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Abstract Seismic intensity, measured through the Mer-

calli–Cancani–Sieberg (MCS) scale, provides an assess-

ment of ground shaking level deduced from building

damages, any natural environment changes and from any

observed effects or feelings. Generally, moving away from

the earthquake epicentre, the effects are lower but inten-

sities may vary in space, as there could be areas that

amplify or reduce the shaking depending on the earthquake

source geometry, geological features and local factors.

Currently, the Istituto Nazionale di Geofisica e Vul-

canologia analyzes, for each seismic event, intensity data

collected through the online macroseismic questionnaire

available at the web-page www.haisentitoilterremoto.it.

Questionnaire responses are aggregated at the municipality

level and analyzed to obtain an intensity defined on an

ordinal categorical scale. The main aim of this work is to

model macroseismic attenuation and obtain an intensity

prediction equation which describes the decay of macro-

seismic intensity as a function of the magnitude and dis-

tance from the hypocentre. To do this we employ an

ordered probit model, assuming that the intensity response

variable is related through the link probit function to some

predictors. Differently from what it is commonly done in

the macroseismic literature, this approach takes properly

into account the qualitative and ordinal nature of the

macroseismic intensity as defined on the MCS scale. Using

Markov chain Monte Carlo methods, we estimate the

posterior probability of the intensity at each site. Moreover,

by comparing observed and estimated intensities we are

able to detect anomalous areas in terms of residuals. This

kind of information can be useful for a better assessment of

seismic risk and for promoting effective policies to reduce

major damages.

Keywords Bayesian modeling � Earthquakes � Intensity

prediction equation � Macroseismic attenuation � Ordered

probit model

1 Introduction

Italy is one of the most earthquake prone country of Eur-

ope; its seismic network is composed by hundreds of

seismograph stations (ITalian ACcelerometric Archive,

ITACA http://itaca.mi.ingv.it/) used to estimate magnitude

values and other seismological parameters (to this regard

see the Italian Seismological Instrumental and parametric

Data-basE, http://iside.rm.ingv.it). Even if these empirical

data are reliable, obtaining a detailed definition and

description of shaking is still a challenge, basically due to

the high variability of ground motion. In addition to these

instrumental data, there are also macroseismic data which

refer to earthquake intensities measured by the Mercalli–

Cancani–Sieberg scale (MCS; Sieberg 1930) or the Euro-

pean macroseismic scale (EMS; Grünthal 1998). In par-

ticular, macroseismic data regard earthquake effects on

buildings, structures and people, and can be considered as a

proxy of ground shaking deduced from building damages,

from any natural environment changes and from any

observed effects or feelings. These macroseismic data are

usually provided by expert operators who collect infor-

mation from direct observation in each village and evaluate
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the intensity through a critical analysis. These data are then

collected in historical catalogues which in Italy date back

to 461 B.C. It is worth to note that both the MCS and EMS

intensity scales are qualitative and ordinal with categories

ranging from I to XII. This means that we can surely say

that the effects occurred in a municipality with intensity

VIII are stronger than those associated with intensity IV,

but there is not a well defined relation between intensity

degrees and magnitude. In other words, we can not affirm

quantitatively how intensity VIII relates to intensity IV as

no precise numerical function is available to define the

difference between intensity categories.

Concurrently with historical data, since 2007 INGV has

been collecting macroseismic data through a web-survey

available at www.haisentitoilterremoto.it (‘‘hai sentito il

terremoto?’’, hereafter HSIT, literally ‘‘did you feel the

quake?’’). This tool allowed to gather more than 700,000

questionnaires regarding earthquakes widespread all over

the Italian territory and felt by population. Even if derived

from information provided by non-experts, the HSIT

macroseismic intensities are reliable as shown in Sbarra

et al. (2010), Tosi et al. (2015) and Mak et al. (2015),

where agreements with values coming from traditional

surveys and other web-based datasets were found. More-

over, differently from historical macroseismic catalogue,

the HSIT database includes a large amount of low degree

intensity data, generally disregarded by traditional macro-

seismic investigation and analysis (Pasolini et al. 2008).

