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Abstract This paper is focus on spatial functional vari-

ables whose observations are a set of spatially correlated

sample curves obtained as realizations of a spatio-temporal

stochastic process. In this context, as alternative to other

geostatistical techniques (kriging, kernel smoothing,

among others), a new method to predict the curves of

temporal evolution of the process at unsampled locations

and also the surfaces of geographical evolution of the

variable at unobserved time points is proposed. In order to

test the good performance of the proposed method, two

simulation studies and an application with real climato-

logical data have been carried out. Finally, the results were

compared with ordinary functional kriging.

Keywords Spatial functional data � Spatial correlation �
P-spline penalty � Functional regression

1 Introduction

Functional data analysis (FDA) is currently a very active

statistical research topic from both the theoretical and

applied viewpoint. The functional data are set of functions

obtained as independent realizations of a functional ran-

dom variable that takes values in a functional space defined

on a continuous domain. In most cases functional data

observations are curves that correspond to the evolution of

a scalar variable over time but also surfaces representing

the evolution of a scalar variable on space can be seen as

functional data. The name FDA is due to the pioneer book

by Ramsay and Silverman (1997) that contains an excellent

collection of the main FDA methodologies and interesting

motivating examples. From that moment FDA had a bril-

liant development with more than 8000 references in aca-

demic google during the twenty first century. Although the

key tool in FDA is still principal component analysis, other

techniques of multivariate analysis like canonical correla-

tion, discriminant and cluster analysis were also investi-

gated. Recently, research on FDA is oriented to regression

models, non-parametric estimation, robust estimation,

Bayesian estimation, inference and so on. We can say that

almost any statistical method is being extended for ana-

lyzing functional data. At the same time new books appear

on these FDA topics (Ferraty and Vieu 2006; Horvath and

Kokoszka 2012; Hsing and Eubank 2015; Shi and Choi

2011; Zhang 2013).

This work is focused on the analysis of univariate

functional data with spatial dependence. The sample

information is given by a set of curves associated to dif-

ferent geographical locations on a spatial domain. Let us

consider as an illustration the Canadian temperature data

set introduced by Ramsay and Silverman (1997) that has

been analyzed in a lot of papers by using different FDA

methodologies. These data are the daily temperature (av-

eraged over 30 years) for 35 weather stations in Canada so

that we have a set of 35 spatially correlated curves that

represent the temporal evolution of temperatures in dif-

ferent geographical sites (spatio-temporal functional vari-

able). The raw data set together with the map with the

geographical locations are shown in Fig. 1. Spatially cor-

related functional data are very common in environmental

applications and are analyzed in many cases by using FDA

approaches that does not take into account the spatial

dependence structure. Some interesting applications of
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these type can be seen in Escabias et al. (2005), Zhang and

Chen (2007) and Kaufman and Sain (2010).

The aim of this work is to develop a method for mod-

eling the mean of a spatio-temporal functional variable

from its discrete observations at a finite set of time points

and locations in the temporal and spatial domains,

respectively. The estimated model will provide the pre-

diction of the curves of temporal evolution of the variable

at unobserved locations and also the prediction of the

surface of geographical evolution of the variable at unob-

served time points.

This problem has been approached by different authors

in the context of geostatistical techniques. The first notions

about this topic can be found in Goulard and Voltz (1993),

where multivariate approaches were used to predict curves

at unsampled spatial sites. A more recent collection of

geostatistical tools for spatial functional data can be seen in

Giraldo (2010) and Delicado et al. (2009). In general, the

most used technique to predict functional data with spatial

dependence is functional kriging. In Giraldo et al. (2010) a

continuous time-varying kriging was proposed and applied

to environmental data. A formal version of ordinary kriging

for functional data (OKFD) was developed by Giraldo

et al. (2011), and implemented in the R package geofd

(Giraldo et al. 2012). Recently, different versions of uni-

versal kriging predictor for functional data with spatial

dependence were proposed in Menafoglio (2013) and

Caballero et al. (2013). Kriging with external drift has also

been extended for introducing exogenous variables with

spatially correlated functional data (Ignaccolo et al. 2014).

