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Abstract This work aims to answer if post-processing

climate model outputs will improve the accuracy of climate

change impact assessment and adaptation evaluation. To

achieve this aim, the daily outputs of CSIRO Conformal

Cubic Atmospheric Model for periods 1960–1979,

1980–1999 and 2046–2065, and observed daily climate

data (1960–1979, 1980–1999) were used by a stochastic

weather generator, the Long Ashton Research Station-

Weather Generator to construct long time series of local

climate scenarios (CSs). The direct outputs of climate

models (DOCM) and CSs were then fed into the Agricul-

tural Production System sIMulator—Wheat model to cal-

culate seasonal climate variables and production

components at three locations spanning northern, central

and southern wheat production areas in New South Wales

(NSW), Australia. This study firstly compared the differ-

ences in climate variables and production components

derived from DOCM and CSs against those from observed

climate for period 1960–1979. The impact difference

arising from the use of DOCM and CSs for the future

period 2046–2065 was then quantified. Simulation results

show that (1) both the median/mean and distribution/vari-

ation of climate variables and production components

associated with CSs were closer to those derived from

observed climate when compared to those from DOCM in

most of the cases (median/mean, distribution/variation,

climate variables, production components and locations);

(2) the difference in the mean and distribution of climate

variables and production components derived from DOCM

and observed climate was significant in most of the cases;

(3) longer dry spells in both winter and spring were found

from CSs across the three locations considered in com-

parison with those from DOCM; (4) the median growing

season (GS) rainfall total, GS average maximum temper-

ature, GS average solar radiation, GS length and final

wheat yield were lower from DOCM than those from CSs

and vice versa for GS rainfall frequency and GS average

minimum temperature in 2055; (5) the mean and distribu-

tion of these climate variables and production components

arising from the use of DOCM and CSs are significantly

different in most of the cases. This implied that using the

direct outputs of spatially downscaled general circulation

model without implementing post-processing procedures

may lead to significant errors in projected climate impact

and the identified effort in tackling climate change risk. It

is therefore highly recommended that post-processing

procedures be used in developing robust CSs for climate

change impact assessment and adaptation evaluation.

Keywords Direct outputs of climate model � Climate

scenarios � Post-processing techniques � Climate

components � Wheat production components

1 Introduction

Even though climate change impact assessment and adap-

tation evaluation have been studied for over 30 years,

confusion still exists between climate projections (CPs)

and climate scenarios (CSs). The former refers to the direct

outputs of climate models (DOCM) including global and

regional climate models (GCMs/RCMs). CSs are based on

CPs but with post-processing procedures implemented such
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as through the use of stochastic weather generators to link

with historical climate characteristics to reduce the bias of

GCMs/RCMs. Normally, longer time series (e.g. 100,

300 years etc.) of CSs are constructed based on 20 or

30 years’ CPs. The difference between CPs and CSs was

first introduced in the Third Assessment Report of the

Intergovernmental Panel for Climate Change (IPCC 2001,

chap. 3).

Nowadays, spatially and temporally downscaled daily

outputs of GCMs are available, which are in line with the

temporal resolution of most crop models, but they cannot

be directly used by crop models for climate change impact

assessment and adaptation evaluation due to climate model

biases and poor performance of GCMs at such temporal

scale (Carter et al. 1994; Mearns et al. 1990, 1995; God-

dard et al. 2001; Luo and Yu 2012; Teutschbein and

Seibert 2012). This is especially so for dynamically

downscaled outputs of GCMs when compared with statis-

tically downscaled outputs of GCMs. Luo et al. (2013)

evaluated the performance of downscaled outputs of GCM

against observed climate datasets and found that there were

significant differences between modelled and observed

climate in some months especially associated with rainfall.

Post-processing techniques such as the use of a delta

approach, cumulative probability function (CPF) and

stochastic weather generators [i.e. Long Ashton Research

Station-Weather Generator (LARS-WG), WGEN] were

used to circumvent the issues mentioned above. The delta

approach is a simple way for correcting climate model

biases. Normally, seasonal or monthly mean changes are

used to perturb historical climate records to construct local

CSs (e.g. Luo and Kathuria 2013; Ouyang et al. 2015 and

many others). It should be noted that this method only

considered changes in mean climate but not changes in

climate variability. Baigorria et al. (2007, 2008) corrected

GCM biases associated with hindcast rainfall, temperature

and solar radiation based on the CPF approach and quan-

tified the impact of bias correction on maize yield in

southeast USA. Specifically, bias correction was applied to

a 2-parameter Gamma CPF for rainfall (Ines and Hansen

2006), Beta distribution for solar radiation and Gaussian

distribution for temperature. As noted in Ines and Hansen

(2006) itself, the bias correction procedures they adopted

are unable to recover the observed autocorrelation, and in

some instances they can even lead to a deterioration of the

statistical properties of the original forecasts (Calanca et al.