These data refer to areas far from the epicentre of high

magnitude earthquakes or to areas at a short distance from

low magnitude earthquakes.

The main aim of this work is the definition of a new

intensity prediction equation (IPE) for Italian earthquakes

using the macroseismic data available through the HSIT

survey. The IPE describes the decay of macroseismic

intensity as a function of the magnitude and distance from the

epicentre/hypocentre and it is paramount in the analysis and

interpretation of both recent and historical macroseismic

intensity data. Moreover, it can be useful for prevention of

damages, since it allows to compare expected (estimated by

IPE) and observed intensities for detecting areas at major or

minor risk to experience damages (Kamat 2014; Goda and

Song 2015). In literature many IPEs (also named attenuation

models or laws) have been proposed (see for example

Gómez Capera 2006 and Mak et al. 2015), where the

intensity (or its difference with the epicentral intensity) is a

function of some covariates as epicentral intensity, quake

depth and magnitude, site type, epicentral/hypocentral dis-

tance, etc. However, these IPEs are based on historical

databases which suffer from lack of accuracy for long dis-

tance and lack of data of low magnitude earthquakes.

The models for intensity decay can be specified using a

deterministic (Atkinson and Wald 2007) or a probabilistic

approach (Magri et al. 1994; Pasolini et al. 2008) and, in

the latter case, a statistical distribution is assumed for the

response variable or the error term. Regardless of the

adopted approach, so far intensities have been commonly

treated as realizations of a quantitative distribution (con-

tinuous or discrete). As a result, numerical scores are

(improperly) assigned to ordered intensity categories and

least squares method are used to estimate the IPE param-

eters. Ignoring the ordinality of the response can yield

predicted values which are not consistent with the ordinal

nature of the intensity scale. More appropriate method-

ologies, which take into account the categorical nature of

data, are proposed by Rotondi et al. (2008) and Zonno

et al. (2009), even if applied on a small subset of data from

the historical catalogue. Recently, a similar approach was

adopted in Rotondi et al. (2015) for the large Italian

macroseismic database DBMI11 and in Azzaro et al.

(2013) for modeling macroseismic intensity attenuation in

the Mt. Etna region taking into account anisotropy.

The novel contribution of this work consists in defining

a new intensity prediction equation which takes properly

into account the qualitative and ordinal nature of the

macroseismic intensity, by using a large amount of data

provided by HSIT web-survey. To do this, we adopt an

ordered probit model (Agresti 2010; Charvet et al. 2014)

where the intensity response variable is related through the

probit link function to some predictors, such as the distance

from the hypocentre and the earthquake magnitude.

Through this method, we are able to estimate the macro-

seismic intensity at all the desired locations, thus obtaining

a new reliable IPE. Finally, an evaluation of anomalous

areas is provided through ad-hoc residual analysis, i.e. by

deriving the probability distribution of the difference

between observed and expected intensities.

The paper is structured as follows: in Sect. 2 we intro-

duce the web-based macroseismic survey of www.hai

sentitoilterremoto.it. In particular we describe the

macroseismic questionnaire and the kind of data which are

collected through it. The ordered probit model and the

Bayesian estimation procedure via MCMC are detailed in

Sect. 3, while Sect. 4 presents the results of the application

with HSIT data. Section 5 concludes the paper by sum-

marizing the main findings and includes some avenues for

future research.

2 Macroseismic data from www.
haisentitoilterremoto.it

The online macroseismic questionnaire, which is compiled

by volunteers after having felt an earthquake, is composed

by questions regarding the effects on the population and

buildings evaluated following the MCS and EMS
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macroseismic scale (see Tosi et al. 2015 for a complete

description). The questions regard: (i) personal information

and geographic location at the time of the earthquake; (ii)

transient effects evaluated through personal reactions,

movement and/or fall of objects, and activity of the

observer during the earthquake (sleeping, walking, being

still); (iii) building damages. In addition to volunteers,

there exists also a permanent and constantly increasing

group of compilers (approximately 25,000), who are aler-

ted via e-mail immediately after the occurrence of an

earthquake near their municipality. Visiting the HSIT web-

page of the considered event, they provide the location at

the moment of the occurrence and declare if they felt or not

the earthquake; in the first case, the macroseismic ques-

tionnaire can be filled in.

