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Abstract Modelling glacier discharge is an important

issue in hydrology and climate research. Glaciers represent

a fundamental water resource when melting of ice and

snow contributes to runoff. Glaciers are also studied as

natural global warming sensors. GLACKMA association

has implemented one of their Pilot Experimental Catch-

ment areas at the King George Island in the Antarctica

which records values of the liquid discharge from Collins

glacier. In this paper, we propose the use of time-varying

copula models for analyzing the relationship between air

temperature and glacier discharge, which is clearly non

constant and non linear through time. A seasonal copula

model is defined where both the marginal and copula

parameters vary periodically along time following a sea-

sonal dynamic. Full Bayesian inference is performed such

that the marginal and copula parameters are estimated in a

one single step, in contrast with the usual two-step

approach. Bayesian prediction and model selection is also

carried out for the proposed model such that Bayesian

credible intervals can be obtained for the conditional gla-

cier discharge given a value of the temperature at any given

time point. The proposed methodology is illustrated using

the GLACKMA real data where there is, in addition, a

hydrological year of missing discharge data which were not

possible to measure accurately due to problems in the

sounding.

Keywords Bayesian inference � Copulas � Glacier
discharge � Seasonality � MCMC � Melt modelling

1 Introduction

Glaciers lose mass through different processes such as

melting, sublimation and calving. In particular, most of

liquid water is lost by surface melting and runoff or surface

melting, percolating inside the glacier and exit by the front

and the base. Glacier discharge is defined as the rate of

flow of meltwater through a vertical section perpendicular

to the direction of the flow (Cogley et al. 2011). Modelling

glacier discharge is a very important issue in climate and

hydrology research (Jansson et al. 2003; La Frenierre et al.

2014). A review of the different approaches for glacier

melt modelling can be found in Hock (2005). These models

are usually classified in two main categories: energy bal-

ance models, which try to solve balance equations relating

the gain and loss of ice in glacier systems (Ohmura 2001;

Willis et al. 2002), and temperature index or degree-day

models, which are essentially simple linear regression

models relating the temperature and the glacier discharge

(Gray and Prowse 1993; Hock 2003; Pellicciotti et al.

2005). Temperature-index models are often preferred for

their simplicity and because the air temperature is usually

easy available. However, the main drawback of these

models is that they generally assume that the relation

between temperature and glacier discharge is linear and

constant along time, which is not realistic in practice.
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Copulas have become a common tool to model nonlin-

ear dependencies and nonstationarity. Although the copula

concept appears by the late 50s, the computer development

in the last decades has caused a fast growth of the number

of scientific papers related with copulas, see Nelsen (2006)

for an extensive review. The main advantage of copulas is

that the marginal distributions can be defined separately

from their dependence structure. Copulas have been widely

used in many different fields such as a civil engineering,

finance, medicine, etc. In particular, in climate and

hydrology research, they have been considered for example

to model the dependence between the temperature and

rainfall (Scholzel and Friederichs 2008; Cong and Brady

2012), the relation between the intensity and duration of a

rainfall (Cantet and Arnaud 2014), between the wind

direction and rainfall (Carnicero et al. 2013), in charac-

terization of droughts (Zhang et al. 2013), in the analysis of

floods (Saad et al. 2014), in the behaviour of reconstructed

watersheds (Nazemi and Elshorbagy 2012), spatial models

(Kazianka and Pilz 2010), among others. See also Genest

and Favre (2007) for an introduction to copulas in

hydrology. In most of these works, copula models are static

such that their parameters remain constant along time.

Time-varying copulas have been widely used in finance

(Patton 2012; Ausı́n and Lopes 2010) but their use is very

limited in hydrological research.

GLACKMA (Glaciers, Cryokarst and Environment)

association promotes scientific research in the polar

regions, see http://www.glackma.es. Their researchers have

been visiting both poles almost every year since 1985 with

the goal of using the glaciers as natural warming sensors,

(Hock et al. 2005; Bers et al. 2013). GLACKMA has

implemented eight stations as Pilot Experimental Catch-

ment areas at different latitudes and altitudes in glaciers of

both hemispheres which are working continuously to reg-

ister glacier discharge values. In this paper, we will con-

centrate on one of these stations located at the King George

Island in the Antarctica, where there is available glacier

discharge data from 2002. Temperature data are also

obtained from the Russian Antarctic Base Bellingshausen,

located at 4 km from the GLACKMA station on King

George Island.

The main objective of this paper is to study the time-

varying relationship between glacier discharge and tem-

perature. We show that the dependence among these two

variables is non constant and non linear through time.

Therefore, we propose a time-varying seasonal copula

model whose parameters follow a seasonal dynamic. The

marginal distributions for the discharge and temperature

are modelled using time-varying distribution models whose

location, scale and shape parameters vary periodically on

time. Bayesian inference and prediction is carried out such

that it is possible to obtain credible Bayesian intervals for

the missing data periods and credible predictive intervals

for the glacier discharge value conditioned on the tem-

perature at any given time point whose temperature is

known.

This paper is organized as follows. Section 2 describes

the study area in Antarctica where the GLACKMA

experimental station is installed. A descriptive analysis of

the available database is also provided. Section 3 intro-

duces the proposed time-varying copula model where the

rank correlations follow a seasonal dynamic and whose

marginal distribution parameters also vary periodically

along time. Section 4 explains how to undertake Bayesian

inference and prediction based on MCMC methods and

describes how to perform Bayesian model selection in this

context based on DIC. The proposed methodology is

applied in Sect. 5 for the GLACKMA database. Finally,

Sect. 6 concludes with some discussion and extensions.

2 Study area and data description

King George Island is the largest of the South Shetland

Islands located at the tip of the Antarctic Peninsula. The

glaciers of King George Island have suffered a retreat and

loss of thickness in the recent decades associated with

rising air temperatures (Rückamp et al. 2011; Osmanoglu

et al. 2013). Collins Glacier, with around 1313 km2, covers

most of the King George Island except the south-western

end of the island, where the Fildes Peninsula is located.