2011). Shao and Li (2013) used quantile–quantile trans-

form approach to improve GCM-based rainfall forecasting

information in Australia. Wang et al. (2015) examined the

spatial and temporal variations of hydro-climatic variables

to climate change with climate model biases corrected by

using the quantile–quantile transform approach. Mishra

et al. (2013) corrected biases in projected rainfall

frequency, intensity and time structure by using both the

CPF approach and a stochastic weather generator in the

context of crop simulation.

Stochastic weather generators have been widely used for

post-processing spatially downscaled outputs of GCMs to

be linked with process-oriented crop models for climate

change impact and adaptation evaluation worldwide

(White et al. 2011). Monthly changes in the mean climate

(e.g. mean rainfall) and in climate variability (e.g. average

length of dry period) between future and baseline period

are derived first (bias correction) and then applied to the

weather generator to construct local daily CSs based on

historical climate characteristics for a specific location

(Semenov 2007; Kim et al. 2007; Wilks 2010, 2012; Iva-

nov et al. 2007; Luo et al. 2013, 2014, 2015). More details

on the LARS-WG can be found in Sect. 2: Materials and

methods. The advantage of the weather generator approach

over the delta approach is that it has the capacity to con-

sider changes in both the mean climate and in climate

variability. Greenhouse induced climatic change not only

result in changes in the mean but also in variability. Hence,

weather generator is well suited for post-processing GCMs

outputs with climate model bias corrected and for pro-

ducing robust local daily CSs with the problem of poor

performance of GCMs/RCMs at daily time scale avoided

even though weather generator has its own drawbacks. This

study aims to examine the differences in climate variables

and crop production components arising from the use of

DOCM and CSs. This will justify and promote the use of

CSs and therefore reduce uncertainties in climate change

impact assessment and adaptation evaluation.

2 Materials and methods

2.1 Study locations

The study focuses on three wheat production areas in New

South Wales (NSW), Australia: namely Bingara, Peak Hill

and Deniliquin (Fig. 1). The rationale of choosing these

three locations is that they are key wheat production areas

and span a large geographical region and thus represent

different climate patterns. Bingara, located in the northeast

of NSW, has a summer-dominant rainfall pattern and a

warmer temperature regime while Deniliquin, in the

southwest of NSW wheat belt, has a winter-dominant

rainfall pattern and a cooler temperature regime. Peak Hill,

between these aforementioned two locations, has an

intermediate rainfall pattern and temperature regime. These

three sites also differ in rainfall amount with Bingara and

Peak Hill belonging to medium–high rainfall areas with

growing season (GS, May—Oct. inclusive) rainfall of
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349 mm and 305 mm respectively, while Deniliquin

belongs to a low rainfall area with GS rainfall of 258 mm.

2.2 Climate projections

Dynamically downscaled daily outputs of the CSIRO

Conformal-Cubic Atmospheric Model (CCAM) for the

periods 1960–1979, 1980–1999 and 2046–2065 were used

in this study. The first period is for validation purpose. The

second and third periods are for constructing future CSs.

More information on future CSs is given in Sect. 2.3.2.

The CSIRO CCAM is a stretched-grid or variable-res-

olution climate model and has a roughly uniform grid over

the area of interest (15 km by 15 km), and a coarser-res-

olution grid over the remainder of the globe. More details

about CCAM can be found in McGregor and Dix (2008).

CCAM was driven by the CSIRO Mk 3.5 model fields

under the A2 emission scenario of the Special Report on

Emission Scenarios (IPCC 2000), which is the only emis-

sion scenario considered by the CCAM due to the large

computing resources needed in comparison with statistical

downscaling. A detailed description of the CSIRO Mk 3.5

and its performance can be found in Gordon et al. (2010).

The rationale for using dynamically downscaled outputs of

GCM is that both temperature and rainfall are available for

crop model application, which is not always the case from

statistically downscaled outputs of GCMs. The latter are

often limited by the availability of both high quality

temperature and rainfall data for implementing statistical

downscaling at a specific location especially in Australia.

2.3 Climate scenarios

2.3.1 Baseline climate

A baseline climate corresponding to the period 1960–1979

was constructed by using the LARS-WG based on histor-

ical daily climate datasets for this period. Historical climate

datasets were obtained from the specialised information for

land owners (SILO) patched point dataset (PPD) (http://

www.longpaddock.qld.gov.au/silo, Jeffrey et al. 2001).