Using the procedure described in Tosi et al. (2015), an

automated procedure controls the reliability of question-

naires and discharges those which either contain contra-

dictory answers or insufficient information. Then, an

algorithm is applied to the valid questionnaires in order to

assign an unique intensity value (located on the centroid)

for each municipality. Macroseismic intensity maps (both

for MCS and EMS scales) are produced in real-time from

the processing of the questionnaires and immediately dis-

played on the HSIT web-site (see Fig. 1 for an example).

Through the survey, thus, it is possible to obtain a real-time

and widespread evaluation of earthquake intensities thanks

to the amount of available data which is extremely larger

than the one provided by direct observation of expert

operators.

Note that the intensities provided by the HSIT procedure

are given as real numbers, as a result of the algorithm

described in Tosi et al. (2015), and in this work are

approximated to the nearest integer value in accordance to

the MCS and EMS degrees between II and VIII. Moreover,

it is known that intensity web-based data collected for

earthquakes very close in time could be affected by com-

pilation errors. We thus excluded all aftershocks of mag-

nitude lower than 4.5 occurred within 8 h from each widely

felt mainshock (identified as an earthquake of magnitude

greater than or equal to 4.5 having more than 300 reports).

Finally, we discarded the firstly felt earthquake before the

mainshock, because, in case of a strong event, respondents

often fail to choose the right event from the automatic list

that appears on the HSIT web-site.

3 The ordered probit model

For ordinal data several multinomial models are available

in literature and a comprehensive presentation can be found

in Agresti (2010). Among those, a predominant role is

played by the class of cumulative link models which link

cumulative probabilities to a linear predictor. The most

commonly used link functions are the logit and probit, the

second one being the inverse of the standard Normal

Fig. 1 Macroseismic intensity

map from the HSIT web-site

concerning the L’Aquila

earthquake (April, 6th 2009,

magnitude 5.8)
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cumulative distribution function (cdf). The probit link was

the most natural solution for this work as our model

includes Gaussian distributions. Moreover, as specified in

Albert and Chib (1993) and Cowles (1996), this choice

gives rise to some computational benefits from the infer-

ential point of view (see Sect. 3.1).

For municipality i ¼ 1; . . .; I and earthquake c ¼
1; . . .;C let yic be the felt intensity estimated through the

HSIT web-survey. The response yic is one of the values in

the set fII; . . .;VIIIg of 7 intensity categories. The value yic
can be defined as a realization of the Multinomial distri-

bution Yic with 7 categories and one trial; we denote this as

Yic �Multinomial ð1; pII ; . . .; pVIIIÞ

with pj ¼ pðYic ¼ jÞ for j 2 fII; . . .;VIIIg.

We introduce now a latent (i.e. non observable) con-

tinuous and normally distributed variable YH

ic defined as

YH

ic ¼ Xicbþ �ic

where Xic ¼ ðXic1; . . .;Xick; . . .;XicKÞ is the vector of K

covariates (i.e. explanatory variables) with coefficients b ¼
ðb1; . . .; bk; . . .; bKÞT and �ic is a Gaussian random variable

defined as �ic � N ð0; r2Þ independently for each i and c. The

latent variable represents the actual strength of the ground

shaking for which we can observe only the effects through yic.

The relationship between Yic and YH

ic is given by

Yic ¼ II if YH

ic � s1

. . .

Yic ¼ j if srðjÞ�2\YH

ic � srðjÞ�1 for j¼ III; . . .;VII

. . .

