The modifications to the aggregation phase are less

demanding, and will be explained in details in the fol-

lowing. Without loss of generality we describe the algo-

rithm for (dependent) functions along a one-dimensional

grid indexed by j ¼ 1; . . .;N. Let fjðtÞ; t 2 Dj; j ¼ 1; . . .;N,

denote the observed dependent functions.

For the Bagging Voronoi procedure, set the number B of

bootstrap replicates, the number n of elements in the

Voronoi tessellation, the metric d used to compute dis-

tances among functional data and the number K of clusters

considered in the clustering procedure.

Then, the Bootstrap phase of the BVKMA algorithm is

articulated as follows. For b ¼ 1; . . .;B, replicate the steps:

(i) A set of nuclei fZb
1; . . .;Z

b
ng is randomly generated

among the indices 1; . . .;N according to a uniform

discrete distribution on the first N integers, i.e. for

i ¼ 1; . . .; n, Zb
i �Uð1; . . .;NÞ without replace-

ment. Then, the b-th random 1-dimensional Vor-

onoi tessellation (i.e. a set of random intervals)

fVb
i g

n
i¼1, is obtained by assigning each index (site)

j ¼ 1; . . .;N to the nearest nucleus Zb
i .

(ii) Given the tessellation, for i ¼ 1; . . .; n the local

representative gbi , corresponding to the i-th ele-

ment of the tessellation Vb
i , is computed as the

single medoid resulting from 1-medoid Alignment

applied to the dataset ffjiðtÞgji2Vb
i
.

(iii) Finally, the set of functional representatives

fgb1; . . .; gbng is clustered via KMA. The label

obtained for each functional representative gbi ; for

i ¼ 1; . . .; n; is then assigned to all sites belonging

to the corresponding tessellation element.

At each replicate in the Bootstrap phase, we save the

cluster labels for each of the N sites. The classifications

obtained along replicates in the Bootstrap phase are then

relabelled, analogously to the BVKM algorithm.

We now turn to the Aggregation phase. Let Cb
j be the

label of site j in the b-th bootstrap replicate, for j ¼
1; . . .;N and b ¼ 1; . . .;B. Then, similarly to the BVKM

method, the frequency distribution of cluster assignments
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along the B replicates is computed for j ¼ 1; . . .;N as

pkj ¼ #fb 2 f1; :::;Bg : Cb
j ¼ kg=B; 8 k ¼ 1; . . .;K. A

final classification c1; . . .; cN is obtained by a majority vote

with respect to the K clusters, i.e., cj ¼ argmaxk¼1;...;Kp
k
j for

j ¼ 1; . . .;N. The functional representatives of the final

clusters are then constructed via 1-medoid Alignment

within each of the final clusters.

Note that, for a given number of nuclei, n, the expected

number of sites within each Voronoi element is L ¼ N=n.

Hence, we can interchangeably use L or n as a parameter in

our method (for a given sample size N). The BVKMA

analysis is robust with respect to moderate variations of the

average length L of the elements of the random Voronoi

maps. However, an extreme reduction of L leads—as

expected—to results similar to the ones provided by KMA

while an extreme enlargement leads to non inter-

pretable clusters (see Sect. 3.2 in Secchi et al. 2013). When

the curves are (spatially) dependent, we typically gain

information by taking into account information from

neighboring curves, thus expecting L to be larger than one.

If no dependence exist between curves, L is expected to be

close to one. Tuning L is hence an important issue when

running the BVKMA. If the problem at hand does not come

with a natural value for L, we can choose the optimal value

for L as the one providing a more distinct assignment of

years to clusters, as suggested in Secchi et al. (2013). In

Fig. 2 A graphical scheme of the Bagging Voronoi K-Medoid strategy on a one dimensional lattice, with K ¼ 2
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more detail, for each given L we can compute the site-by-

site entropy, Ej ¼ �
PK

k¼1 p
k
j ln pkj ; j ¼ 1; . . .;N; of the

bootstrap distribution of cluster labels which the site has

been assigned to, and average it across the grid. The L

corresponding to the smallest average entropy,

�E ¼
PN

j¼1 Ej=N, indicates the best choice of L.