The study area is placed in this south west side of the

icecap Collins, known as Smaller Dome or Bellingshausen

Dome, see Fig. 1.

More specifically, the GLACKMA measuring station,

named as CPE-KG-62�S, is installed in a canyon near the

Uruguayan Base Artigas (62�11 03S, 58�54 41W), where a

stream bringing water runs from the unique lagoon which,

after diverse proglacial routes, receives the flow from five

springs redirecting the glacier discharge into the south side

of the coast. These five springs drain water from a catch-

ment area with a total surface of 2.92 km2, which com-

prises 1.31 km2 of glacier surface, 0.25 km2 of peripheral

moraine and and 1.36 km2 of fluvial surface.

The GLACKMA monitoring station was installed in

January of 2002 and consisted of a sounder with sensors for

water temperature, conductivity and river level. After two

years of hourly registrations, the hard meteorological

conditions during the austral winter in 2003 caused a series

of invalid records during the following austral summer. A

new high-quality sounder was then set up which, although

it only registers values from the river level, it is much more

resistant under extreme conditions. The glacier discharge

can be accurately estimated as an exponential function of

the river level using a classical regression fit with
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R2 ¼ 0:99, see Domı́nguez and Eraso (2007) for further

details.

Therefore, the available discharge data for this project

are from October 1st, 2002 to September, 30th 2012, with a

missing hydrological year of records from December, 1st

2003 to June, 30th 2004. On the other hand, a complete

time series of temperatures is obtained for the whole same

period from the weather station of the Russian Antarctic

Base Bellingshausen, located at 4 km from the CPE-KG-

62�S station. Daily average values are obtained such that

our database consists of a bivariate time series of 3653

observations from two main variables: the average daily

glacier discharge, measured in m3/s�km2, and the average

daily air temperature, measured in Celsius degrees (�C),
during ten hydrological years, with 213 consecutive miss-

ing values for the discharge.

Figure 2 shows the boxplots of the average daily mean

glacier discharge divided by 11-day groups for a smoother

description. Note that there is a clear seasonality pattern.

First, we observe that during the austral winter, which

starts at the end of June, there is almost no glacier dis-

charge. This produces a large amount of zero values which

represent around the 57 % of the discharge observations.

The period of positive discharge begins at the end of the

austral spring, between November and December. During

this initial discharge period, there are eventually some

extreme values which are usually known as ‘‘spring

events’’ or ‘‘burst’’ (Warburton et al. 1994), these are brief

and violent episodes when the glacier brutally release a

large amount of water. They are mostly originated when

the bottom of full-of-water vertical wells are broken due to

the increase in the temperatures.

Figure 2 also shows that the maximum values for the

median of the discharge are observed during the austral

summer, from the end of December to the middle of

March. The median discharge starts to decrease with the

arrival of the autumn, at the end of March. However, we

may also observe extreme values during this period, which

are known as ‘‘aftershocks’’(Warburton et al. 1994). These

are kicks in the glacier drainage that may appear when the

annual discharge wave seems to be over and are typically

caused by the fluctuations in the temperature during this

period.

Figure 3 shows the boxplots of the average daily tem-

peratures divided again, for a smoother description, by

11-day groups (Whitfield et al. 2002). As before, we can

Fig. 1 Left panel shows the location of King George Island in the Antarctica. Central panel shows the island, mostly covered by Collins glacier.

Right panel zooms in the location of the CPE-KG-62�S station, indicated with a red arrow (Braun et al. 2002)

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

0.
0

0.
4

0.
8

1.
2

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33

11−day group, starting in October

D
is

ch
ar

ge
 (

m
3/

se
c 

km
2)

Fig. 2 Boxplots of the average daily glacier discharge from 2002 to 2012 divided in 11-day groups
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observe a clear seasonality effect. Note that the average

temperatures are above zero only during the austral sum-

mer, from the middle of December to the middle of March.

Also during the summer period, we can observe less dis-

persion and more symmetry, in the temperature distribu-

tion, than in the rest of the year. On the contrary,

temperatures start to decrease with the beginning of

autumn and their dispersion increase such that they are

almost always below zero during the austral winter, from

the end of June to the end of September, when they present

a strong left asymmetry. These plots has been obtained

with the help of the R package seas (Toews et al. 2007).

Figures 2 and 3 also show that there is a clear rela-

tionship between temperature and glacier discharge. Also,

we can observe that this dependence is not constant

through time. During the austral winter, when the tem-

peratures are very low, there is no glacier discharge.

However, as commented before, the period of positive

discharge starts in spring when the temperatures increase

and during the austral summer, the median of the discharge

reach their maximum values due to largest values for

temperatures. Therefore, it is clear that there is also a

seasonal dynamic in the dependence. Figure 4 shows the

scatter plots for the temperature and the discharge sepa-

rately for each season. We can observe that there is a strong

dependence in summer that disappears in winter. We can

also observe that this dependence is not linear. Figure 4

also shows the same scatter plots on copula scale. These

are obtained using the empirical cdf evaluated at the

observed temperatures and discharges for each season.

Observe that the support of the copula function does not

cover the whole unit square in some seasons due to the zero

values observed in the glacier discharge.

Therefore, in the next section, we propose a model for a

time-varying dependence which is not linear and shows a

clear seasonal pattern. This is addressed by considering a

dynamic joint distribution for the temperature and the

glacier discharge whose dependence is measured in terms

of a dynamic copula function whose Kendall’s tau coeffi-

cient moves periodically along time.

3 Seasonal model

In this section, we present a general model to describe the

joint seasonal dynamics for the temperature and the glacier

discharge. Firstly, we define separately the marginal

models for the temperature and the glacier discharge using

time-varying periodic distributions. Then, we describe the

seasonal dependence using a time-varying copula model

whose parameters vary periodically along time.