Yic ¼ VIII if YH

ic [ s6

8
>>>>>><

>>>>>>:

ð1Þ

where rð�Þ is the rank function (e.g. rðIIÞ ¼ 2) and s ¼
ðs1; . . .; s6Þ is the vector of ordered thresholds to be esti-

mated. The number of thresholds is given by the number of

intensity categories minus 1. To illustrate this relationship,

we consider a simple example with intensities ranging from

II to VI, thus involving 5 categories and 4 thresholds

s ¼ ðs1; . . .; s4Þ. Figure 2 displays the distribution of the

latent variable YH

ic and the corresponding intensity proba-

bilities obtained using the relationship defined in Eq. (1).

To compute the probability of having an intensity equal

to II we proceed as follows:

pðYic ¼ IIÞ ¼ pðYH

ic � s1Þ ¼ pðXicbþ �ic � s1Þ

¼ pð�ic � s1 � XicbÞ ¼ U
s1 � Xicb

r

� �

where Uð�Þ is the cdf of the standard Normal distribution.

In the same way the probability for a generic intensity

j 2 fIII; . . .;VIIg is given by

pðYic ¼ jÞ ¼ pðsrðjÞ�2\YH

ic � srðjÞ�1Þ
¼ pðsrðjÞ�2\Xicbþ �ic � srðjÞ�1Þ

¼ U
srðjÞ�1 � Xicb

r

� �

� U
srðjÞ�2 � Xicb

r

� �

:

Moreover, for the last intensity it holds that

pðYic ¼ VIIIÞ ¼ 1 � pðYic �VIIÞ, where the cumulative

probability for j 2 fII; . . .;VIIg is defined as

pðYic � jÞ ¼ U
srðjÞ�1 � Xicb

r

� �

; ð2Þ

with the property that

0\pðYic � IIÞ\pðYic � IIIÞ\. . .\pðYic �VIIIÞ ¼ 1.

Following Agresti (2010), the cumulative probit model

is defined as

U�1ðpðYic � jÞÞ ¼
srðjÞ�1 � Xicb

r
ð3Þ

for j 2 fII; . . .;VIIg, where U�1ð�Þ is the inverse of the

Gaussian cdf which represents the so called probit function

that links the cumulative probability to the linear predictor

given by
srðjÞ�1�Xicb

r .

For identifiability reason1, for probit models it is com-

mon to fix the first threshold s1 equal to 0. Moreover, as

Yic
*

τ1 τ2 τ3 τ4

p(Yic = II)
p(Yic = III)
p(Yic = IV)
p(Yic = V)
p(Yic = VI)

Fig. 2 Latent variable YH

ic and corresponding intensity probabilities

1 The model parameters b; s;r are not identified as any change in the

scale parameter r can be offset by changes in s and b.

1596 Stoch Environ Res Risk Assess (2017) 31:1593–1602

123



mentioned in Agresti (2010), since the observed ordinal

scale provides no information about the variability of the

latent variable YH

ic , without loss of generality, we can set its

standard deviation r equal to 1. So Eq. (3) becomes

U�1ðpðYic � jÞÞ ¼ probit ðpðYic � jÞÞ ¼ srðjÞ�1 � Xicb

for j 2 fII; . . .;VIIg.

To illustrate the cumulative probit model and the

interpretation of the covariate coefficients, we get back to

the simple example introduced before with 5 categories

(from II to VI) by assuming to have just one explanatory

variable (thus K ¼ 1 and Xic is a scalar simply denoted by

xic) which can take real values in the interval ½�6;þ6�.
Moreover, we assume that the covariate coefficient b is

positive. The top plot in Fig. 3 depicts the cumulative

probabilities pðYic � jÞ for different values of the covariate.

It is worth noting that each curve (each one corresponds to

a differ intensity) has the same shape since the coefficient b
is common to all the categories, i.e. the covariate effect

does not change according to the intensity. Moreover, it

can be observed that for a given intensity j, when xic
increases, the corresponding cumulative probability

decreases, hence Yic is less likely to assume a value lower

or equal to category j (and therefore values greater than j

are more likely to occur). In fact, the bottom plot in Fig. 3,

which displays the probability pðYic ¼ jÞ for different

values of the covariate, shows that for small values of xic
the lowest category occurs with the highest probability and

the highest category happens for high values of xic. Note

that for a given value of xic the sum of the 5 probabilities is

equal to 1. For the case b\0 (not reported here) the

opposite happens: the cumulative probabilities increase as

the covariate increases and the lowest category is more

likely to happen for high values of xic.