As described above, the Bagging Voronoi K-Medoid

Alignment algorithm deals with clustering, misalignment,

and dependence in a flexible non parametric fashion,

avoiding both parametric distributional assumptions per-

taining to amplitude and phase variability and a parametric

modeling of the dependency structure. With respect to the

clustering, the search for clusters is indeed driven by the

selected functional metric (or similarity) which can flexibly

focus on different data features of particular interest for the

application at hand. The alignment process is also per-

formed on a purely metric basis derived from the functional

metric above and from a family of warping functions which

is only required to have a group structure with respect to

composition and to satisfy an invariance property with

respect to the functional metric (i.e., Vantini 2012).

Finally, the way in which spatial/temporal dependence is

exploited to empower the analysis is exclusively related to

the seed sampling strategy and to the spatial/temporal

metric used to measure spatial/temporal distances between

data observation points. The sampling strategy and the

spatial/temporal metric can both be adapted to locally

manage the bias-variance tradeoff in the computation of the

local representatives (i.e., Secchi et al. 2011) and to locally

model the local range and anisotropy of the dependence

structure with respect to some application-related

knowledge.

4 Application to the analysis of varved sediment
data

In this section we analyze the sediment data from lake

Kassjön. We apply the BVKMA algorithm (described in

Sect. 3.3) with the aim of capturing climate variation, and

the KMA algorithm (described in Sect. 3.1) to describe

(yearly) weather regimes based on the seasonal patterns.

For the sediment data, a one dimensional grid is naturally

formed by the corresponding years. The functional data

consists of N ¼ 6388 curves fjðtÞ; t 2 ½0; 1�, j ¼ 1; . . .;N

describing the within-year greyscale dynamics around the

annual greyscale mean.

The amplitudes of the peaks bring important information

about the weather and therefore a choice of an L2-based

measure comes natural to quantify the similarity between

functions. We choose to use positive slope affine transfor-

mations as the group W of warping functions. We expect the

group to be flexible enough to deal with the most important

components of the misalignment in our data. More specifi-

cally, to measure the distance between two functions,

f1ðtÞ; t 2 D1 and f2ðtÞ; t 2 D2, with D1 \ D2 6¼ ;, we use the

following normalized L2- distance

dðf1ð�Þ; f2ð�ÞÞ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðD1\D2Þ

p

Z

D1\D2

ðf1ðtÞ� f2ðtÞÞ2
dt

� �1=2

;

ð1Þ

where kð�Þ is the Lebesgue measure. The use of the nor-

malizing constant in (1) is justified by the following

invariance property of this measure with respect to affine

warping functions (e.g., Vantini 2012): for f1ðtÞ; t 2 D1 and

f2ðtÞ; t 2 D2 and hðtÞ ¼ aþ bt, a 2 R; b 2 Rþ, we have

dðf1ð�Þ; f2ð�ÞÞ ¼ dðf1ðhð�ÞÞ; f2ðhð�ÞÞÞ.

4.1 The BVKMA and KMA clusters

To identify different climate-types and their corresponding

climatic periods with the BVKMA algorithm, we choose

the number of clusters to be K ¼ 6. The expected length

(number of years) of the elements of the Voronoi maps is

fixed to L ¼ 200 and the number of bootstrap replicates is

chosen to be B ¼ 1000. A discussion about these parameter

choices is found in Sect. 4.2. In the aggregation phase, the

matching procedure used is based on Stephens’s relabelling

algorithm (see Stephens 2000). All used algorithms have

been implemented in the R programming language (R Core

Team 2015).

Using the L2- distance (1) and affine positive slope

warping functions, the BVKMA algorithm was run on the

Kassjön data. The aggregation phase relative frequencies

are presented in Fig. 3. For most of the years, there was a

clear dominating cluster label yielding the majority vote.

Exceptions can be seen for years close to transitions

between (majority vote) clusters, and for the initial few

hundred years. During that initial period the lake was

formed as a marine isolation basin by isostatic land uplift,

and the sediment dynamics therefore mainly reflects the

creation process of the lake.

In Fig. 4, the obtained BVKMA cluster medoids (C1–

C6) are presented. Since the medoids are constructed via

1-medoid alignment of the annual profiles within each of

the final clusters, they are easily interpreted as the typical

(annual) weather curves in the corresponding BVKMA

clusters. The obtained clusters are associated with six time

periods. First a period of 1200 years (4300 BC,3100 BC)

characterized by medoid C1 with a sharp high spring peak.

