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Abstract This paper addresses the problem of simulating

multivariate random fields with stationary Gaussian incre-

ments in a d-dimensional Euclidean space. To this end, one

considers a spectral turning-bands algorithm, in which the

simulated field is a mixture of basic random fields made of

weighted cosine waves associated with random frequencies

and random phases. The weights depend on the spectral

density of the direct and cross variogram matrices of the

desired random field for the specified frequencies. The

algorithm is applied to synthetic examples corresponding

to different spatial correlation models. The properties of

these models and of the algorithm are discussed, high-

lighting its computational efficiency, accuracy and

versatility.

Keywords Intrinsic random fields � Direct and cross

variograms � Spectral density matrix � Turning bands �
Fractional Brownian surfaces � Self-similarity

1 Introduction

Random fields are extensively used in the earth and envi-

ronmental sciences for spatial prediction and uncertainty

quantification. To ease the inference of the spatial

correlation structure, an assumption of stationarity is often

made, by considering that the finite-dimensional distribu-

tions of the random field of interest are invariant under a

translation in space (strict stationarity) or that the expec-

tation and covariance function exist and are invariant under

a translation in space (second-order stationarity) (Chilès

and Delfiner 2012). However, these assumptions are

sometimes questionable, in particular, in the presence of

spatial trends, long-range dependence and persistence

characteristics.

To cope with this situation, intrinsic random fields, i.e.,

random fields with second-order stationary increments, can

be considered. A well-known example of such fields is the

fractional Brownian surface, which has the property of

repeating itself at all spatial scales (self-similarity). This

model has been used in landscape modeling (Mandelbrot

1982; Palmer 1992; Arakawa and Krotkov 1994), seafloor

topography (Malinverno 1995), geophysics (Jensen et al.

1991; Turcotte 1986, 1997), geology (Herzfeld 1993),

hydrology (Chi et al. 1973; Molz et al. 2004), soil sciences

(Comegna et al. 2013), environmental sciences (Ott 1981),

image analysis (Peitgen and Saupe 1988; Chen et al. 1989;

Huang and Turcotte 1989), telecommunication (Willinger

et al. 1995), biology (Collins and De Luca 1994), ecology

(Pozdnyakov et al. 2014), econometrics (Smith 1994;

Asmussen and Taksar 1997) and social sciences (Ro-

manow 1984), among other disciplines. Currently, a few

exact algorithms exist for simulating a fractional Brownian

surface, in particular the Cholesky factorization (As-

mussen 1998; Michna 1999), circulant embedding

approaches and discrete spectral representations (Beran

1994; Stein 2002; Danudirdjo and Hirose 2011). Approx-

imate algorithms have also been designed, such as mid-

point displacement approaches (Fournier et al. 1982; Voss

1985; Peitgen and Saupe 1988), wavelet representations
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(Combes et al. 1989; Flandrin 1989, 1992; Walker 1997;

Dale and Mah 1998; Pipiras 2005; Albeverio et al. 2012),

turning bands (Emery and Lantuéjoul 2008) and iterative

algorithms based on Markov chains (Arroyo and Emery

2015). The reader is referred to Coeurjolly (2000), Chilès

and Delfiner (2012) and references therein for details.

Although most of these algorithms can be extended to the

simulation of intrinsic random fields, they are applicable

only for simulating at a limited number of locations or at

evenly-spaced locations in Rd. Two notable exceptions are

the Gibbs sampler by Arroyo and Emery (2015) and the

spectral turning-bands algorithm by Emery and Lantuéjoul

(2008), which can approximately simulate intrinsic ran-

dom fields at any set of locations in Rd, irrespective of

their spatial configuration.

The mathematical setting of the intrinsic random field

theory is the following (Chilès and Delfiner 2012). A

random field defined in a d-dimensional Euclidean space,

say Y ¼ fYðxÞ : x 2 Rdg, is an intrinsic random field

without drift if the following conditions are satisfied:

(1) Expectation of increments:

8x; x0 2 Rd; E Yðx0Þ � YðxÞf g ¼ 0.