3.1 Estimation procedure in a Bayesian framework

The parameter vector for the cumulative probit model

defined in the previous section is given by h ¼ ðs; bÞ.
Bayesian inference via MCMC is carried out following the

approach of Albert and Chib (1993) which is based on the

data augmentation method Tanner and Wong (1987) that

treats the latent variable YH as an additional parameter.

Let X ¼ XT
1 ; . . .;X

T
n ; . . .;X

T
N

� �T
be the ðN � KÞ covari-

ate matrix, y ¼ y1; . . .; yn; . . .; yNð ÞT the ðN � 1Þ vector of

observations and YH ¼ YH

1 ; . . .; YH

n ; . . .; Y
H

N

� �T
the ðN � 1Þ

latent variable vector. Note that the total number of cases

N� I � C (I and C being the n. of municipalities and

earthquakes respectively) since not all the earthquakes are
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xic
p(

Y
ic

≤
j)

=
Φ

(τ
j−

1
−

X
ic

β)

p(Yic ≤ II)
p(Yic ≤ III)
p(Yic ≤ IV)
p(Yic ≤ V)

xic

p(
Y

ic
=

j)

p(Yic = II)
p(Yic = III)
p(Yic = IV)
p(Yic = V)
p(Yic = VI)

Fig. 3 Cumulative probabilities (top) and category probability

distribution (bottom) for different values of the covariate when

considering 6 categories and b[ 0
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felt in all the municipalities. The index n ¼ 1; . . .;N refers

to the case identified by the couple (i, c) with i 2 f1; . . .; Ig
and c 2 f1; . . .;Cg.

Given this notation and following the Gibbs sampler

algorithm described in Albert and Chib (1993), the fol-

lowing full conditionals are derived when diffuse prior for

b and s are used:

1. p b j YH; y
� �

¼ N ðXTXÞ�1XTYH; ðXTXÞ�1
� �

,

2. p YH

ic j b; s; yic
� �

¼ N ðXicb; 1Þ truncated at the left by

srðjÞ�1 and at the right by srðjÞ with j 2 fII; . . .;VIIg;
3. p srðjÞ�1 j YH; b; ys; fsrðkÞ; k 6¼ jg

� �
¼ Unif c; dð Þ, where

c ¼ maxfmax fYH

ic : Yic ¼ jg; srðjÞ�2g, d ¼ minfmin

fYH

ic : Yic ¼ jþ 1g; srðjÞg, with j 2 fII; . . .;VIIg, s0 ¼
�1 and s7 ¼ þ1.

To simulate values from the joint posterior pðh j yÞ the

Gibbs sampler draws values iteratively from all the con-

ditional distributions. For implementing such a procedure

we resort to the MCMCoprobit function of the MCMC-

pack R package (R Core Team 2015), whose details are

reported in Andrew et al. (2011).

4 Application

4.1 Data and model specification

The considered data refer toC ¼ 1917 earthquakes occurred

in the Italian territory from January 2009 to August 2015

with local magnitude (ML) ranging from 2 to 5.9, depth lower

than 35 km and log10-hypocentral distance (logD) larger

than 0.5 in 99.8 % of the cases. Most of the events had ML

between 2 and 4 (about 95 %) while the percentage of

earthquakes with a magnitude greater than 5 is about 0.5 %.

The intensities (on the MCS scale) range from II to VII with

the modal intensity II occurring in 46 % of the cases.