It is followed by 1150 years characterized by medoid C2

with a less pronounced spring peak and a flatter part

thereafter, while the third period (1950 BC,1000 BC), is

represented by a low spring peak and a second lower peak
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in the flatter part thereafter (medoid C3). The time interval

(1000 BC, AD 1000) excluding (150 BC, AD 150) is

characterized by medoid C4 with a less pronounced spring

peak. The shorter period of 300 years (150 BC, AD 150) is

instead represented by a high spring peak (medoid C5).

Finally, the period (AD 1000, AD 1900) is represented by a

low and wide spring peak (medoid C6).

To gain additional insight into the structure and inter-

pretation of the BVKMA clusters, we further investigate

the frequencies of distinct yearly weather types, as

defined by the KMA algorithm, within the corresponding

BVKMA (climate) clusters. We thus group the seasonal

patterns using the KMA methodology, with K ¼ 6 clus-

ters, the L2- distance (1) to quantify the distance between

functions, and the affinities with positive slope as the

group of warping functions. See Sect. 4.2 for a discussion

of the choice of the number of clusters. The resulting six

cluster medoids, presented in plots W1–W6 in Fig. 4, are

characterized by high, medium or low spring peak, with

or without a second minor autumn peak. We distinguish

between KMA clusters with high sediment content-vari-

ation (such as clusters W2, W3, W6) and clusters which

reflect stable, unchanged content of the sediment (cluster

W4). The temporal distribution of the six KMA clusters

appears noisy as opposed to the BVKMA clusters, see

Fig. 5. It is consistent with the fact that annual weather

varies substantially between neighboring years, whereas

climate changes more slowly. A closer look at the tem-

poral distribution of the KMA clusters reveals that their

occurrences are not uniformly distributed over time. This

is what climatologists call the evolution of climate across

centuries. Each climatic period would thus be character-

ized by a particular frequency distribution over the dif-

ferent weather-types which is instead unusual in other

climatic periods.

The relative frequency distribution of the KMA cluster

labels for those years that occur in the corresponding

BVKMA-cluster are illustrated in Fig. 4. We exemplify

this additional information about the structure of the

BVKMA-defined climatic periods by describing two con-

trasting groups. The first group, consisting of climate

clusters C3 and C6, is characterized by a high frequency of

the flat yearly profiles (KMA cluster W4) and low fre-

quency of high spring peak years (KMA clusters W2, W3

and W6). During these climatic time periods, the largest

proportion of the years thus corresponds to a low variation

seasonal pattern, exhibiting lack of intense spring flood,

indicating (milder) winters with small amounts of snow.

On the other hand if we consider climate cluster C5, we see

the opposite behaviour. The time period corresponding to

C5 mainly consists of the high spring peak profiles and the

flat stable profile is almost non-existent, thus indicating

winters with large amounts of snow.

It is of interest to note that, the record of lake Kassjön

show overall comparable patterns with the varved sediment

from Nautajärvi (Finland) (Tiljander et al. 2003; Ojala and

Alenius 2005; Arnqvist et al. 2016), indicating that the

varved sediments are able to record a large-scale regional

climate signal, and not only catchment processes of the

Kassjön lake.

To confirm the climatic interpretations of the clusters we

would like to link the varve record directly to regional

meteorological observations, that started to be recorded in

the late eighteenth century. This is however not straight-

forward since an increased amount of agricultural activities

around the Kassjön lake has taken place in the last cen-

turies, as well as ditching during the twentieth century

(Segerström et al. 1984). This has affected the sediment

transport and deposition processes considerably, possibly

masking the climatic signal. We further make an attempt to
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Fig. 3 The yearly relative

frequencies of assignment over

time obtained in the aggregation

phase in BVKMA with

L ¼ 200. Different colors

correspond to different clusters.

The colored band represents the

majority vote cluster assignment
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relate the KMA clusters to an annual average winter tem-

perature (January–April) reconstruction based on docu-

mentary sources of port activities in the Stockholm region,

1502–1892 by Leijonhufvud et al. (2010). There is a strong

linear relationship between yearly average winter temper-

atures (January–April averages) in Stockholm and in

Umeå, situated approximately 20 km from Kassjön. The

correlation is 0.86, calculated on the recorded winter

temperatures 1860–2009 provided by SMHI, with Umeå

winter temperatures being approximately 5 degrees lower

than in Stockholm. Boxplots of the (reconstructed) Stock-

holm winter temperatures (1502–1892) within each KMA

cluster is presented in Fig. 6. It is interesting to note that

cluster W4 with flatter seasonal profiles tends to have

warmer winter temperatures than KMA clusters with pro-

nounced spring peaks. Still, there is substantial variability

within clusters, parts of it likely attributable to potential

uncertainties due to dating, reconstruction of Stockholm
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Fig. 4 The BVKMA cluster centroids (C1–C6) when using L ¼ 200