(2) Variance of increments:

8x; x0 2 Rd; E Yðx0Þ � YðxÞ½ �2
n o

¼ 2cðx0 � xÞ,
where c is known as the variogram.

It can be shown (Appendix 1) that the covariance between

any two increments exists and is invariant under a trans-

lation of the locations supporting these increments, there-

fore the intrinsic random field has second-order stationary

increments. Since adding a constant to the random field

does not change the above properties, a particular repre-

sentation of the random field is often considered by setting

Yð0Þ ¼ 0. Under this additional constraint, the previous

two conditions are equivalent to expressing the expectation

and covariance function of the intrinsic random field as

follows (Appendix 1):

(10) Expectation: 8x 2 Rd; E YðxÞf g ¼ 0.

(20) Covariance function:

8x; x0 2 Rd; E Yðx0Þ � YðxÞf g ¼ cðx0Þ þ cðxÞ � cðx0 � xÞ .

For the purpose of simulation, one has to specify the finite-

dimensional distributions of the intrinsic random field, not

only its expectation and covariance function. In the fol-

lowing, we will consider the case of Gaussian random

fields, i.e., random fields whose finite-dimensional distri-

butions are multivariate Gaussian (multinormal). In such a

case, the distribution of the increments is fully character-

ized by their first two moments (expectation and covari-

ance function), so that the second-order stationarity of the

increments is actually equivalent to their strict stationarity.

One can generalize the definition of an intrinsic Gaus-

sian random field without drift to the multivariate case, by

considering a vector random field Y ¼ fYðxÞ : x 2 Rdg
with P components, such that:

(1) Yð0Þ ¼ 0.

(2) Expectation: 8x 2 Rd; E YðxÞf g ¼ 0.

(3) Covariance of increments:

8x; xþ h 2 Rd;
1

2
E Yðxþ hÞ � YðxÞ½ �f

� Yðxþ hÞ � YðxÞ½ �Tg ¼ !ðhÞ
ð1Þ

where T indicates vector transposition and !ðhÞ is

the P� P matrix of direct (diagonal terms) and cross

(off-diagonal terms) variograms of the vector ran-

dom field for a given separation vector h.

(4) The finite-dimensional distributions of Y are multi-

variate Gaussian.

To our knowledge, there is no available algorithm for sim-

ulating such a vector random field for any number and con-

figuration of the target locations inRd, a problem that will be

addressed in the next sections. The outline is the following:

Sect. 2 introduces a spectral simulation algorithm for gen-

erating multivariate intrinsic Gaussian random fields, while

Sect. 3 shows applications of this algorithm to synthetic

examples. Discussions and conclusions are presented in

Sect. 4 and proofs are reported in Appendices.

2 Methodology

To simulate Y, let us consider a vector random field YS

defined as follows:

8x 2 Rd;YSðxÞ ¼
XP
p¼1

apðUpÞ cosð2phx;Upi þ /pÞ � cosð/pÞ
� �

;

ð2Þ

where h; i represents the inner product in Rd, fUp : p ¼
1; . . .;Pg are mutually independent vectors (frequencies)

with probability density g : Rd ! Rþ, f/p : p ¼ 1; . . .;Pg
are mutually independent scalars (phases) uniformly dis-

tributed over the interval 0; 2p½ Þ, and fap : p ¼ 1; . . .;Pg
are deterministic vector-valued mappings with P real-val-

ued components.

The vector random field YS so simulated clearly fulfills

the first two properties of an intrinsic Gaussian random

field:

(1) YSð0Þ ¼ 0.

(2) 8x 2 Rd; E YSðxÞf g ¼ 0.