3.1 Marginals

Firstly, we define a periodic time seriesmodel for the average

daily temperature at each day t, which will be denoted by Xt.

In order to approximate its seasonal behavior,we assume that

the distribution of Xt changes periodically through time with

a location parameter, lt, given by:

lt ¼ a0l þ
XK1

k¼1

akl cos
2kpt
c

� wk1

� �
; ð1Þ

where c ¼ 365:25 is the annual periodic cycle. Observe that

this is an approximation by a partial sum of a trigonometric

Fourier series with K1 terms, where the fundamental fre-

quency is 2p=c, the amplitude parameters are

al ¼ ða0l; . . .; aK1lÞ, where akl 2 R, and the phase angle

parameters are w1 ¼ ðw11; . . .;wK11
Þ, where wk1 2 ½0; pÞ.

Note that each angle phase, wk1, is only defined in the semi-

unit circle ½0; pÞ since:

akl cos
2kpt
c

� wk1

� �
¼ �akl cos

2kpt
c

� wk1 þ pð Þ
� �

Figure 2 shows that not only the mean of temperature

varies periodically along time, but also the variance and
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Fig. 3 Boxplots of the average daily temperature from 2002 to 2012 divided in 11-day groups
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possibly, the shape of the distribution. Therefore, we

assume similarly that the scale, rt, and shape, nt, param-

eters of Xt vary periodically along time such that,

logrt ¼ a0r þ
XK1

k¼1

akr cos
2kpt
c

� wk1

� �
;

nt ¼ a0n þ
XK1

k¼1

akn cos
2kpt
c

� wk1

� �
;

ð2Þ

where ar ¼ ða0r; . . .; aK1rÞ and an ¼ ða0n; . . .; aK1nÞ are the

amplitude parameters for the scale and shape, respectively,

where akr 2 R and akn 2 R. And where w1 is the same

vector of phase parameters defined in (1) for the time-

varying location. Note that it makes sense to assume that

the phase vector is the same for the location, shape and

scale, since we expect the same dynamics for the three

parameters such that, for example, when the location

increases, the scale and shape decreases. Note also that in

(2), we have modelled the logarithm of the scale parameter,

rt, to avoid that it takes negative values. Therefore, the set

of parameters for the temperature is given by #X ¼
al; ar; an;w1

� �
and the number of Fourier terms, K1.

Once we have defined the periodic pattern for the

location, scale and shape parameters, it is necessary to

specify a distribution model for the time-varying temper-

ature, Xt. For example, we may assume a skewed normal

distribution, Xt � SNðlt; rt; ntÞ (Azzalini 1985), whose

density is given by,

fSN xt j lt; rt; ntð Þ ¼ 2

rt
/

xt � lt
rt

� �
U nt

xt � lt
xt

� �� �
;

ð3Þ

where / and U denote the pdf and cdf of a standard

Gaussian distribution. Note that when nt ¼ 0, we obtain the

symmetric normal model, Xt �Nðlt; rtÞ.
Alternatively, we can consider a generalized extreme

value distribution model for the temperature,

Xt �GEVðlt; rt; ntÞ (Embrechts et al. 1997), whose den-

sity is given by,

fGEV xt j lt; rt; ntð Þ ¼ 1

r
1þ nt

xt � lt
rt

� �� �� 1
nt
�1

� exp � 1þ nt
xt � lt
rt

� �� �� 1
nt

( )

ð4Þ

for xt [ lt � rt=nt when nt [ 0 and for xt\lt � rt=nt
when nt\0. This is a very flexible distribution which

includes the Weibull or the Gumbel distribution as partic-

ular cases.

There are many other possibilities that could be con-

sidered to model the temperature distribution. In Sect. 4,

we explain how to undertake model selection for the dis-

tribution model and for the number of Fourier terms from a

Bayesian perspective.

Now, we define a periodic time series model for the

average daily discharge at each day t, which will be

denoted by Yt. As before, we approximate the seasonal

dynamics for the location, kt, and scale, bt, parameters of

Yt using partial sums of Fourier series:

log kt ¼ a0k þ
XK2

k¼1

akk cos
2kpt
c

� wk2

� �
; ð5Þ
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Fig. 4 Scatter plots for the daily average temperature and discharge in each season on the upper row and the same scatter plots on copula scale

on the bottom row
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logbt ¼ a0b þ
XK2

k¼1

akb cos
2kpt
c

� wk2

� �
: ð6Þ

where

ak ¼ ða0k; . . .; aK2kÞ; akk 2 R;

ab ¼ ða0b; . . .; aK2bÞ; akb 2 R;

are the amplitude parameters for the location and scale

parameters and w2 ¼ ðw12; . . .;wK22
Þ, wk2 2 ½0; pÞ, is the

vector of phase parameters. Thus, the vector of parameters

for the glacier discharge is given by #Y ¼ ak; ab;w2

� �
and

the number of Fourier terms, K2.

Clearly, we could also define a similar periodic dynamic

for the shape parameter. However, for simplicity, we will

only consider positive random variables with two param-

eters to model the glacier discharge. For example, we may

assume a Log-Normal distribution for the glacier discharge

whose density is given by,

fLN yt j kt; btð Þ ¼ 1

ytbt
ffiffiffiffiffiffi
2p

p exp � log ytð Þ � ktð Þ2

2b2t

( )
: ð7Þ

Altenatively, we could assume a Gamma distribution,

Yt �G at; btð Þ; whose density is given by:

fG yt j at; btð Þ ¼ batt
C atð Þ x

at�1
t exp �btxtf g; ð8Þ

where the mean, kt ¼ at=bt and scale parameter bt are

assumed to follow the seasonal dynamics given in (5) and

(6), respectively. As commented before, model selection

and parameter estimation will be addressed in Sect. 4.