together with the KMA centroids (W1–W6). The barplots present the

relative frequencies of different KMA labels within each BVKMA

cluster. The colors of the BVKMA cluster centroids match the colors

used in Fig. 3
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temperatures and linking the Stockholm temperatures to

temperatures in the Umeå region.

4.2 Parameter selection

In order to capture the full spectrum of seasonal dynamics

of weather we need at least six clusters for the KMA

algorithm: When choosing K ¼ 3 clusters we obtained

groups characterized by medoids with a large spring peak,

a double peak and a flat profile. However, we then lack

separation of the different spring peak amplitudes. A

choice of four to five clusters still mixes the different

amplitudes and the bi-modality, but with six clusters they

clearly separate.

To decide the optimal number of clusters (climate

regimes) for the BVKMA algorithm we used a stepwise

procedure of increasing K from 1 to 6. Each step resulted in

a significant cluster separation leading us to the final choice

of six clusters. When seven clusters were imposed we still

find the former six clusters and an extra ‘‘latent’’ cluster

that in the final year-by-year cluster assignment by

majority vote never comes out as the modal one, leaving

the results unchanged and supporting six as a suit-

able number of clusters. To choose the optimal length of

Voronoi elements, we use the entropy criterion described in

Sect. 3.3. In Fig. 7 we report the annual bootstrap entropies

for L ¼ 30; 100; 200 and 400. We see that L ¼ 200 pro-

vides the minimal average entropy and thus motivates our

choice for this parameter for the analysis.

5 A simulation study

To further exemplify our method we present the following

simulated data example, representing dynamics of yearly

weather profiles along 6000 years. The dynamics are

modeled with a two layer model, a hidden layer corre-

sponding to climate and an observable layer corresponding

to weather. The hidden climate layer is modeled using a

two state Markov chain with transition matrix

P ¼
0:99 0:01

0:01 0:99

� �

:

This corresponds to periods of distinct climates of length of

100 years on average. The simulated climate dynamics are

illustrated in the upper part of Fig. 9. There are two dif-

ferent types of weather. The frequencies of the two weather

types are different in the two climatic states, occurring with

probabilities [0.7, 0.3] for each year in climate state 1, and

with probability [0.3, 0.7] in climate state 2. The

years

la
be

ls
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Fig. 5 The time dynamics of

BVKMA labels and KMA

labels. The colors of the labels

match the colors used in Fig. 4

Fig. 6 Boxplots of

reconstructed Stockholm winter

temperatures (January–April)

1502–1892, Leijonhufvud et al.

(2010) for the 6 KMA clusters.

The corresponding winter

temperatures (January–April) in

the Kassjön area is about 5

degrees lower. The number of

years falling in each cluster is

given above the boxplots

(missing values excluded)
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observable weather layer is constructed based on the two

functional weather templates

wiðtÞ ¼ c1i sinð2ptÞ þ c2i sinð4ptÞ þ c3i cosð4ptÞ; i ¼ 1; 2;

observed on the interval [0,1], with c11 ¼ �1, c21 ¼ 1,

c31 ¼ 2 and c12 ¼ 0, c22 ¼ 0, c32 ¼ 2, illustrated in

Fig. 8(a) on the interval [0,1].

The observed curves are not exact observations of the

weather templates. They are affected by amplitude and

phase variation. The variation in amplitude is exhibited by

mean zero independent normally distributed variation

around each of the coefficients cij with standard deviation

r ¼ 0:05, i.e. Nð0; 0:052Þ. Random variation in phase is

incorporated by introducing independent random warping

functions, hðtÞ ¼ aþ bt with a�Nð0; 0:012Þ and

b�Nð1; 0:052Þ, for each year. An example of simulated

weather curves is visualised in Fig. 8(c). We further

introduce an additional random phase variation that applies

simultaneously to all weather curves within the same cli-

mate period (i.e., along the consecutive sequence of years

with the same climate label): For all weather curves within

each climate period, an additional phase shift of size 1=4p
is applied with probability 1/2. The weather templates

shifted by 1=4p are illustrated by dashed lines in Fig. 8(b).