In order to have more reliable data, we selected the

macroseismic intensities of the municipalities having more

than ten questionnaires for each seismic event, resulting in

I ¼ 945 municipalities. Each municipality may have expe-

rienced more than one seismic event, so that the final data-

base consists of N ¼ 6723 cases. Besides intensity, for each

municipality and earthquake, the log10-hypocentral distance

and the magnitude are available. Thus, the covariate vector

for each case is given by Xic ¼ ð1;MLic; logDicÞ, where the

term 1 refers to the intercept with b0 coefficient. As there are

6 intensity categories (from II to VII) we have 5 thresholds

s ¼ ðs1 ¼ 0; s2; . . .; s5Þ and the vector of unknown param-

eters is h ¼ ðs; b0; bML
; blogDÞ.

In order to ensure convergence of the Gibbs sampler, we

ran chains of 2,500,000 iterations, with a burn-in of 500000

and a thin interval of 200. Convergence was assessed by

monitoring the mixing of the chains, through trace plots,

together with the Gelman–Rubin and Geweke diagnoses

(Gelman and Rubin 1992; Geweke 1992).

4.2 Results

Convergence diagnoses indicated a good chain mixing for

all parameters. In particular, the Geweke z statistics (in

absolute value) range from 0.24 to 0.78 with p-values

bigger than 0.43, thus suggesting the convergence

achievement. Similarly, the Gelman–Rubin diagnoses,

computed by running two independent chains for each

parameter, produce a potential scale reduction factor lower

than 1.1 for all parameters.

The posterior parameter estimates are reported in

Table 1. It can be seen that all the parameters are signifi-

cantly different from zero (95 % HPD intervals do not

include zero). Moreover, the magnitude coefficient bML
is

positive with posterior mean equal to 2.464. This means

that (keeping all the other covariates fixed) a change in the

magnitude of 1 degree causes an increase in the latent

variable YH of 2.464 (on average). Concerning the influ-

ence of ML on the response variable (i.e. the intensity), we

can conclude that when the magnitude increases the

cumulative probability of observing an intensity lower than

or equal to the generic category decreases (and the prob-

ability of observing a higher intensity increases). This is a

situation similar to the one plotted in Fig. 3. Differently,

the posterior mean of the distance coefficient blogD is equal

to �5:229. This means that (keeping all the other covari-

ates fixed) a change distance of 1 (on the kilometer loga-

rithmic scale) causes an average change in the latent

variable of �5:229. As expected, with respect to the

response variable, when the distance increases, the cumu-

lative probability of observing a given intensity, or one

lower, increases (and the probability of observing a higher

intensity decreases). This is reasonable and in line with the

Table 1 Posterior parameter estimates of the ordered probit model:

mean, standard deviation (SD) and 95 % highest posterior density

interval (HPD)

Mean SD HPD

Lower bound Upper bound

b0 -0.837 0.070 -0.976 -0.700

bML
2.464 0.038 2.391 2.541

blogD -5.229 0.089 -5.408 -5.059

s2 1.385 0.030 1.330 1.444

s3 4.981 0.091 4.804 5.160

s4 6.628 0.143 6.356 6.911

s5 7.912 0.220 7.497 8.348
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nature and the geophysical characteristic of the phe-

nomenon under study (Schubert 2015).

Once the model parameters have been estimated, it is

possible to compute, for any desired value of the log-

hypocentral distance and of the magnitude, the intensity

posterior distribution, i.e. the posterior probabilities of

occurrence for every intensity value j 2 fII; . . .;VIIg using

the following formula:

pðYic ¼ jÞ ¼

U
ŝrðjÞ�1 � ðb̂0 þ b̂ML

�MLic þ b̂logD � logDicÞ
r

 !

�

U
ŝrðjÞ�2 � ðb̂0 þ b̂ML

�MLic þ b̂logD � logDicÞ
r

 !

;

ð4Þ

where the hat notation is used to denote the posterior

parameter mean. As mentioned in Sect. 3, r is fixed equal

to 1 and for the first and last category the formula is

adapted accordingly.