In the context of spatial data an alternative to geosta-

tistical techniques are the nonparametric spatial regression

models. A popular approach consists of using penalized-

splines (Eilers and Marx 1996). They are based on the use

of a rich basis for regression and a penalty (based on dif-

ferences of adjacent coefficients) to control the smoothness

of the fit. This methodology has been successfully applied

to both, functional and spatial data in different contexts. In

FDA P-splines were used for smoothing the sample curves

(Aguilera and Aguilera-Morillo 2013a) and estimating

different FDA models as PCA (Aguilera and Aguilera-

Morillo 2013b) or functional regression (Marx and Eilers

1999; AguileraMorillo et al. 2013), among others. In the

case of spatial data, Lee and Durban (2009) and Ugarte

et al. (2009) used P-splines for smoothing spatially corre-

lated count data, Lee and Durban (2011) extended their use

to the case of spatio-temporal data, and more recently,

Sangalli et al. (2013) proposed a spatial regression model

for data distributed over irregularly shaped spatial domains.

A wavelet regression approach for estimating the field of

ocean temperature at different depths is introduced in

Fernndez-Pascual (2015). On the other hand, functional

approaches based on autoregressive Hilbertian processes

were considered in Ruiz-Medina et al. (2012, 2014).

Univariate kriging and spline smoothers were compared

in several papers without reaching an unanimous conclu-

sion. The major objection to kriging is the assumption of

stationarity that could not be right for some types of spatial

structure. From simulations where spline regression pre-

dicts better than kriging when the data contains trends of

various types, some papers conclude that non-parametric

regression is more robust than kriging because takes into

account spatial structure that geostatistics does not

(Yakowitz and Szidarovsky 1985). Other papers conclude

that kriging never performs worse than splines and has the

potential to outpredict splines when data are not sampled

on a grid (Dubrule 1984; Laslett 1994).

Our aim is to use spatial smoothing regression tech-

niques within a functional regression approach to provide a

new method to predict functional data with spatial depen-

dence at unsampled locations. From the formal definition

of spatio-temporal functional data, which is given in

Sect. 2, a penalized functional regression model is exten-

ded for predicting spatially correlated functional data in

Sect. 2.1. The idea is to consider the functional regression

model for functional response and scalar covariates
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Fig. 1 Averages (over 30 years)

of daily temperature curves

observed at 35 Canadian

Maritime weather stations
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(Faraway 1997; Ramsay and Silverman 1997; Chiou et al.

2004) by using the spatial information as regressors. So, a

mixture of functional regression model for functional

response and penalized spline spatial regression will yield

the proposed functional spatial regression model. In prac-

tice, functional data are usually observed with some error

or noise. To overcome this problem, Ramsay and Silver-

man (1997) considered a penalized version of functional

regression for functional response by introducing a con-

tinuous penalty (based on the second order squared

derivatives of the parameter functions) in the least squares

fitting, and Reiss (2010) used a penalized generalized least

squares criterion based on a basis representation. In this

paper, we will adapt the idea developed in Eilers et al.

(2006), and combine the two-dimensional penalty used for

spline spatial regression with the one proposed in Ramsay

and Silverman (1997) to obtain a three dimensional

P-spline penalty. Hereinafter, this method will be called

penalized functional spatial regression model (PFSRM).

Finally, the prediction accuracy of PFSRM is compared

with OKFD in two simulation studies in Sect. 4. An

application to the Canadian Maritime weather data is pre-

sented in Sect. 5. As we have said before, Canadian Mar-

itime weather is a well known example of functional data,

which in most cases have been consider as a set of inde-

pendent curves related to daily temperature and precipita-

tion at 35 different locations in Canada averaged over

1960–1994 (Ramsay and Silverman 1997). But this is a

clear example of functional data presenting spatial depen-

dence and in this sense was studied in Delicado et al.

(2009) and Menafoglio (2013). The conclusions about

these studies close the paper in Sect. 6.