Incorporating all random variation in amplitude and phase,

we thus construct the observed weather curves used in our

analysis and presented in Fig. 8(d). Two different ampli-

tude formations, distorted or not by phase warping are

visible in Fig. 8(d). We stress that Fig. 8(d) only presents

the observable weather forms, not the underlying climate.

It is the frequency of weather types within longer time

periods that constitutes climate.

We now analyze the data by the introduced clustering

methods, addressing different aspects of the observed data.

In line with the analysis of the Kassjön data, the methods

(when applicable) use the normalized L2 distance to mea-

sure the distance between functions and the family of affine

warping functions. We first run the KMA algorithm in an

attempt to recover weather, taking into account the

misalignment. We used the within cluster variation argu-

ment of Sangalli et al. (2010b) to determine the number of

clusters, resulting in the (correct) choice of K ¼ 2 weather

clusters. For this choice of K ¼ 2 the KMA in this case

correctly recovers 99 % of the weather labels and 69 % of

the climate labels. Hence, the KMA method almost per-

fectly recovers weather, but not the underlying climate. As

a comparison, the functional K-Medoid algorithm with

K ¼ 2, that is not taking misalignment (or spatial
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dependence) into account, correctly recovers only 60 % of

the weather labels and 55 % of the climate labels.

We started the analysis with BVKMA by determining

the number of clusters K to use by running the algorithm

with B ¼ 500 and L ¼ 50 while varying number of clusters

K. For K ¼ 2, we obtained a clear separation of the clusters

and both clusters were shown by the majority vote. For

K ¼ 3 we also obtained 3 separate clusters with distinct

majority votes in the aggregation phase. Investigating the

structure of those 3 clusters it was noted that the first

cluster was the same as one of the clusters in the case of

K ¼ 2. The second and third clusters emerged from a

separation of the second cluster from the case of K ¼ 2.

Moreover, the centroids for the last two clusters were

almost identical to each other with respect to amplitude,

differing only by phase shift. A further increase of K to 4

resulted in the emerging of a latent cluster which was never

selected in the final classification by majority vote. This led

us to decide upon K ¼ 2, which also is the correct number

of climate clusters.

The second step of the BVKMA method calibration is to

decide the average length L of the Voronoi elements, L. We

Fig. 8 a The weather templates w1ðtÞ (black line) and w2ðtÞ (red line). b The weather templates w1ðtÞ and w2ðtÞ (solid lines) and corresponding

templates shifted by 1=4p (dashed lines). Simulated (misaligned) weather curves, in (c, d), based on the templates in (a, b), respectively
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used the minimum average entropy criterion discussed in

Sect. 3.3 for this purpose. For K ¼ 2 we calculated the

average entropy for a raster of values of L (see, Table 1)

and finally chose L ¼ 25 which corresponded to the

smallest average entropy. The BVKMA with K ¼ 2 and

L ¼ 25 turned out to correctly recover 94:52% of the cli-

mate labels. When considering the proportions of weather

types (detected with KMA) arising within the two different

climate clusters we obtained [0.66 0.34] and [0.30 0.70],

respectively, in line with the expected true proportions [0.7

0.3] and [0.3 0.7]. Hence not only the climate labels but

also the corresponding within cluster structure was cor-

rectly recovered. The time dynamics of the climate labels

are presented in Fig. 9, the upper segment presenting the

true dynamics of the simulated climate states and the lower

segment presenting the recovered labelling obtained with

the BVKMA algorithm.

Table 1 summarizes the correctly recovered weather and

climate labels by the BVKMA algorithm for K ¼ 2 and

various values of L. Note that the special case of BVKMA

with L ¼ 1 corresponds to the KMA algorithm (with

K ¼ 2). The selection of L suggested by the entropy cri-

terion is almost optimal compared to other choices.

To emphasize the importance of taking the phase varia-

tion into consideration, we compare the results of BVKMA

to those for the BVKM method with K = 2 and various

average lengths L of the Voronoi elements. The highest

recovery climate label rate attained for BVKM was 64.47 %

with L ¼ 50. Summarizing, we see that in order to correctly

recover the climate labels we needed to take into account the

local dependency structure together with the misalignment.

Omitting any of these two factors led to significantly lower

climate recovery rates, none of them exceeding 70 %.