LARS-WG is a stochastic weather generator based on

series approach (Racsko et al. 1991). It produces synthetic

daily time series of maximum/minimum temperature

(Tmax/Tmin), precipitation and solar radiation. It utilises

semi-empirical distributions for the lengths of wet and dry

day series, daily precipitation and daily solar radiation.

Daily Tmax, Tmin and solar radiation are considered as

stochastic processes with daily means and daily standard

deviations conditioned on the wet or dry status of the day.

The occurrence of precipitation is modelled by alternating

wet and dry series approximated by semi-empirical prob-

ability distributions (Semenov and Brooks 1999). On a wet

day the amount of precipitation is modelled using semi-

empirical distributions for each month. A detailed

description of the LARS-WG is given in Semenov (2007)

and Luo et al. (2003). The performance of the LARS-WG

Fig. 1 Study locations and the gridcell of the CSIRO Conformal Cubic Atmospheric Model
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in diverse climates (USA, Europe, Asia and Australia) was

evaluated by Semenov et al. (1998), Semenov (2008) and

Luo et al. (2014). It was found that the LARS-WG per-

formed reasonably well against observed climate datasets.

The LARS-WG is the most widely used weather generator

in this research area (White et al. 2011).

2.3.2 Future climate scenario

The construction of future CSs was based on both CPs and

historical climate characteristics with the aid of post-pro-

cessing techniques. These procedures involve three steps.

Firstly, observed daily climate data for the period

1980–1999 (independent of the validation period) were used

to calibrate the stochastic weather generator, LARS-WG.

This produced information on historical climate character-

istics. Historical climate datasets for this period were also

obtained from the above mentioned SILO PPD datasets.

Secondly, the daily outputs of the CCAM for periods

2046–2065 and 1980–1999 were used by the LARS-WG to

derive monthly changes in the mean climate (i.e. rainfall)

and in variability (i.e. average length of wet/dry spells)

between the two periods. The rationale of using monthly

climate change to perturb historical climate through the use

of the LARS-WG rather than the direct use of the daily

outputs of CCAM is that monthly climate change informa-

tion performs better than that of daily scale. Finally, the

monthly climate changes were applied to the LARS-WG to

produce 100-year local future CSs based on local historical

climate characteristics as obtained from step 1.

2.4 The APSIM-Wheat

DOCM and CSs for the periods 1960–1979 and 2046–2065

derived earlier were coupled with the Agricultural Produc-

tion System sIMulator (APSIM)-Wheat model (version 7.4)

to quantify GS climate and its impact on production com-

ponents. Figure 2 is the schematic overview of the

methodologies adopted in this study. The climate variables

quantified included GS rainfall total and GS rainfall fre-

quency (calculated as the number of rainy days within GS),

GS average Tmax, GS average Tmin and GS average solar

radiation. A rainy day was defined as a day on which rainfall

is greater than 0.2 mm (http://www.bom.gov.au/climate/

cdo/about/definitionsrain.shtml). These climate variables are

major driving forces of crop production. The production

components analysed included GS length and wheat grain

yield. The rationale of using the APSIM as a quantification

tool for deriving GS climate is that the climate information

quantified is directly related to a specific crop cultivar

(rather than a hypothetical one) and to the actual GS length

for that cultivar. The APSIM is a farming systems modelling

framework. It contains interconnected models to simulate

systems comprising soil, crop, tree, pasture and livestock

biophysical processes (Holzworth et al. 2014). Validation of

this model can be found in Probert et al. (1998). This crop

model package has been widely applied to climate

change/variability impact studies (White et al. 2011) and in

farming system studies in Australia, Europe and China. Two

cultivars (Sunvale and Janz) were considered in this study.

Sunvale is a mid-late maturity cultivar with vernalisation

and photoperiod coefficients of 2.8 and 3.0 respectively.

Janz is an early maturing cultivar with vernalisation and

photoperiod coefficients of 1.5 and 3.5 respectively. Sunvale

is sown when cumulative rainfall in three consecutive days

is C20 mm and C15 mm for medium and low rainfall areas

respectively during the period of 15 Apr–15 June. Janz is

sown for the period of 16 June–15 Aug with the same

sowing criteria as Sunvale. If these conditions cannot be

met, the wheat crop is forced to sow on the last day (15th

Aug) of the sowing window. Table 1 shows crop manage-

ment information across study sites and atmospheric CO2

concentrations set in the wheat model. A red-brown earth

soil was assumed. Soil water, soil nitrogen and residue were

reset to their initial conditions on the 1st of March each year.