3.2 Copula

As commented in the Introduction, the dependence

between the temperature and the glacier discharge is not

constant along time. There is a strong dependence between

this two variables in the austral summer and there is almost

no dependence in the austral winter. In order to describe

this pattern, in this section we model the dependence

between these two variables using a time-varying copula

model. More specifically, we assume that the Kendall’s tau

coefficient, st, follows a seasonal dynamic described by a

periodic function given by,

st ¼ a0s þ
XKc

k¼1

aks cos
2kpt
c

� wks

� �
; ð9Þ

where as ¼ ða1s; . . .; aKcsÞ, aks 2 Rþ, are the amplitude

parameters and ws ¼ ðw1s; . . .;wKcsÞ, wks 2 ½0; 2pÞ, are the

phase parameters of the time-varying tau rank correlation

parameter. Now the angle phase, wks, is defined in the unit

circle ½0; 2pÞ since:

aks cos
2kpt
c

� wks

� �
¼ aks cos

2kpt
c

� wks þ 2pð Þ
� �

;

moreover, we put the restrictions ais � 0 and a0s ¼
P

ais to

ensure that s is always in the interval [0, 1]. This makes

sense since the dependence between the temperature and

the discharge will never be negative. Thus, the vector of

parameters for the copula is given by #C ¼ as;wsf g and

the number of Fourier terms, Kc:

Different copula models could be used. For example, we

might consider that the dependence structure is defined by

a time-varying Gumbel copula:

CG ut; vt j htð Þ ¼ exp � � log utð Þhtþ � log vtð Þht
	 
� 1

ht

� �
;

ð10Þ

where ut ¼ FXt
ðxt j #XÞ and vt ¼ FYtðyt j #YÞ are the mar-

ginal distribution functions for Xt and Yt, respectively, at

time t, and where, ht ¼ 1
1�st

; where the dynamics of st are

specified in (9). One of the main advantages of the Gumbel

copula is that it allows for right tail dependence (Embrechts

et al. 2001). Similarly, we could consider many other para-

metric copulamodelswith time-varying tau correlation, such

as the Gaussian copula that do not allow for tail dependence:

CGa ut; vt j htð Þ ¼
Z U�1 utð Þ

�1

Z U�1 vtð Þ

�1

1

2p 1� h2t

 �1=2

� exp � x2 � 2htxyþ y2

2 1� h2t

 �

( )
dxdy;

ð11Þ

where U�1 denotes the inverse of the distribution function

of the univariate standard normal distribution and where,

ht ¼ sin p
2
st


 �
.

Another alternative would be to assume a Student-t

copula,

CSt ut; vt j ht; tð Þ ¼
Z t�1

t utð Þ

�1

Z t�1
t vtð Þ

�1

1

2p 1� h2t

 �1=2

� 1þ x2 � 2htxyþ y2

t 1� h2t

 �

( )�tþ2
2

dxdy;

ð12Þ

where t�1
t denotes the inverse of the distribution function of

the univariate t distribution with t degrees of freedom and

where, ht ¼ sin p
2
st


 �
.

However, this copula model impose symmetric tail

dependence, which does not seem realistic in this context,

and would also require to estimate the degrees of freedom

as an additional parameter.

Therefore, assuming that the number of terms in each

Fourier sum is known, the joint density function for the tem-

perature and the glacier discharge at time t will be given by,
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f xt; yt j #X ;#Y ;#Cð Þ ¼ fXt
xt j #Xð Þ � fYt yt j #Yð Þ

� c FXt
xtj#Xð Þ;FYt ytj#Yð Þ j #Cð Þ;

ð13Þ

where fXt
and fYt represent the marginal density functions of

the glacier discharge and the temperature, respectively, that

can be specified for example using the distribution models

given in (3) or (4) and (7) or (8), respectively, and where

c represents the copula density function whose corre-

sponding cumulative distribution function can be specified

for example using (10), (11) or (12).

4 Inference, prediction and model selection

Consider now the observed data series,

x; yð Þ ¼ x1; y1ð Þ; . . .; xT ; yTð Þf g;

which provides the daily temperature and discharge mea-

surements during T days. Given these data, we would like

to make inference on the model parameters, # ¼
#X;#Y ;#Cð Þ: In this section, we first assume that the dis-

tribution models for the marginals and the copula are

known. Also the number of terms in the Fourier approxi-

mations, K1, K2 and Kc, are assumed to be known. Later, in

Subsect. (4.1), we will explain how to perform Bayesian

model selection to select both the distribution models and

the number of Fourier terms.

If the data set were complete, the likelihood function

would be just the product of the joint density functions,

(13), for each t ¼ 1; . . .; T . However, as commented in the

data description, during the hydrological year 2003/2004, it

was not possible to register measurements for the glacier

discharge since the external data-logger suffered flaws due

to the hard meteorological conditions during the winter

months. These values will be treated as missing data.

Further, there is a large amount of glacier discharge values

that are recorded as zero. Considering that the glacier

discharge is measured as a function of the level of the river,

these zero values can be regarded as left-censored obser-

vations since they are actually smaller than a minimum

value, ymin, below which it is not possible to register any

discharge value. The glacier discharge values in these cases

are so small that they can not be registered accurately.

Therefore, the likelihood function for the model

parameters is given by,

l # j x; yð Þ ¼
Y

t:yt [ 0

f xt; yt j #ð Þ

�
Y

t:yt¼0

Pr Yt\ymin j xt;#ð Þ � f xt j #Xð Þ�

�
Y

t:yt¼na

f xt j #Xð Þ; ð14Þ

where na represents a missing discharge value which is not

available and where the conditional probability for the

glacier discharge can be obtained as,

Pr Yt\ymin j xt;#ð Þ¼Cð1Þ FXt
xt j#Xð Þ;FYt ymin j#Yð Þ j#Cð Þ;

where Cð1Þ represents the partial derivative of the copula

distribution function as described in e.g. Venter (2001),

Cð1Þ u; v j #Cð Þ ¼ oCt u; v j #Cð Þ
ou

:

Note that these correspond to the so-called h-functions

defined in Aas et al. (2009).