Figure 4 displays the intensity probability distribution

for two given values of ML (3.5, 5) and logD (1 and 2); the

category with the highest probability (i.e. the modal

intensity) is depicted by a star. As we can see, with a

moderate magnitude (ML = 3.5) and with a short distance

ðlogD ¼ 1Þ the modal intensity is IV (with a probability of

about 0.85); instead, when ðlogD ¼ 2Þ, the modal intensity

becomes II. Coherently, with a higher magnitude (ML = 5)

the modal intensity (with a probability of about 0.5) is V

for the shorter distance and decreases down to III at the

longer distance.

We focus now on the main objective of this work, i.e.

the definition of a new intensity prediction equation based

on the intensity probability distribution. In particular, we

analyze the effect of a distance change on the intensity

distribution [computed using Eq. (4)] by determining the

modal intensity for different values of ML (3.5 and 5) and

logD (100 values between 0.5 and 3). Figure 5 displays the

modal intensity according to distance (i.e. the estimated

IPE). Each point represents the modal intensity with its

corresponding probability (using the classes [0,0.5],

(0.5,0.8], (0.8,1]). In particular, with ML = 3.5 and

logD ’ 1 the intensity IV (dark gray point) has a proba-

bility of occurrence in (0.8, 1]; the same probability class is

reached for distance larger than 1.7 by intensity II. Nota-

bly, we consider the probability associated to each intensity

as a measure of uncertainty. The segments departing from

each point indicate which intensities have to be accounted,

together with the modal one, for reaching an occurrence

probability of at least 0.8. Looking, for example, at the

bottom panel of Fig. 5, with logD ¼ 2 the modal intensity

is III with a probability lower than 0.5 (light gray point).

From this point a light gray segment departs toward

intensity IV, that has an occurrence probability of about

0.38 (see bottom-right panel of Fig. 4): this means that the

probabilities of degree III and IV together reach at least

0.8. In this sense, points with no segment refer to very

reliable intensities (i.e., probability bigger than 0.8),

whereas point with one or two segments refer to more

uncertain modal intensity.

By comparing several IPEs (not reported here), we can

conclude that with lower magnitudes the IPEs decrease

more rapidly and show less uncertainty with respect to

those generated from earthquakes with higher magnitudes.

4.3 Analysis of residuals

Once IPE is defined for a given magnitude, it can be used

as an operative tool to compute expected intensities (and

probabilities) as a function of the hypocentral distance.

Computing the residuals between observed and expected

intensities is paramount in defining anomalous areas, with

positive (negative) residuals possibly associated with

seismic waves amplification (attenuation) (Papoulia and

Stavrakakis 1990).
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Considering the range of observed macroseismic inten-

sities (from II to VII), in order to improve the seismic

interpretability of residuals, we exclude from the analysis

the cases with estimated modal intensity equal to the

minimum and maximum values (II and VII) because they

would give rise to residuals which are always positive/

negative or equal to zero.

For each municipality i, where a number of mi earth-

quakes were felt, mi observed intensities IObs are available

from the HSIT web-site (approximated to the nearest

integer as discussed in Sect. 2), together with mi intensity

probability distributions with modal category Î obtained by

the ordered probit model. It is thus possible to derive for

each municipality mi residual probability distributions,

each being a discrete random variable defined as ðIObsic �
ÎicÞ with probabilities pic obtained by Eq. (4) and

c ¼ 1; . . .;mi.

Then we calculate the random variable sum of residuals

denoted by Ri, obtained by summing the mi residual

probability distributions. Finally, for each municipality we

are able to estimate the mean residual and its corresponding

variance as the expected value and variance of the random

variable mean of residuals Ri=mi.

We are aware that this approach is not the standard one

for computing residuals in the case of ordinal outcome

(e.g. Pearson residuals; Agresti 2002); moreover, one

drawback is that while computing residuals we are

implicitly assigning equal-distance scores to the ordered

categories. However, we think that this proposal is rea-

sonable for the purpose of this paper (i.e. evaluation of

anomalous areas) and has the advantage of providing a

single residual value for each municipality (considering all

the felt earthquakes) which has to be interpreted as a

measure of total discrepancy between observed and pre-

dicted intensities.