To characterize the spatial correlation structure of YS, let

us calculate its matrix of direct and cross variograms:
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1

2
E YSðxþ hÞ � YSðxÞ½ � YSðxþ hÞ � YSðxÞ½ �T
� �

¼2E
XP
p¼1

apðUpÞsin ph2xþh;Upiþ/p

� �
sin phh;Upi
� �" #(

�
XP
q¼1

aqðUqÞsin ph2xþh;Uqiþ/q

� �
sin phh;Uqi
� �" #T)

¼2E
XP
p¼1

XP
q¼1

apðUpÞaTq ðUqÞsin phh;Upi
� �

sin phh;Uqi
� �

(

� sin ph2xþh;Upiþ/p

� �
sin ph2xþh;Uqiþ/q

� ��
:

Accounting for the fact that f/p : p¼ 1; . . .;Pg are inde-

pendent and uniformly distributed in ½0;2pÞ, the only terms

that do not vanish are found when p¼ q. The previous

equation then simplifies into

1

2
E YSðxþ hÞ � YSðxÞ½ � YSðxþ hÞ � YSðxÞ½ �T
� �

¼ 2 E
XP
p¼1

apðUpÞaTp ðUpÞ sin2 phh;Upi
� �(

� sin2 ph2xþ h;Upi þ /p

� ��

¼
XP
p¼1

E apðUpÞaTp ðUpÞ
n o

sin2 phh;Upi
� �

¼
Z

Rd

XP
p¼1

apðuÞaTp ðuÞ
1� cos 2phh; uið Þ

2
gðuÞ du:

It is seen that these direct and cross variograms only

depend on the separation vector h, which indicates that the

simulated vector random field YS has second-order sta-

tionary increments. Let us denote by !SðhÞ its P� P

matrix of direct and cross variograms. It comes:

!SðhÞ ¼
Z

Rd

AðuÞATðuÞ 1� cos 2phh; uið Þ
2

gðuÞ du; ð3Þ

where AðuÞ is the P� P matrix whose p-th column is

apðuÞ.
Compare this expression with the spectral representation

of a variogram (Chilès and Delfiner 2012):

cðhÞ ¼
Z

Rd

1� cos 2phh; uið Þ
4p2kuk2

vðduÞ;

where v is a positive symmetric measure with no atom at

the origin and satisfying

Z

Rd

vðduÞ
1þ 4p2kuk2

\1:

If vðduÞ is absolutely continuous, then the previous rep-

resentation can be rewritten as:

cðhÞ ¼
Z

Rd

1� cos 2phh; uið Þ½ �f ðuÞdu;

with f ðuÞdu ¼ vðduÞ
4p2kuk2

. Henceforth, f will be referred to as

the spectral density of the variogram cðhÞ. In the multi-

variate context, this spectral density becomes a P� P

matrix f : Rd ! Hþ
P , associated with the matrix !ðhÞ of

direct and cross variograms, where Hþ
P denotes the set of

Hermitian positive semi-definite matrices of size P� P

(Chilès and Delfiner 2012).

For the simulated vector random field YS to have direct

and cross variograms associated with a given spectral

density matrix f, the following must be satisfied:

AðuÞATðuÞ
2

gðuÞ ¼ fðuÞ

or, equivalently,

AðuÞATðuÞ ¼ 2fðuÞ
gðuÞ : ð4Þ

The only necessary condition to find a real-valued matrix

AðuÞ fulfilling the above equation is that fðuÞ is a real-

valued symmetric positive semi-definite matrix for every

u 2 Rd and that the support of g contains the support of f

(so that the right-hand side member of Eq. (4) is defined for

any u in Rd and is a real-valued symmetric positive-semi-

definite matrix). In such a case, AðuÞ can be taken as a

square root matrix of
2fðuÞ
gðuÞ . The only restriction to define

the direct and cross variograms is to meet the positive

semi-definiteness condition for the spectral density matrix

fðuÞ for all u 2 Rd .

Finally, to obtain a vector random field with multivariate

Gaussian finite-dimensional distributions, one can add and

properly scale many independent basic random fields

defined as in Eq. (2):

8x2Rd;YSðxÞ¼
1ffiffiffi
L

p
XL
l¼1

XP
p¼1

apðUl;pÞ cosð2phx;Ul;piþ/l;pÞ
�

�cosð/l;pÞ�; ð5Þ

with L 2 N�. If L is large, the finite-dimensional distribu-

tions of YS are approximately multinormal, by virtue of the

multivariate central limit theorem, while its expectation

and its spatial correlation structure (direct and cross vari-

ograms) remain the same as that of the random field

defined in Eq. (2).