For example, for the particular case of a Gumbel copula,

it is obtained that,

C
ð1Þ
G ut; vt j htð Þ ¼CG ut; vt j htð Þ

� � ln utð Þhtþ � ln vtð Þht
h i�1þ 1

ht

� � ln utð Þht�1 1

ut
;

where CGðut; vt j htÞ is the Gumbel copula distribution

function given in (10). And for the Gaussian copula, the

Cð1Þ function can be expressed as

C
ð1Þ
Ga ut; vt j htð Þ ¼ U U�1ðvtÞ j ht � U�1ðutÞ; 1� h2t


 �
;

where Uðx j l; r2Þ denotes the Gaussian density function

with mean l and variance r2, and UðxÞ denotes the stan-

dard Gaussian density function.

In order to perform Bayesian inference, we must define

prior distributions for the model parameters, #. We impose

proper but non informative prior distributions as follows.

For each amplitude parameter, akp, we assume a large

variance Gaussian prior Nð0; 1002Þ, for k ¼ 0; . . .;Kj, for

j ¼ 1; 2; c and for p ¼ l; r; n; k; b; s. For each phase

parameter, wkj, we assume a uniform semicircular variable

in ½0; pÞ, for k ¼ 0; . . .;Kj and for j ¼ 1; 2 and uniform

circular variable in ½0; 2pÞ, for k ¼ 0; . . .;Kj and for j ¼ c.

Given these priors and the likelihood specified in (14), it

is not straightforward to derive analytically the posterior

distribution, f ð# j x; yÞ. Therefore, we use MCMC sam-

pling strategies in order to obtain a sample from the joint

posterior distribution of the parameters, which will allow

us to develop Bayesian inference. We propose a Gibbs

sampling scheme which is carried out by cycling repeat-

edly through draws of each parameter conditional on the

remaining parameters (Tierney 1994). In particular, we use

the Random Walk Metropolis Hastings (RWMH) algo-

rithm for sampling from the conditional posterior distri-

bution of the model parameters. We use a simple one-

dimensional RWMH where each model parameter is

updated separately using normal candidate distributions
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whose mean is given by the previous value of each

parameter in the algorithm and whose variance can be

calibrated to obtain good acceptance rates. The details of

the proposed algorithm are explained in the Appendix.

Now, we are interested in estimating the predictive joint

distribution of the temperature and discharge,

f ðxt; yt j x; yÞ, at any time t. This can be done using Monte

Carlo simulation based on the MCMC output. Consider a

posterior sample of size M of the model parameters, #ðiÞ,
for i ¼ 1; . . .;M. Then, the values of the time-varying

parameters, lðiÞt ; rðiÞt ; nðiÞt ; kðiÞt ; bðiÞt and sðiÞt , are known for

each time t and we can simulate values from f ðxt; yt j x; yÞ
as follows.

For each t ¼ 1; . . .; T and i ¼ 1; . . .;M.

1. Obtain the copula parameter hðiÞt from sðiÞt

2. Simulate a value from the copula: u
ðiÞ
t ; v

ðiÞ
t

	 

j hðiÞt

3. Obtain the pair of values for the temperature and

discharge:

x
ðiÞ
t ¼ F�1

X u
ðiÞ
t j lðiÞt ; rðiÞt ; nðiÞt

	 

;

y
ðiÞ
t ¼ F�1

Y v
ðiÞ
t j kðiÞt ; bðiÞt

	 

:

Given this sample of the joint posterior distribution, we can

obtain a sample from the marginal predictive distribu-

tion of the temperature by just taking the values

fðxðiÞ1 ; . . .; x
ðiÞ
T ÞgMi¼1. The posterior predictive mean and

95 % credible predictive intervals can be approximated

using the sample mean for each t and the corresponding

0.025 and 0.975 quantiles. Similarly, we can approximate

the posterior predictive mean and predictive intervals for

the glacier discharge.

Finally, we wish to estimate the conditional predictive

distribution of the glacier discharge given a value for the

temperature, f ðyt j Xt ¼ xt; x; yÞ, at any time t. As before,

this can be done by Monte Carlo approximation given the

MCMC output as follows.

For each t ¼ 1; . . .; T and i ¼ 1; . . .;M,

1. Obtain u
ðiÞ
t ¼ FXðxt j lðiÞt ; rðiÞt ; nðiÞt Þ from the distribu-

tion selected for the temperature,

2. Find v
ðiÞ
t such that p ¼ Cð1ÞðuðiÞt ; v

ðiÞ
t j hðiÞt Þ where

p�U 0; 1ð Þ
3. Set y

ðiÞ
t ¼ F�1

Y ðvðiÞt j kðiÞt ; bðiÞt Þ
Therefore, given a set of observed temperatures, fx1; . . .; xTg,
we can obtain a sample of the conditional predictive

distribution of the discharge for each time point,

fðyðiÞ1 ; . . .; y
ðiÞ
T ÞgMi¼1. Using this sample, we can estimate the

posterior predictive mean and 95 % credible predictive

intervals for the conditional discharge using the samplemeans

and the 0.025 and 0.975 quantiles of the sample as before.