2 Theoretic framework

Let us suppose that we have a sample of non-independent

curves (spatial dependence) fyiðtÞ: t 2 T; i ¼ 1; . . .; ng
given by

yiðtÞ ¼ x si; tð Þ þ �iðtÞ; i ¼ 1; . . .; n;

where �iðtÞ are zero mean random errors and xðsi; tÞ are

observations of a spatial functional variable (stochastic

process)

Xðs; tÞ: s 2 S � R2; t 2 T � R
� �

; ð1Þ

where s ¼ ðu; vÞ is a generic data location in the spatial

domain S ¼ U � V ; U; V and T are real intervals, and for

each fixed spatio-temporal position ðs; tÞ; Xðs; tÞ is a real

random variable defined on a probabilistic space

ðX; A; PÞ:

In addition, these sample curves have been observed

with error at a finite set of time points ftj: j ¼ 1; . . .;mg for

each geographical location si ¼ ðui; viÞ; so that, the sample

data yij are given by yj ¼ yiðtjÞ; i ¼ 1; . . .; n; j ¼ 1; . . .;m:

Let us also assume that the realizations of this functional

variable are square integrable functions on the spatio-

temporal domain U � V � T; so that each sample function

xðs; tÞ belongs to the Hilbert space L2ðU � V � TÞ with the
usual scalar product given by

hf ; gi ¼
Z

U

Z

V

Z

T

f ðu; v; tÞgðu; v; tÞdudvdt;

8f ; g 2 L2ðU � V � TÞ:

In order to reconstruct the true functional form of the data

from discrete spatio-temporal observations, we extend the

usual basis expansion approach for representing curves in

FDA to the case of spatio-temporal functions that depend

on three continuous arguments.

Let us consider three univariate basis f/U
k ðuÞ: u 2

U; k ¼ 1; . . .; pg; f/V
l ðvÞ: v 2 V; l ¼ 1; . . .; qg and f/T

h ðtÞ:
t 2 T; h ¼ 1; . . .; rg: Then, we assume that the realizations

of the spatio-temporal functional variable belong to the p q

r dimensional tensor function space generated by the

basis

/U
k ðuÞ/

V
l ðvÞ/

T
h ðtÞ:k¼ 1; . . .;p; l¼ 1; . . .;q; h¼ 1; . . .;r

� �
:

That is,

xðs; tÞ ¼
Xp

k¼1

Xq

l¼1

Xr

h¼1

aklh/
U
k ðuÞ/V

l ðvÞ/T
h ðtÞ: ð2Þ

Then, the matrix X ¼ ðxijÞn�m whose entries are the values

of the spatio-temporal functional variable at the sampling

points given by xij ¼ xðsi; tjÞ can be written in matrix form

as

X ¼ UU � UV
� �

AUT 0
; ð3Þ

where UU ¼ ðUU
ikÞn�p with UU

ik ¼ /U
k ðuiÞ; UV ¼ ðUV

il Þn�q

with UV
il ¼ /V

l ðviÞ; UT ¼ ðUT
jhÞm�r with UT

jh ¼ /T
h ðtjÞ; A ¼

ðaðklÞhÞpq�r is the matrix comprising the basis coefficients

and � denotes the row-wise Khatri–Rao product so that

UU � UV ¼ ððUU � UVÞiðklÞÞn�pq with entries ðUU �
UVÞiðklÞ ¼ /U

k ðuiÞ/V
l ðviÞ (Rao and Rao 1998).

Once the basis coefficients in A are estimated from the

discrete observations yij; the spatio-temporal functional

variable can be estimated at unobserved locations and

times ðs0; t0Þ by replacing in model (2). This way, we can

obtain the complete curve of temporal evolution of the

variable for unsampled geographical locations, and the

complete surface of spatial evolution of the variable for any
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time point in the temporal domain.

2.1 Penalized functional spatial regression model

In this work we propose to estimate the basis coefficients in

Eq. (2) by introducing the spatial variability through the

following functional spatial regression model:

yðtÞ ¼ ZaðtÞ þ �ðtÞ; 8t 2 T; ð4Þ

where yðtÞ ¼ ðy1ðtÞ; . . .; ynðtÞÞ0 is the vector of response

functions, Z ¼ ðzikÞn�pq ¼ UU � UV is the two dimen-

sional B-spline basis for the geographical position, aðtÞ ¼
ða1ðtÞ; . . .; apqðtÞÞ0 is the vector of parameter functions to

be estimated and �ðtÞ ¼ ð�1ðtÞ; . . .; �nðtÞÞ0 the vector of

error terms.