Accordingly, the first three properties introduced in

Sect. 1 to define an intrinsic vector Gaussian random field

are exactly reproduced, while the fourth property is only

approximate as the simulated random field is not perfectly

Gaussian. To determine whether or not the approximation
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is acceptable, one approach is to compare the distribution

of a linear combination of YS at specific locations with the

distribution that would be obtained if YS were perfectly

Gaussian; an upper bound of the Kolmogorov distance

between both distributions can be obtained by using the

Berry-Esséen theorem (Lantuéjoul 1994; Emery and Lan-

tuéjoul 2008). Another approach is to check the fluctua-

tions of regional statistics calculated over a set of

realizations, by means of hypothesis testing (Emery 2008).

In summary, the steps for simulating a P-variate

intrinsic Gaussian random field at a given set of target

locations in Rd are the following:

1. Identify the spectral density matrix f : Rd ! Hþ
P

associated with the direct and cross variograms of

the target random field.

2. Choose a probability density g : Rd ! Rþ with sup-

port containing the support of f.

3. Choose a large integer L.

4. For p ¼ 1; . . .;P and l ¼ 1; . . .; L:

(a) Generate a random phase /l;p uniformly dis-

tributed on ½0; 2pÞ.
(b) Generate a random vector Ul;p with density g.

(c) Calculate the square root of matrix
2fðUl;pÞ
gðUl;pÞ

.

(d) Identify apðUl;pÞ as the p-th column of the square

root matrix calculated at step (c).

5. Calculate the simulated random field YS at all target

locations as per Eq. (5).

3 Examples

The proposed algorithm is now tested to simulate intrinsic

random fields on a regular two-dimensional grid (d ¼ 2)

with 500� 500 nodes and a unit mesh. The simulation is

performed by adding L ¼ 500 basic random fields in

Eq. (5). The probability density g is chosen as the fol-

lowing function (depending on two positive scalar param-

eters a and m) with support equal to Rd:

gðu; a; mÞ ¼
ð2paÞdC mþ d

2

� �

CðmÞpd=2
1

ð1þ ð2paÞ2 kuk 2Þmþd=2
;

ð6Þ

which is nothing else than the spectral density of an iso-

tropic Matérn variogram with unit sill, scale parameter a

and shape parameter m (Lantuéjoul 2002):

Mðh; a; mÞ ¼ 1� 21�m

CðmÞ
khk
a

	 
m

Km
khk
a

	 

: ð7Þ

According to Emery and Lantuéjoul (2006), a random

vector in Rd with probability density g can be simulated by

scaling a standard Gaussian random vector by the square

root of an independent standard gamma random variable

with shape parameter m. In the following examples, which

differ by the expression assumed for the cross variograms

of the simulated random fields, we will consider the

specific values a ¼ 30 and m ¼ 0:25, although the algo-

rithm is applicable with any other choice for these

parameters.

Fig. 1 Realizations of a bivariate intrinsic random field with power variograms (first component on the left and second component on the right),

with h1 ¼ 0:5; h2 ¼ 1:5; h12 ¼ 1 and q ¼ 0:5
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3.1 Example 1: Intrinsic vector random field

with power variograms

In this subsection, let us consider the case when all the

direct and cross variograms are of the form h �! k h
b
kh,

where b[ 0 and h 2 ð0; 2Þ. The spectral density of such a

power variogram is (Chilès and Delfiner 2012):

8u 2 Rd; f ðu; b; hÞ ¼
bdhC hþd

2

� �

2C 1� h
2

� �
phþd=2kbukhþd

: ð8Þ

Consider a bivariate random field (P ¼ 2) with a matrix of

direct and cross variograms of the form:

8h 2 Rd;!ðhÞ ¼ khkh1 q khkh12

q khkh12 khkh2

 !
; ð9Þ

with h1 2 ð0; 2Þ, h2 2 ð0; 2Þ, h12 2 ð0; 2Þ and q 2 R.