4.1 Model selection

In order to compare different models, we use de Deviance

Information Criterion (DIC). Models with smaller DIC

should be preferred tomodels with larger DIC (Spiegelhalter

et al. 2002). This measure penalizes the effective number of

parameters of the model. The DIC value is given by,

DIC ¼ � 4E# log l # j x; yð Þ j x; y½ �
þ 2 log l E# # j x; y½ � j x; yð Þ:

ð15Þ

where the log-likelihood of the model parameters,

# ¼ ð#X ;#Y ;#CÞ, is given by:

log l # j x;yð Þ¼
X

t

log fXðxt j#XÞð Þ

þ
X

t:yt[0

log fYðyt j#YÞð Þ

þ
X

t:yt[0

log cðFXðxt j#XÞ;FYðyt j#YÞ j#CÞð Þ

þ
X

t:yt¼0

log C1ðFXðxt j#XÞ;FYðymin j#YÞ j#CÞ

 �

;

Given an MCMC sample of size M of the posterior dis-

tribution of the model parameters, #ðiÞ, for i¼ 1; . . .;M, the

DIC value, (15), can be approximated by,

DIC ¼� 4

M

XM

i¼1

log l # mð Þ j x; y
	 


þ 2 log l
1

M

XM

i¼1

# mð Þ j x; y
 !

;

5 Results

In this section, we illustrate the proposed methodology

with the real data provided by GLACKMA on the dis-

charge and temperature measurements from October 1st,

2002 to September 30th, 2012. We have considered a large

number of different models for the marginal and copula

distributions that will be discussed later in Subsect. 5.1.

Here, we present firstly the results for the preferred model

according to the DIC criteria which consists of a GEV

model, see (4), for the marginal distribution of the tem-

perature with K1 ¼ 4 Fourier components, a Gamma dis-

tribution, see (8), for the marginal distribution of the

discharge with K2 ¼ 4 Fourier components and Gumbel

copula, see (10), with Kc ¼ 2 Fourier components.
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The proposed MCMC algorithm is run for 100,000

iterations, discarding the first 50,000 as burn-in iterations.

The chains have converged and they have good mixing.

Table 1 shows the mean, posterior deviation and 95 %

credible intervals for the model parameters.

Figure 5 shows the observed discharge time series data,

the posterior predictive means and 95 % credible intervals

for the whole time period. Apparently the discharge is

well modeled, for example the posterior means are very

close to zero in those winter periods where no discharge is

recorded and the length of the corresponding credible

intervals are also very close to zero. On the contrary,

during the summer periods, the posterior discharge means

and credible intervals are far from zero. Also, we can

observe that the proposed model captures the Spring

events and aftershocks at the beginning and the end of

each period, respectively. Finally, observe that the pro-

posed method is also able to produce Bayesian estimates

and credible intervals for the missing period during the

hydrological year 2003/2004.

Figure 6 shows the observed temperature time series, the

posterior predictive means and 95 % credible intervals for

the whole time period. Observe that the model can capture

the left-skewness and larger variability during the austral

winter. In contrast, note that credible intervals are more

symmetric and narrower during the summer periods.

Figure 7 shows the posterior mean and 95 % credible

intervals of theKendall’s tau togetherwith the observed values

for the temperature and discharge for the whole time period.

This figure illustrates how the dependence varies over time,we

can see that larger values of tau correspond to higher values of

the temperature and discharge. Similarly, smaller values of tau

correspond to lower temperatures and periods with no

discharge.

Now, we are interested in analyzing the influence of the

temperature on the discharge. Observe that using our pro-

posed approach, we can obtain estimations of the conditional

predictive distribution of the discharge given any value of the

temperature at any given time point. As an illustration, Fig. 8

shows the conditional density function of the discharge for

one particular day of the austral summer (02/20/2006) given

different values of the temperature. Note that, as expected, the

larger is the temperature, the larger is the probability of

observing large values for the glacier discharge.

Using the same approach, Fig. 9 shows the Bayesian

estimations of the missing discharge values conditioned on

the observed values for the temperature during the hydro-

logical year 2003/2004 when the data-logger did not record

the data appropriately.

Finally, observe that our proposed methodology also

enables future predictions of both the joint distribution of

discharge and temperature and the conditional discharge

Table 1 Model parameters for the parameters of the GEV distribution

for the temperature, the Gamma distribution for the discharge and the

rank-tau for the copula. Each parameter is obtained as the mean of its

MCMC. The posterior deviation is the number between parenthesis.

The third column of each parameter are the credible intervals

Temperature Discharge Copula

Mean (sd) Int.cred. Mean (sd) Int.cred. Mean (sd) Int.cred.

w11 2.016 (0.017) (1.983, 2.050) w12 2.731 (0.027) (2.674, 2.783) w1s 2.269 (0.482) (0.785, 2.830)

w21 2.943 (0.098) (2.742, 3.117) w22 2.841 (0.040) (2.765, 2.920) w2s 1.588 (0.814) (0.109, 3.019)

w31 2.865 (0.134) (2.594, 3.107) w32 2.783 (0.074) (2.639, 2.926) a1s 0.821 (0.395) (0.163, 1.673)

w41 0.646 (0.154) (0.363, 0.982) w42 2.916 (0.153) (2.573, 3.132) a2s -0.195 (0.216) (-0.578, 0.280)

a1l 4.002 (0.075) (3.855, 4.152) a1k 6.692 (0.668) (5.604, 7.940) a0s -1.163 (0.291) (-1.769, -0.628)

a2l -0.265 (0.071) (-0.407, -0.126) a2k 3.378 (0.433) (2.654, 4.274)

a3l -0.325 (0.063) (-0.456, -0.207) a3k 1.638 (0.232) (1.231, 2.174)

a4l -0.152 (0.062) (-0.274, -0.029) a4k 0.447 (0.091) (0.279, 0.644)

a0l -2.777 (0.056) (-2.886, -2.665) a0k -6.431 (0.406) (-7.179, -5.749)

a1r -0.721 (0.018) (-0.757, -0.687) a1b -0.889 (0.415) (-1.653, -0.108)

a2r -0.136 (0.019) (-0.173, -0.100) a2b -1.528 (0.225) (-1.971, -1.093)

a3r 0.102 (0.020) (0.063, 0.142) a3b -1.783 (0.168) (-2.120, -1.459)

a4r 0.014 (0.016) (-0.018, 0.045) a4b -0.432 (0.116) (-0.665, -0.210)

a0r 0.975 (0.013) (0.949, 1.002) a0b 2.302 (0.273) (1.786, 2.795)

a1n 0.261 (0.014) (0.233, 0.289)

a2n 0.114 (0.016) (0.081, 0.145)

a3n 0.004 (0.014) (-0.025, 0.032)

a4n -0.029 (0.011) (-0.05, -0.008)

a0n -0.471 (0.009) (-0.488, -0.454)
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distribution given the temperature values. In order to illus-

trate this, Fig. 10 shows the estimations of the predictive

discharge distribution for the last hydrological year

2011/2012 given the information from previous years. These

are compared with the true observed values during this year.