The purpose of this resetting was to exclude the interaction

between climate change and soil conditions so that clear

messages of climate change impacts on wheat production

can be obtained.

2.5 Statistical analyses and tests

For validation period 1960–1979, climate variables and

production components derived from CSs and DOCM were

compared with those derived from observed climate data-

sets. Details of climate variables analysed on a seasonal

scale were given in Sect. 2.4. In addition to seasonal scale,

1960-1979
Valida�on Period

1980-1999
Calibra�on Period

2046-2065

1960-1979

1980-1999

1960-1979

2046-2065

LARS-WG
APSIM

Observed Climate Direct Outputs of 
Climate Model

Climate 
Scenarios

Fig. 2 A schematic overview of research methodologies. Thin

arrows show the procedures for generating baseline climate scenarios

for the validation period 1960–1979. Thick arrows show the

procedures for producing future climate scenarios. For the latter,

outputs of CCAM for the periods 1980–1999 and 2046–2065 were fed

into the LARS-WG to derive climate anomalies. Along with historical

climate data for the period 1980–1999, these anomalies were then

used to construct future climate scenarios
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climate variables including their mean and variability (s-

tandard deviation: SD) and extreme climate events were also

analysed on a monthly basis. Extreme climate events com-

prised frost frequency (defined as the number of days with

daily Tmin less than or equal to 2.2 �C in September) and the

frequency of heat stress (defined as the number of days with

daily Tmax greater than or equal to 30 �C in October). The

reason for choosing these types of extreme climate events

and the timeframes is that frost risk in September and heat

stress risk in October have significant economic implication

for the wheat industry. Seasonal variables were statistically

tested by using the Wilcoxon rank-sum test and Kol-

mogorov–Smirnov (KS) test. The former compares the mean

value while the latter compares the distribution of two

datasets in question. The mean value and distribution are the

most important statistical parameters in describing a dataset.

Hence they were selected and statistically tested in this study

to see how close the comparing datasets are.

For future period 2046–2065, climate variables and crop

production components derived from CSs and DOCM were

compared against each other and statistically tested by using

the same tests as for the validation period. Exploratory data

analyses were conducted first to determine which Two-

Sample Tests to use in the significant test analyses. Wheat

yields for the period 2046–2065 from both CSs and DOCM

at Bingara were analysed. It was found that wheat yield from

DOCM would not be normally distributed (data not shown).

This justified the use of the Wilcoxon test rather than t test in

testing the difference in the mean of climate variables and

crop production components derived from DOCM and CSs.

3 Results

3.1 Comparison of climate variables and production

components derived from DOCM and CSs

against those from observed climate

for the period 1960–1979

3.1.1 Monthly climate variables

Figure 3a shows the mean value of the five climate vari-

ables (solar radiation, Tmax, Tmin, rainfall and rainfall fre-

quency) derived from DOCM, CSs and observed climate at

Bingara and Deniliquin. DOCM led to a bias range of -6.0

to 5.2 mj/m2 while CSs led to a bias range of -0.4 to 0.4

mj/m2 in estimating the mean of solar radiation across the

two locations. DOCM led to a bias range of -3.6 to 2.5 �C
while CSs led to a bias range of -0.4 to 0.2 �C in esti-

mating the mean of Tmax. The bias in estimating the mean

of Tmin ranged from -0.7 to 2.3 �C associated with DOCM

and from -0.3 to 0.5 �C associated with CSs. The bias in

estimating mean rainfall ranged from -47.7 to 27.5 mm in

relation to the use of DOCM and from -8.6 to 8.2 mm in

relation to the use of CSs across the two locations. For the

mean frequency of rainfall, DOCM resulted in a bias range

of -1 to 6 days while CSs resulted in a bias range of -4 to

1 day across the two locations. It was found that mean

climate variables derived from CSs were much closer to

those derived from observed climate when compared with

those from DOCM across variables and months.