The corresponding spectral density matrix for a given

frequency vector u 2 Rd is:

fðuÞ ¼
f ðu; 1; h1Þ q f ðu; 1; h12Þ

q f ðu; 1; h12Þ f ðu; 1; h2Þ

	 

: ð10Þ

This matrix is real-valued and symmetric. It is positive

semi-definite for any u in Rd if and only if the following

conditions hold (proof in Appendix 2):

1. h12 ¼
h1 þ h2

2

2. jqj �
2C 1� h1þh2

4

� �

ðh1 þ h2ÞC h1þh2
4

þ d
2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h1h2C

h1þd

2

� �
C

h2þd

2

� �
C 1�h1

2

� �
C 1�h2

2

� �
s

:

As an example, Fig. 1 shows the map of one realization

obtained by running the proposed algorithm with h1 ¼

Fig. 2 Experimental variograms for 100 realizations (green dashed

lines), average of experimental variograms (blue stars) and theoretical

models (black solid lines). From left to right and top to bottom: direct

variograms for first component, direct variograms for second

component, and cross-variograms
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0:5; h2 ¼ 1:5; h12 ¼ 1:0 and q ¼ 0:5. Figure 2 compares

the experimental direct and cross variograms of one hun-

dred realizations (calculated along the abscissa axis) with

the theoretical power variograms. The average experi-

mental variograms almost perfectly match the theoretical

ones, which corroborates that the simulated random field

reproduces the desired spatial correlation structure.

3.2 Example 2: Intrinsic vector random field

with power-Matérn variograms

In this subsection, one is interested in simulating a

bivariate intrinsic random field whose direct variograms

are power variograms with scale parameters b1 [ 0 and

b2 [ 0 and exponents h1 and h2 in (0, 2), respectively, and

whose cross variogram is a Matérn variogram with sill q in

R, scale parameter a12 [ 0 and shape parameter m12 [ 0:

8h 2 Rd;!ðhÞ ¼
k h

b1
kh1 qMðh; a12; m12Þ

qMðh; a12; m12Þ k h

b2
kh2

0
BB@

1
CCA:

ð11Þ

The corresponding spectral density matrix for a given

frequency vector u 2 Rd is:

fðuÞ ¼
f ðu; b1; h1Þ q gðu; a12; m12Þ

q gðu; a12; m12Þ f ðu; b2; h2Þ

	 

: ð12Þ

Again, this matrix is real-valued and symmetric. It is

positive semi-definite for any u in Rd if and only if the

following conditions hold (proof in Appendix 3):

1. m12 �
h1 þ h2

4
2. jqj � qmax (Eq. (17) in Appendix 3).

As an example, Fig. 3 shows the map of one realization

for h1 ¼ 0:5; h2 ¼ 1:5; b1 ¼ 10; b2 ¼ 20; a12 ¼ 10; m12 ¼ 1

and q ¼ 0:4, while Fig. 4 compares the experimental direct

and cross variograms of one hundred realizations (calcu-

lated along the abscissa axis) with the theoretical power

and Matérn variogram models. As for the first example, the

match between the average experimental variograms and

the theoretical variogram models is almost perfect.

4 Discussion and conclusions

Some comments about the presented algorithm are worth

being made. At a given location x, the simulated random

field YS (Eq. (5)) is calculated by projecting x onto a set of

frequency vectors fUl;p : l ¼ 1; . . .; L; p ¼ 1; . . .;Pg, which
makes the proposed algorithm a particular case of the

turning bands method (Matheron 1973). Even more, since

the basic random field defined in Eq. (2) is a weighted sum

of cosine waves with weights ðapðUl;pÞÞ that depend on the

spectral density of the target direct and cross variograms,

the proposal can be classified as a spectral turning-bands

algorithm. Such an algorithm generalizes previous

approaches for simulating stationary Gaussian vector ran-

dom fields (Shinozuka 1971; Mantoglou 1987; Emery et al.

2016) or for simulating univariate random fields with sta-

tionary Gaussian increments (Emery and Lantuéjoul 2008).