Note that the predictive intervals always contain the true

observed values. Figure 10 also shows the estimations of the

conditional predictive discharge during this last year given

the values for the temperature. Observe that this provides in

general better estimations for the discharge, although there is

one single day where the temperature was extremely high

which leads a large estimation for discharge.
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5.1 Model selection

In this section, we illustrate how the model introduced

before has been selected according to the DIC criteria.

Firstly, we put the emphasis on selecting the number of

Fourier terms for the time-varying parameters of the tem-

perature, K1, the discharge, K2 and the copula, Kc. Table 2

shows the DIC values for different choices of the number

of Fourier terms assuming a Generalized Extreme Value

for the temperature, a Gamma distribution for the discharge

and a Gumbel copula for the dependence. Note that the

minimum value corresponds to K1 ¼ 4 terms for the tem-

perature, K2 ¼ 4 terms for the discharge and Kc ¼ 2 terms

for the time-varying st parameter of the copula.

Similar tables have been obtained assuming different

models for the marginal distributions of the temperature
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Fig. 8 Conditional predictive density of the discharge given different values of the temperature for one particular day in summer (02/20/2006)
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and the discharge and also for the copula. The number of

selected Fourier terms is in general the same but the value

of the DIC is larger in all cases. For example, the minimum

DIC value assuming a Gaussian copula and the same

marginal distribution models as before is DIC = 14,838.

The same minimum DIC value is obtained for the t-copula

since the estimated degrees of freedom is very large which

implies that the obtained t-copula is very similar to the

Gaussian copula. Finally, the DIC = 149,513 is obtained

for the model with the Clayton copula. Note that these

values are larger than the minimum value obtained in

Table 2 with a Gumbel copula which is given by

DIC = 14,825, indicating that the Gumbel model is pre-

ferred than the other considered copulas.

In order to illustrate the differences among copula

models, Fig. 11 shows the conditional predictive density of

the discharge given zero Celsius degree temperature for

one particular day in summer using the different copula

models. This figure shows that the Clayton copula is not

appropriate for these data, as expected, since this copula

has not right tail dependence and it only allows for left tail

dependence. On the other side, the obtained estimated

models with the Gaussian and t-copula are very similar to

that obtained with the Gumbel copula. However, it can be

observed that the tail of the conditional distribution is

slightly heavier with the Gumbel copula.

6 Conclusion and extensions

In this paper, we have proposed a seasonal dynamic model

to describe the joint distribution of the glacier discharge

and air temperature where not only the marginal distribu-

tions are time varying but also, the relationship between

these two variables is described by a time-varying copula.

We have proposed a Bayesian procedure for inference on

the model parameters and prediction of the joint discharge

and temperature distribution. Our approach allows for the

simultaneous estimation of the marginal and copula

parameters, which is in contrast with the classical two-

stage estimation procedures.

An improved model could include structural changes

over the time such that not only the model parameters were

time-varying, but also the marginal and copula models

could vary along time. For example, we could consider for

each different season the possibility of using a different

copula model, Gumbel (10), Gaussian (11) or Student-t

(12). Similarly, we could incorporate for different seasons

the possibility of distinct marginal distribution models for

the temperature and glacier discharge. This problem is

currently under research.

The proposed procedure could be extended to a multi-

variate model by including more environmental variables

like precipitation, humidity, solar radiation or atmospheric

pressure. In this case, the use of multivariate copulas would

be required. One possibility is the use of vine copulas that

has been successfully applied for financial time series data

(Aas et al. 2009). See also Czado (2010) for a survey of

vine copulas.

The developed methodology could be also applied in

other Pilot Experimental Watersheds installed by

GLACKMA at different latitudes in both hemispheres,

which could be compared with those obtained in this work.

Table 2 DIC values for different number of Fourier terms, K1, K2

and Kc, assuming a GEV distribution for the temperature, a Gamma

distribution for the discharge and Gumbel copula

K1 K2 Kc DIC K1 K2 Kc DIC

4 4 2 14,825 1 4 1 15,043

4 4 1 14,833 1 4 2 15,044

4 4 4 14,843 1 3 3 15,115

4 4 3 14,861 1 3 1 15,135

3 4 1 14,872 1 3 2 15,178

2 4 1 14,921 1 2 1 15,259

1 4 3 15,036 1 1 1 15,750
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Fig. 11 Conditional predictive density of the discharge for the models built with different copulas, given zero degrees as the value of the

temperature for all of them and for one particular day in summer (02/20/2006)
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Appendix: Algorithm

In this appendix, we explain in detail the proposed MCMC

algorithm to sample from the posterior distribution of the

model parameters, # ¼ ð#X;#Y ;#CÞ: Recall that the log-

likelihood is given by:

log l # j x; yð Þ ¼
X

t

log fXðxt j #XÞð Þ ð16Þ

þ
X

t:yt [ 0

log fYðyt j #YÞð Þ ð17Þ

þ
X

t:yt [ 0

log cðFXðxt j #XÞ;FYðyt j #YÞ j #CÞð Þ ð18Þ

þ
X

t:yt¼0

log C1
t ðFXðxt j #XÞ;FYðymin j #YÞ j #CÞ


 �
; ð19Þ

We construct a Gibbs sampling scheme where each model

parameter is updated separately. Therefore, it is not nec-

essary to compute the whole likelihood for each parameter.