Figure 3b shows the SD of the five climate variables

derived from DOCM, CSs and observed climate at Bingara

and Deniliquin. DOCM led to a bias range of -2.1 to 0 mj/

m2 while CSs led to a bias range of -0.8 to 0.1mj/m2 in

estimating the SD of solar radiation across the two loca-

tions. DOCM led to a bias range of -0.6 to 1.0 �C while

CSs led to a bias range of -0.8 to -0.1 �C in estimating

the SD of Tmax. The bias in estimating the SD of Tmin

ranged from -0.7 to 1.1 �C associated with DOCM and

from -0.7 to -0.3 �C associated with CSs. The bias in

estimating the SD of rainfall ranged from -8.9 to 2.0 mm

in relation to DOCM and from -0.4 to 1.1 mm in relation

to CSs. As to the SD of rainfall frequency, DOCM led to a

bias range of -3 to 3 days while CSs led to a bias range of

-2 to 0 days across the two locations. It was found that the

SD of solar radiation, rainfall and rainfall frequency for

both locations and the SD of Tmin at Deniliquin derived

from CSs were much closer to those of observed than those

of DOCM in most/all of the months while the SD of Tmax at

both locations and Tmin at Bingara derived from DOCM

were closer to those of observed when compared with those

derived from CSs in most of the months.

For extreme climate events, the median frost frequency

in September (Fig. 4a) and the median frequency of heat

stress in October (Fig. 4b) from CSs were much closer to

those from observed climate in comparison with those from

DOCM at all three locations except frost frequency at Peak

Hill.

Table 1 Management information and CO2 concentrations as set in the APSIM-Wheat model

Study sites Planting Starting N (kg/ha) Initial residue (kg/ha) [CO2] (ppm) under A2

Density (plants/m2) Depth (mm) Baseline 2055

Deniliquin 100 30 137 1000 384 559

Bingara & Peak Hill 150 30 187 2000

Stoch Environ Res Risk Assess (2016) 30:1835–1850 1839
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3.1.2 Seasonal variables

The modelled medians and distributions of GS rainfall

derived from CSs were closer to those derived from

observed climate when compared with those derived from

DOCM, which overestimated median GS rainfall across

locations (Fig. 5a). However, the differences in the means

and distributions from both CSs and DOCM were not

significant against those from observed climate except

those from DOCM and observed climate at Deniliquin

(Table 2). The medians and distributions of GS rainfall

frequency derived from CSs were closer to those from

observed at Bingara and Peak Hill while they were closer

to observed arising from the use of DOCM at Deniliquin

(Fig. 5b). In contrast to GS rainfall, the means and distri-

butions of GS rainfall frequency derived from both CSs

and DOCM were significantly different from those derived

from observed climate except those from DOCM and

observed climate at Deniliquin (Table 2).

The median GS Tmax based on CSs was closer to that

obtained from observed climate at Bingara and Peak Hill,

while it was slightly closer to the observed when derived

from DOCM at Deniliquin (Fig. 5c). The differences in the

mean of Tmax were significant derived from DOCM and

observed at Bingara, and from CSs and observed at Deni-

liquin (Table 2). The distributions of GS Tmax based on

DOCM were closer to those of observed at Peak Hill and

Deniliquin (Fig. 5c). The differences in the distributions of

GS Tmax were significant derived from CSs and observed

climate for the three locations considered and also from

DOCM and observed climate at Bingara (Table 2). Similar

to median GS rainfall, median GS Tmin from CSs matched

those from observed climate better than those from DOCM

across locations. The differences in the means of GS Tmin

between DOCM and observed were significant at Bingara

and Deniliquin (Table 2). The distribution of GS Tmin from

CSs was closer to that of observed except the case at Peak

Hill (Fig. 5d). The differences in the distributions of GS

Tmin from DOCM and observed were significant at Bingara

and Deniliquin, and from CSs and observed at Peak Hill

(Table 2). Once again, the medians and distributions of GS

solar radiation from CSs were closer to those of observed

than those from DOCM across locations (Fig. 5e). The

differences in both the means and distributions of GS solar

radiation were significant from DOCM and observed, and

insignificant from CSs and observed (Table 2).

The medians and distributions of GS length from CSs

were closer to that of observed at Peak Hill than those from

DOCM while they were different from observed values at

the other two locations from both CSs and DOCM (Fig. 5f).

However, the differences in the means and distributions of

GS length from both CSs and DOCM were insignificant

against those from observed climate (Table 2). The medians

and distributions of wheat grain yields from CSs were closer

to those of observed across locations (Fig. 5g). There were

significant differences in the means and distributions of

wheat grain yield from DOCM and observed climate at Peak

Hill and Deniliquin (Table 2).

3.2 Comparison of climate variables and production

components from CSs and DOCM for the period

2046–2065

The differences in the distributions of winter and spring dry

spells existed arising from the use of DOCM and CSs for

the period centred on 2055 (Fig. 6). Longer dry spells in

both winter and spring seasons were projected from CSs

than those from DOCM at all three locations.