Interestingly, the frequency vectors fUl;p : l ¼
1; . . .; L; p ¼ 1; . . .;Pg turn out to be generated with a

Fig. 3 Realizations of a bivariate intrinsic random field (first component on the left and second component on the right) with power-Matérn

variograms, with h1 ¼ 0:5; h2 ¼ 1:5; b1 ¼ 10; b2 ¼ 20; a12 ¼ 10; m12 ¼ 1 and q ¼ 0:4
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probability density g that can be chosen by the user, instead

of the spectral density f of the variogram associated with a

specific component of the desired intrinsic vector random

field (Eq. 8), which is not a genuine probability density

function (f is non-integrable in Rd). Some solutions based

on the spectral density f were proposed in the past decades,

but they are approximate since they require truncating f at

low frequencies (Chilès 1995). Also note that the algorithm

proposed in this paper is intrinsically different from other

spectral approaches based on discrete Fourier transforms,

which rely on periodizations and/or circulant embeddings

and allow simulating the desired random field only at

evenly-spaced locations in Rd. Here, the simulation can be

performed for any number and any configuration of the

target locations. Apart from this versatility, the proposed

spectral turning-bands algorithm appears to be faster than

existing algorithms, with a computational cost to generate a

simulated field directly proportional to the number of target

locations (see Emery et al. 2016 for an analysis of the

necessary floating point operations), and is not demanding

in terms of memory storage requirements.

The presented examples also show models for bivariate

intrinsic random fields with different spatial correlation

models. In particular, in the second example (power-

Matérn model), each component of the simulated random

field has a power variogram, therefore self-similar. How-

ever, the bivariate random field is no longer self-similar

when one considers its two components jointly, because the

cross variogram is not self-similar. In contrast, in the first

example (power-power model), the direct and cross vari-

ograms are self-similar and so is the simulated bivariate

random field (Herzfeld 1993); this random field is an

Fig. 4 Experimental variograms for 100 realizations (green dashed

lines), average of experimental variograms (blue stars) and theoretical

models (black solid lines). From left to right and top to bottom: direct

variograms for first component, direct variograms for second

component, and cross-variograms
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approximation of a bivariate fractional Brownian surface

(Amblard et al. 2013) that would be obtained if the number L

of basic randomfields were infinitely large, in which case the

increments would have multivariate Gaussian distributions.

Although this example is quite restrictive, insofar as the

exponent associated with the cross-structure must be the

average of the exponents associated with the direct struc-

tures, it is of interest because it could allow generating a

long-range dependent field (with exponent greater than 1.0)

cross-correlated with a low-range dependent field (with

exponent less than 1.0). The procedure to find the conditions

for admissible models, based on analyzing the positive semi-

definiteness of the spectral density matrices, can easily be

extended to identify cross variogram models other than the

power or Matérn and to more components ðP[ 2Þ.
In conclusion, we designed a continuous spectral algo-

rithm that simulates vector random fields with the spatial

correlation structure of a desired multivariate intrinsic

random field, its only approximation being the fact that the

finite-dimensional distributions of the simulated random

field are not exactly multivariate Gaussian because the

number L of basic random fields that are summed in Eq. (5)

is finite. The algorithm excels by its versatility, fastness

and low computational cost.
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Appendix 1: Covariance and variogram

Consider a scalar intrinsic random field Y ¼ fYðxÞ : x 2
Rdg and denote by cðhÞ its variogram for the separation

vector h. For given locations x, x0 and x0, let us express the

covariance between the two increments YðxÞ � Yðx0Þ and
Yðx0Þ � Yðx0Þ in terms of the variogram:

Cðx; x0; x0Þ :¼ cov YðxÞ � Yðx0Þ; Yðx0Þ � Yðx0Þf g
¼ cov YðxÞ � Yðx0Þ; Yðx0Þ � YðxÞf g

þ cov Yðx0Þ � Yðx0Þ; Yðx0Þ � Yðx0Þf g
� cov Yðx0Þ � Yðx0Þ; YðxÞ � Yðx0Þf g
þ cov YðxÞ � Yðx0Þ; YðxÞ � Yðx0Þf g

¼ � 2cðx� x0Þ þ 2cðx0 � x0Þ
� Cðx; x0; x0Þ þ 2cðx� x0Þ:

Accordingly:

Cðx; x0; x0Þ ¼ cðx� x0Þ þ cðx0 � x0Þ � cðx� x0Þ:

Note that this covariance is unchanged by shifting the

locations x, x0 and x0 by a given vector h, i.e.,

Cðx; x0; x0Þ ¼ Cðxþ h; x0 þ h; x0 þ hÞ, showing that the

intrinsic random field has second-order stationary incre-

ments. Furthermore, by taking x0 ¼ 0 and considering that

Yð0Þ ¼ 0, it ensues:

cov YðxÞ; Yðx0Þf g ¼ cðxÞ þ cðx0Þ � cðx� x0Þ;

which shows that the knowledge of the variogram is

equivalent to that of the covariance function of the random

field.