In particular, when updating the parameters corresponding

to the temperature, #X , it is only necessary to consider (16),

(18) and (19). When updating the discharge parameters,

#Y , only (17), (18) and (19) are evaluated. And finally, for

updating the copula parameters, #C, only (18) and (19) are

considered.

The structure of the proposed MCMC method is shown

in Algorithm 1. Firstly, it is required to set a vector of

initial values for the parameters and the number of MCMC

iterations. Then, in each step of the algorithm, each model

parameter is updated using a RWMH which is defined in

Algorithm 2. Observe that the algorithm is written such

that it is not necessary to recalculate the likelihood that was

evaluated in previous step for accepted parameters. Finally,

Algorithms 3, 4 and 5 separates the computation of the

likelihood as the sum of the log-likelihood temperature,

discharge and copula, respectively.

These algorithms have been programmed in software R

(R Core Team 2013) with the help of the CDVine package

(Brechmann and Schepsmeier 2013).

Algorithm 1 MCMC algorithm
Require: temperature series, discharge series, initial values

for (ϑX , ϑY , ϑC), number of iterations.

1: procedure

2: Calculate ut = FXt(xt | ϑX) � with the initial values

3: Calculate vt = FYt(yt | ϑY ) � with the initial values

4: Calculate likelihood l2 = lik.T (ϑX | x) + lik.D(ϑY |
y) + lik.C(ϑC | ut, vt) � with the initial values

5: if l2=−∞ then

6: Error Message: ”Incorrect initial values”

7: end if

8: Calculate l2T = lik.T (ϑX | x) + lik.C(ϑC | ut, vt) �

algorithms (3) and (5)

9: Calculate l2D = lik.D(ϑY | y) + lik.C(ϑC | ut, vt) �

algorithms (4) and (5)

10: for i ← 1, N do

11: for j ← 1, mt do � mt=number of parameters of

temperature model

12: run RWMH � algorithm (2) for temperature

parameters

13: if new parameter is accepted then

14: Update ut = FXt(xt | ϑX) and l2T

15: end if

16: end for

17: for j ← 1, md do � md=number of parameters of

discharge model

18: run RWMH � algorithm (2) for discharge

parameters

19: if new parameter is accepted then

20: Update vt = FYt(yt | ϑY ) and l2D

21: end if

22: end for

23: for j ← 1, (mc − 1) do � mc=number of

parameters of copula model

24: run RWMH � algorithm (2) for copula

parameters

25: a0τ =
∑

aiτ

26: end for

27: end for

28: Eliminate burn-in period of chains

29: end procedure
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Algorithm 2 Random Walk Metropolis Hastings
Require: ϑX , ϑY , ϑC , σ2

j , l2T , l2D, l2

1: procedure

2: Simulate ϑ̃j ∼ N
(
ϑi−1

j , σ2
j

)

3: if j ∈ (1, . . . , mf ) then � mf = the number of

components in Fourier series

4: ϑ̃j = ϑ̃j mod π (or mod 2π if ϑj ∈ copula)

5: end if

6: Construct candidate vector: ϑ̃ =(
ϑi
1, . . . , ϑi

j−1, ϑ̃j , ϑi+1
j , . . . , ϑi−1

m

)

7: if ϑj ∈ temperature then

8: l1T = lik.T ϑ̃X | x
)

� algorithm (3)

9: l1D = l2D

10: Calculate ũt = FXt(xt | ϑ̃X)

11: l1C = lik.C (ϑC | ũt, vt) � algorithm (5)

12: l1 = l1T + l1D + l1C

13: end if

14: if ϑj ∈ discharge then

15: l1T = l2T

16: l1D = lik.D (x | cand) � algorithm (4)

17: Calculate ṽt = FYt(yt | ϑ̃Y )

18: l1C = lik.C (ϑC | ut, ṽt) � algorithm (5)

19: l1 = l1T + l1D + l1C

20: end if

21: if ϑj ∈ copula then

22: l1T = l2T

23: l1D = l2D

24: l1C = lik.C ϑ̃C | ut, vt

)
� algorithm (5)

25: l1 = l1T + l1D + l1C

26: end if

27: Recover l2 from previous iteration

28: Compute α
(
ϑi−1

j , ϑ̃j

)
= min

{
1,

l1×prior(ϑj)
l2×prior(ϑ̃j)

}

29: if unif(0, 1) ≤ α then

30: ϑi
j = ϑ̃j

31: else

32: ϑi
j = ϑi−1

j

33: end if

34: end procedure

Algorithm 3 Likelihood temperature
Require: xt, akμ, akσ , akξ, ψk1

1: procedure

2: μt = a0μ +
∑

akμ cos 2kπt
c

− ψk1
)

� Calculate

marginal distribution parameters

3: σt = exp a0σ +
∑

akσ cos 2πt
c

− ψk1
))

4: ξt = a0ξ +
∑

akξ cos 2πt
c

− ψk1
)

5: lik.T =
∏

fX (xt | μt, σt, ξt)

6: end procedure

Algorithm 4 Likelihood discharge
Require: yt, akλ, akβ , ψk2

1: procedure

2: λt = exp a0λ +
∑

akλ cos 2kπt
c

− ψk2
))

� Calculate

marginal distribution parameters

3: βt = exp a0β +
∑

akβ cos 2πt
c

− ψk2
))

4: lik.D =
∏

fY (yt | λt, βt) � Only when yt > 0

5: end procedure

Algorithm 5 Likelihood copula
Require: ut, vt, akτ , ψkc

1: procedure

2: τt = a0τ +
∑

akτ cos 2kπt
c

− ψkc

)
� Calculate rank

tau parameter

3: Obtain θt from τt � Depends on the selected copula

4: lik.C =
∏

c (ut, vt | θt)
∏

C(1) (ut, vt | θt) � c when

yt > 0 and c(1) when yt = 0

5: end procedure
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