Figure 7 shows the medians and distributions of GS

climate variables and production components derived from

DOCM and CSs for the period centred on 2055 across the

three locations. Significant test results of climate variables

and production components from DOCM and CSs are

given in Table 3. Median GS rainfall from DOCM would

be lower than that from CSs at Bingara and Peak Hill but

slightly higher at Deniliquin (Fig. 7a). Statistical tests of

significance showed that there would be significant dif-

ferences (at 95 % confidence level) in both the means and

distributions of GS rainfall at Bingara but not at the other

two locations (Table 3). The median frequency of GS

rainfall from DOCM would be much higher than that from

CSs across the three locations considered (Fig. 7b). Dif-

ferences in the means and distributions of GS rainfall fre-

quency from DOCM and CSs would be significant at

99.99 % confidence level (Table 3). Like the pattern of

median GS rainfall, median GS Tmax from DOCM would

be lower than that from CSs at Bingara and Peak Hill and

very close to each other at Deniliquin (Fig. 7c). Significant

differences (at 99 % confidence level) would be found in

the means and distributions of GS Tmax across locations

except for the mean of GS Tmax at Deniliquin (Table 3).

The median GS Tmin from DOCM would be slightly lower

than that from CSs at Bingara, but much higher than that

from CSs at Peak Hill and Deniliquin (Fig. 7d). The means

bFig. 3 Comparison of the effects of climate scenarios (CSs) and the

direct outputs of climate model (DOCM) on monthly climate

variables against those from observed climate for the period

1960–1979 across locations: a monthly mean, b monthly variability

(SD standard deviation)
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and distributions of GS Tmin would be significantly dif-

ferent (at 100 % confidence level) at Peak Hill and Deni-

liquin but not at Bingara (Table 3). The median GS solar

radiation from DOCM would be lower than that from CSs

across locations (Fig. 7e). Once again, significant differ-

ences (at 99.97 % confidence level) would be found in the

means and distributions of GS solar radiation across loca-

tions except for the mean at Bingara (Table 3). As with the

median GS Tmax, median GS length would be shorter from

DOCM than from CSs (Fig. 7f). The means of GS length

from DOCM and CSs would be significantly different (at

95 % confidence level) at Bingara and Deniliquin but not at

Peak Hill (Table 3). The distributions of GS length from

DOCM and CSs would be significantly different at Peak

Hill (at 95 % confidence level) but not at Bingara and

Deniliquin. All these differences in climate variables would

lead to different wheat yields derived from DOCM and CSs

(Fig. 7g). Lower median wheat yields would be projected

from DOCM than those from CSs. Significant differences

(at 95 % confidence level) would be found in the means

and distributions of simulated wheat yields from DOCM

and CSs across locations except for the mean wheat yields

at Peak Hill (Table 3).

4 Discussion and conclusions

To have confidence in quantified climate change impact

and the effectiveness of adaptation options, the first

important step is to construct robust local CSs. This study

tackled an important issue faced by climate impact com-

munity: bias correction of downscaled GCM outputs. This

process is essential as it will increase robustness and con-

fidence/credibility of projected local climate change. The

climate impact community has long been in a dilemma

about whether the spatially downscaled outputs of GCMs

can be used directly, or if further post-processing proce-

dures are needed prior to linking with impact models. If

GCMs outputs are directly used by impact model, which

baseline should be used for comparison, a modelled base-

line or historical baseline? If a modelled baseline is to be

compared, the impact results may be far from the reality

because of climate model system error. If a historical

baseline is to be used, climate model bias is embedded (not

comparable between future period and historical baseline

period). This work set up a framework for constructing

more accurate local CSs with climate model biases cor-

rected, changes in climate variability considered, the issue
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of poor performance of GCMs/RCMs at a daily time scale

addressed, and the modelled baseline and historical base-

line integrated/connected through the use of the LARS-

WG.

This study found that the monthly means and SDs of

climate variables derived from CSs were much closer to

those of observed climate for the period 1960–1979 when

compared with those from the DOCM in most of the cases

(climate variables and months, Fig. 3) except for Tmax at

Bingara and Deniliquin and Tmin at Bingara. Similar find-

ing was found for seasonal climate variables. The medians

and distributions of GS climate variables and wheat pro-

duction components from CSs were closer to those of

observed climate when compared with those from the

DOCM for the period 1960–1979 except for a few cases

associated with both the medians and distributions of GS

rainfall frequency and Tmax at Deniliquin and the distri-

butions of both Tmax and Tmin at Peak Hill (Fig. 5;

Table 2). This is reasonable as CSs were linked to histor-

ical climate. This implied that the use of post-processing

techniques such as the LARS-WG is essential in producing

more robust CSs for future climate impact assessment. This

is in line with the findings of Teutschbein and Seibert

(2012), Ehret et al. (2012) and Halmstad et al. (2013). Luo

et al. (2013) also noted the significant difference between

observed climate and hindcast information from the

CCAM for the same locations as considered in this study.