Appendix 2: Existence conditions for Example 1

The spectral density matrix fðuÞ defined in Eq. (10) is

Hermitian because it is a real symmetric matrix. To check

that it is positive semi-definite, one therefore only needs to

verify that its determinant is non-negative (Horn and

Johnson 1985), that is:

f ðu; 1; h1Þ � f ðu; 1; h2Þ� q2f 2ðu; 1; h12Þ;

that is:

h1C
h1þd
2

� �

2C 1� h1
2

� �
ph1kukh1

�
h2C

h2þd
2

� �

2C 1� h2
2

� �
ph2kukh2

� q2
h212C

2 h12þd
2

� �

4C2 1� h12
2

� �
p2h12kuk2h12

:

ð13Þ

From this inequality to hold, one first needs to verify the

following:

1

kukh1þh2
� 1

kuk2h12
: ð14Þ

If 2h12\h1 þ h2, inequality (14) is not satisfied for

kuk[ 1, whereas if 2h12 [ h1 þ h2, inequality (14) is not

satisfied for kuk\1. Therefore, one must have

h12 ¼
h1 þ h2

2
;

in which case Eq. (14) obviously holds 8u 2 Rd. Under this

condition, one obtains from Eq. (13):

q2 � 4h1h2
ðh1 þ h2Þ2

C h1þd
2

� �
C h2þd

2

� �
C2 1� h1þh2

4

� �

C 1� h1
2

� �
C 1� h2

2

� �
C2 h1þh2

4
þ d

2

� � :

Appendix 3: Existence conditions for Example 2

The spectral density matrix fðuÞ defined in Eq. (12) is

Hermitian positive semi-definite if its determinant is non-

negative, i.e.:

f ðu; b1; h1Þ � f ðu; b2; h2Þ� q2g2ðu; a12; m12Þ;

that is:

1590 Stoch Environ Res Risk Assess (2017) 31:1583–1592

123



uðkukÞ :¼ ð2pa12Þ2dkukh1þh2þ2d

1þ ð2pa12Þ2kuk2
� �2m12þd

� x
q2

; ð15Þ

with

x ¼
h1h2C

h1þd
2

� �
C h2þd

2

� �
C2ðm12Þ

4ph1þh2bh11 b
h2
2 C 1� h1

2

� �
C 1� h2

2

� �
C2 m12 þ d

2

� � :

The mapping u : Rþ ! R is unbounded if h1 þ h2 [ 4m12,
in which case inequality (15) cannot be satisfied. In the

converse ðh1 þ h2 � 4m12Þ, the maximum of u is found to

be

umax ¼
ðh1 þ h2 þ 2dÞðh1þh2Þ=2þd

ð4m12 þ 2dÞ2m12þd

� ð4m12 � h1 � h2Þ2m12�ðh1þh2Þ=2

ð2pa12Þh1þh2
:

Therefore, for the spectral density matrix fðuÞ to be

positive semi-definite for all u 2 Rd, the following neces-

sary and sufficient conditions must be fulfilled:

h1 þ h2 � 4m12 ð16Þ

and

jqj � qmax ¼
ffiffiffiffiffiffiffiffiffiffi
x

umax

r
: ð17Þ

In the particular case when h1 þ h2 ¼ 4m12, then

umax ¼ ð2pa12Þ�ðh1þh2Þ, and the limit value for jqj is given
by

jqj �
C h1þh2

4

� �

2C h1þh2
4

þ d
2

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a12

b1

	 
h1 2a12

b2

	 
h2h1h2C
h1þd
2

� �
C h2þd

2

� �

C 1� h1
2

� �
C 1� h2

2

� �
vuut :
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