Figure 6 shows the obtained mean residuals and stan-

dard deviations. Blue circles correspond to municipalities

where observed intensities are lower than estimated

intensities, suggesting seismic attenuation; while red

points, with positive residuals, point out seismic amplifi-

cation. Gray shaded areas correspond to high values of the

residual standard deviation. Interestingly, positive (red)

and negative (blue) values tend to be spatially aggregated,

whereas the areas of high standard deviation correspond to

a greater uncertainty of the municipality intensity data. The

prevalence of orange circles in North Italy highlights an

amplification area localized in between the Alps chain and

the Padana plain. This could be caused by the presence of

sedimentary basin trapping and amplifying seismic waves.

The greater part of municipalities near the North Apenni-

nes have negative residuals revealing an attenuation area.

Furthermore, we can highlight other two areas with

prevalence of positive mean residuals: one in central Italy

with a North-South elongation, and the second one located

at the south of Naples.
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Fig. 5 IPE for some values of magnitude (3.5 and 5) and logD (100
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segments of each point indicate which intensities have to be

accounted, together with modal intensity, for reaching an occurrence

probability of at least of 0.8.
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5 Discussion

Italy, as one of the most seismically active countries, needs

an effective and reliable analysis of seismic risk. The

possibility of defining zones of high seismic shaking is a

crucial goal for promoting effective policy to prevent major

damages. In this regard, a reliable IPE definition is the

necessary step. It offers an operative way to calculate the

expected intensity given the earthquake magnitude and the

hypocentral distance. On the other hand, it is worth to note

that the intensity evaluation based only on the IPE is not

complete, due to several factors which may significantly

change the observed shaking. For this reason a common

procedure consists in performing a residual analysis with

observed and estimated intensity data. If these residuals are

spatially homogeneous they can be caused by the influence

of regional geological condition or by the predominant

source mechanism (Sbarra et al. 2012). Analyzing several

events for each municipality, the source mechanism con-

tribution to the intensity is reduced, thus evidencing a

possible local effect related, for example, to geological

characteristics, which could be potentially included, if

available, in the model as covariates.

Further confirmation are necessary to validate our find-

ings because of the short length of the HSIT data series

(2009–2015) which could not be fully representative of a

seismicity of long period. However, our results are con-

sistent with those found in previous works (see e.g.

Albarello et al. 2002) and, at the same time, provide an

interesting new benchmark for comparison with any other

risk maps carried out for this kind of data. In this sense, our

work can be considered as a first step to detect local

responses to seismic shaking in Italy.

From a methodological point of view, we employed the

ordered probit model using a Bayesian approach. Although

this model is well established in the statistical literature, its

Fig. 6 Map of the mean and

standard deviation of residuals.

Geographic coordinates are

between 6.6� and 20� East

longitude and between 36.6�

and 46.7� North latitude.

Colored circles represent the

municipality and the gray

shaded contours represent the

corresponding standard

deviations
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application to a large amount of macroseismic intensity data

is original and unavoidable for defining a reliable IPE which

takes properly into account the ordinal nature of data.

A possible extension of this work could deal with the

spatial structure of the data by including a spatial process in

the model equations. In literature, models for spatially

correlated ordered categorical data are relatively new

(Brewer et al. 2004; Higgs and Hoeting 2010). The main

obstacle to implement such models concerns the compu-

tational burden that can negatively impact the performance

of MCMC model-fitting algorithms (Berrett and Calder

2012), making the estimation procedure for large data set

unfeasible. Unfortunately, as far as we know, not even

other more efficient algorithms alternative to MCMC, such

as the Integrated Nested Laplace Approximation (INLA,

Serra et al. 2013; Blangiardo and Cameletti 2015), can be

applied as they are not available for ordinal response data.

Thus, the development of computationally effective ad-hoc

algorithms needs to be addressed in the future research for

analyzing the complete HSIT dataset through a spatial

model. Another possibility would consist in restricting the

analysis to a small target area—identified for example

using the residual map in Fig. 6—in order to apply the

algorithm proposed by Higgs and Hoeting (2010).
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