The larger differences in the monthly variability (SD) of

Tmax at Bingara and Deniliquin and Tmin at Bingara

(Fig. 3b) and in the seasonal distributions of Tmax and Tmin

at Peak Hill and Tmax at Deniliquin from CSs (Fig. 5c, d)

and observed climate may be due to the use of the LARS-

WG. One limitation of weather generators is a marked

tendency to underestimate the observed inter-annual vari-

ance at various temporal scales (Srikanthan and McMahon

2001; Schoof 2008; Wilby et al. 2009; Kim et al. 2012;

Wilks 2012). The same is true for the LARS-WG, which

does not explicitly model inter-annual variability, under-

estimating temperature variability and that the LARS-WG

tends to underrate extreme values of the statistical

Fig. 4 Comparison of the

effects of climate scenarios

(CSs) and the direct outputs of

climate model (DOCM) on

extreme climate events against

those from observed climate for

the period 1960–1979 across

locations: a frequency of frost

occurrence in September,

b frequency of heat stress

occurrence in October. The

horizontal bar within the box

represents the median. The parts

above and below the median

line within the box are upper

and lower quartiles. Whiskers

and outliers constitute the data

beyond the quartiles
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Fig. 5 Comparison of the effects of climate scenarios (CSs) and the

direct outputs of climate model (DOCM) on growing season (GS)

climate variables and crop production components against observed

climate for the period 1960–1979 across locations: a GS rainfall total,

b GS rainfall frequency, c GS maximum temperature, d GS minimum

temperature, e GS solar radiation, f GS length, g wheat grain yield.

The horizontal bar within the box represents the median. The parts

above and below the median line within the box are upper and lower

quartiles. Whiskers and outliers constitute the data beyond the

quartiles
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distributions of climate variables (Semenov 2008), which

has significant implications for agricultural applications.

Hence future CSs produced by using the weather generator

approach will have lower inter-annual temperature vari-

ability. Attempts have been made to solve the low inter-

annual variability issue arising from the use of weather

generators (Schoof 2008; Kim et al. 2012).

It was found that there would be significant differences

in the means and distributions of GS climate variables and

production components arising from the use of DOCM and

CSs for the future period (Figs. 6, 7; Table 3). This implied

that using the direct outputs of spatially downscaled GCMs

without implementing post-processing procedures may

lead to significant errors in projected climate impact and

the identified effort in tackling climate change risk. The

tendency to project shorter dry spells (Fig. 6), lower

median GS rainfall (Fig. 7a) and higher median frequency

of GS rainfall (Fig. 7b) resulted from the use of DOCM in

comparison with those from CSs reflected the behaviour of

GCMs in simulating rainfall occurrence, which tend to

simulate more rainfall events (shorter dry spells) but with

lower intensity (Carter et al. 1994; Mearns et al. 1990,

1995; Goddard et al. 2001; Charles et al. 2013) in com-

parison with real situation. The higher rainfall frequency

and light rainfall amount from DOCM could not easily

meet early sowing criteria as given in the Section:
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Fig. 6 Cumulative probability of winter and spring dry spells for the period centred on 2055 derived from climate scenarios (CSs) and the direct

outputs of climate model (DOCM) across locations
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Fig. 7 Variation of growing season (GS) climate variables and

production components for the period centred on 2055 derived from

climate scenarios (CSs) and the direct outputs of climate model

(DOCM) across locations: a GS rainfall total, b frequency of GS

rainfall, c GS maximum temperature, d GS minimum temperature,

e GS solar radiation, f GS length, g wheat grain yield. The horizontal

bar within the box represents the median. The parts above and below

the median line within the box are upper and lower quartiles.

Whiskers and outliers constitute the data beyond the quartiles
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Materials and Method, and would lead to more late sow-

ings with early maturity cultivar (Janz) (i.e. 40 % chances

from DOCM and 17 % chances from CSs at Bingara),

resulting in lower median GS length compared to that of

CSs (Fig. 7f). Lower median GS rainfall and/or shorter

median GS length and/or ineffective use of rainfall due to

the very light rainfall amount (lost as soil evaporation) are

possible causes of lower median wheat yields from DOCM

in comparison with those from CSs (Fig. 7g). The shorter

dry spells associated with DOCM (Fig. 6) would lead to

lower inter-annual variability of wheat yields (Fig. 7g).