6 Discussion and concluding remarks

We propose a new functional clustering method, the Bag-

ging Voronoi K-Medoid Alignment (BVKMA) algorithm,

which to our knowledge is the first method that jointly

handles dependent and misaligned functions. It has been

obtained by suitably merging a clustering technique for

dependent functional data (Bagging Voronoi K-Medoid)

and a clustering technique for misaligned functional data

(K-Medoid Alignment). The method is general and can

deal, in a non-parametric fashion, with various dependency

structures and possibly also different clustering techniques.

It is flexible and can be adapted to arbitrary families of

warping functions allowing for adjustments for any type of

misalignment. Additionally, the method is not limited to

one-dimensional settings and can be straightforwardly

applied to higher dimensional problems including spatial

and spatio-temporal dependency. The simulation study

exemplifies the importance and superiority of using clus-

tering methods that jointly handle the dependence and

misalignment of the curves, such as the BVKMA method,

in recovering the correct cluster labels.

When applied to the Kassjön sediment data, the

method provides a way to summarize the weather vari-

ability in terms of longer term changes on different time

scales, corresponding to climate. We detected six different

climate regimes aiming to capture climate. They are all

characterized by significantly different frequencies of

seasonal pattern (weather) types detected by the K-Me-

doid algorithm. Two of the climate periods, (4300 BC,

3100 BC) and (150 BC, AD 150), have high frequencies

of years with pronounced spring peak greyscale patterns,

indicating an intense spring flood and high snow accu-

mulation during winter. Climate periods (1950 BC, 1000

BC) and (AD 1000, AD 1900), on the other hand, are

characterized by high frequencies of years with flatter

seasonal greyscale profiles, indicating less winter (snow)

precipitation and milder winters. Years with significant

sediment accumulation after the spring flood are frequent

in the climate regime during (3100 BC, 1950 BC), per-

haps indicating warmer summers and/or fall storms. For

climate period (1000 BC, AD 1000) excluding (150 BC,

AD 150) all different weather types are approximately

equally likely.

Confirmation of the climatic interpretations by a vali-

dation of the varve characteristics by means of regional

meteorological observations is unfortunately difficult due

to potential dating uncertainties and human impact (agri-

cultural activities and ditching) during the last centuries.

Some preliminary comparisons with other regional climate

archives still seem to support the climate interpretations of

the clusters. However, a more thorough investigation,

beyond the scope of this paper, is necessary to confirm the

climatic findings, even though the novel approach pre-

sented here shows great potential of revealing past climate.

Table 1 The mean entropies

together with weather and

climate label recovery rates for

BVKMA analyses with K = 2

and various L. For each quantity

the best achieved outcome is

reported in bold

L 1 (KMA) 5 10 25 50 100 200

Mean entropy – 0.56 0.39 0.30 0.33 0.39 0.44

Climate recovery 69 % 89.6 % 94.92 % 94.52 % 90.77 % 86.38 % 81.85 %

Weather recovery 99 % 75.03 % 70.32 % 68.75 % 66.80 % 65.05 % 62.88 %

Recovery rates for L = 1 corresponds to KMA analyses with K = 2
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Söderlind U (2010) Five centuries of Stockholm winter/spring

temperatures reconstructed from documentary evidence and

instrumental observations. Clim Change 101(1–2):109–141

Liu X, Müller HG (2004) Functional convex averaging and synchro-

nization for time-warped random curves. J Am Stat Assoc

99(467):687–699

Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford

S, Ni F (2008) Proxy-based reconstructions of hemispheric and

global surface temperature variations over the past two millen-

nia. Proc Natl Acad Sci USA 105(36):13252–13257

Menafoglio A, Secchi P, Guadagnini A (2016) A class-kriging

predictor for functional compositions with application to parti-

cle-size curves in heterogeneous aquifers. Math Geosci

48(4):463–485

Menafoglio A, Guadagnini A, Secchi P (2014) A kriging approach

based on Aitchison geometry for the characterization of particle-

size curves in heterogeneous aquifers. Stoch Environ Res Risk

Assess 28(7):1835–1851

Ojala AE, Alenius T (2005) 10000 years of interannual sedimentation

recorded in the Lake Nautajärvi (Finland) clastic-organic varves.

Palaeogeogr, Palaeoclimatol, Palaeoecol 219(3):285–302
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