This finding is in line with the study of Dubrovský et al.

(2000).

This study highlighted the importance of post-process-

ing procedures for constructing robust local CSs. Even

though the coupling between spatially downscaled outputs

of GCMs with crop models through a stochastic weather

generator is not a novel practice in itself (Wilks 1992;

Weiss et al. 2003; Luo et al. 2003, 2013, 2014), it is an

essential step for accurate impact assessment and adapta-

tion evaluation. This work will increase climate impact

community’s awareness about the difference between the

direct outputs of RCMs and CSs and hence foster the

adoption of appropriate post-processing techniques in

constructing robust local CSs for impact assessment if the

performance of RCMs against observed climate is not

ideal. This, in turn, will lead to more accurate impact

assessment and avoid under/over or even maladaptation.

This post-processing approach used in this study can also

be applied to produce more accurate local daily seasonal

and intra-seasonal climate forecast information for strate-

gic and tactic decision—making in the agricultural and

water industries as intra-seasonal (long-range weather) and

seasonal forecast systems move from statistical-based

phase systems to GCM-based dynamic forecast systems.

5 Limitations

The bias correction approach adopted in this study has its

own limitations and assumptions such as that model biases

are invariant (the same) between baseline and future per-

iod. However, this assumption has been questioned by

Christensen et al. (2008) and Maraun et al. (2010). More

sophisticated and flexible bias correction procedures need

to be developed in this important research area (Buser et al.

2010). Haerter et al. (2011) used a cascade bias correction

method to address the non-stationarity issue of the bias

across different time periods. The LARS-WG uses

Table 2 p values of significant tests for seasonal climate variables and production components derived from climate scenarios (CSs) and the

direct outputs of climate model (DOCM) for the period 1960–1979

Bingara Peak Hill Deniliquin

CSs versus Obs1 DOCM versus Obs CSs versus Obs DOCM versus Obs CSs versus Obs DOCM versus Obs

WRS2 KS3 WRS KS WRS KS WRS KS WRS KS WRS KS

GSR4 .6014 .9454 .2970 .5379 .6065 .4539 .1157 .1532 .8732 .2371 .0154 .0267

GSR Frequency .0026 .0290 .0000 .0000 .0073 .0328 .0001 .0002 .002 .0001 .1181 .5379

GS5 Tmax
6 .1784 .0369 .0010 .0002 .4884 .0294 .1912 .1532 .0397 .0052 .0747 .1532

GS Tmin
7 .8419 .5879 .0002 .0007 .3364 .0348 .4181 .5379 .6398 .8059 .0034 .0028

GS Radiation .3328 .4079 .0082 .0092 .7033 .7255 .0141 .0028 .0903 .0903 .0000 .0000

GS Length .4635 .4893 .5785 .8081 .5886 .8185 .3809 .8081 .2241 .1669 .4650 .3057

Wheat yield .9624 .9344 .1157 .3057 .9162 .6231 .0182 .0028 .6398 .4634 .0319 .0267

P values of B0.05 shown as bold figures are considered as significant

1 observed climate, 2 Wilcoxon rank-sum, 3 Kolmogorov–Smirnov, 4 growing season rainfall, 5 growing season, 6 maximum temperature, 7

minimum temperature

Table 3 p values of significant tests for seasonal climate variables

and production components derived from climate scenarios and the

direct outputs of the CCAM for the period centred on 2055

Bingzara Peak Hill Deniliquin

WRS1 KS2 WRS KS WRS KS

GSR3 .0048 .0166 .3208 .1290 .4140 .6836

GS frequency .0000 .0000 .0000 .0000 .0001 .0000

GS4 Tmax
5 .0031 .0000 .0000 .0000 .9411 .0097

GS Tmin
6 .7917 .0862 .0000 .0000 .0000 .0000

GS radiation .0931 .0003 .0000 .0000 .0000 .0000

GS length .0358 .1290 .0936 .0352 .0167 .0697

Wheat yield .0240 .0352 .1139 .0127 .0000 .0000

1 Wilcoxon rank-sum, 2 Kolmogorov–Smirnov, 3 growing season

rainfall, 4 growing season, 5 maximum temperature, 6 minimum

temperature

P values of B0.05 shown as bold figures are considered as significant
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identical monthly changes for all quantiles of the statistical

distribution of the climate elements. While this choice is

reasonable in many situations, it is inconsistent with CPs, if

this choice also entails a change in the shape of the dis-

tribution. Quantile–quantile mapping (Deque 2007; Mar-

uan et al. 2010) and other techniques could be used in this

case to provide a more realistic forcing of the LARS-WG.
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