Let us consider the basis representation for the func-

tional response yðtÞ ¼ C/TðtÞ and for the functional

parameters aðtÞ ¼ A/TðtÞ; with C ¼ ðcihÞn�r and A ¼
ðaðklÞhÞpq�r being the corresponding matrices of basis

coefficients and /TðtÞ ¼ ð/T
1 ðtÞ; . . .;/

T
r ðtÞÞ

0
being the

vector of basis functions. Then, the model given in Eq. (4)

can be rewritten as follows

C/TðtÞ ¼ ZA/TðtÞ þ �ðtÞ; 8t 2 T :

In order to estimate this model in an accurate way, a

roughness penalty is introduced in the least squares fitting

criterion, so that

PSSEðy; aÞ ¼
Z

C/TðtÞ�ZA/TðtÞ
� �0

C/TðtÞ�ZA/TðtÞ
� �

dt

þ vecðAÞ0 PEN
U;V ;T
d

� �
vecðAÞ;

ð5Þ

where the operator vec(A) creates a column vector from

any matrix A by stacking the column vectors of A, and

PEN
U;V ;T
d denotes the d-order P-spline penalty for the space

and time. This penalty can be expressed in terms of d-order

difference operators Dd (Eilers et al. 2006), so that

PEN
U;V ;T
d ¼ k1 DU0

d DU
d � Iq � Ir

� 	
þ k2 Ip � DV 0

d DV
d � Ir

� 	

þ k3 Ip � Iq � DT 0

d DT
d

� 	
:

In this context, DU
d ; D

V
d ; D

T
d are matrices of d-order dif-

ferences, k1; k2; and k3 are the smoothing parameters.

Interchanging the integration and summation operations

implied by the matrix products, and computing the

derivatives with respect to A in the resulting equation (see

Appendix for further details), finally A is given by

vecðAÞ ¼ W� ðZ 0ZÞ þ PEN
U;V ;T
d

� ��1
vecðZ 0CW0Þ;

where W ¼
R
/T/T is the inner product matrix between the

basis functions.

3 Selection of parameters

The three smoothing parameters involved in this problem

ðk1; k2; k3Þ are simultaneously selected by minimizing the

following generalized cross validation error

GCVE k1; k2; k3ð Þ ¼
Pn

i¼1 SSEi

ðn � traceðHÞÞ2
;

where

SSEi ¼
Xm

j¼1

y si; tj
� �

� ŷ si; tj

� �� �2
;

and

H ¼ UT � Z
� �

W� ðZ 0ZÞ þ PEN
U;V;T
d

� ��1
UT 0 � Z 0

� 	
;

with PEN
U;V ;T
d being the three-dimensional P-spline pen-

alty of order d described above.

Minimization of the GCVE can become computationally

demanding in this case, since we need to search for three

smoothing parameters. In order to speed up the computa-

tional burden, instead of using an optimization routine, we

selected a 3d-array and performed a grid search. We also

checked the performance of other criteria such as AIC and

BIC, and we found that, in this case BIC tended to over-

smooth the spatial component of the model and AIC per-

formed as well as GCVE.

On the other hand, the dimension of the basis in the

three spatio-temporal directions must also be selected.

Taking into account that the degree of smoothing is con-

trolled by the smoothing parameter, the number and loca-

tion of knots is not crucial for fitting a P-spline. Generally,

the knots of a P-spline are equally spaced and the number

of knots must be sufficiently large to fit the data and not so

large that computation time is unnecessarily high. Two

algorithms for automatic selection of the number of knots

by using generalized cross validation were considered in

Ruppert (2002). In general, authors select the dimensions

of the basis on the rule considered by Ruppert (2002),

which proposes to use one definition knot by each five

observation knots, approximately.

4 Simulation studies

In order to test the good performance of the proposed

PFSRM, two different simulation studies have been

developed. The first one considers non equally spaced
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spatial locations on a grid and independent random errors.

The second one was simulated by considering non-regular

spatial locations and the random errors were added at the

two dimensions (space and time) through a spatio-temporal

Gaussian process. In addition, the results are compared

with a powerful geostatistical predictor, the OKFD devel-

oped by Giraldo et al. (2011). Let us observe that with both

methods, PFSRM and OKFD, the first step is to approxi-

mate the true functional form of the sample curves in terms

of basis functions. In this paper we will use regression

splines in terms of cubic B-splines basis functions.

For each method, a leave-one-out cross validation pro-

cedure is considered to predict each curve at each spatial

location. The integrated squared error of prediction, with

respect to the original data, can be computed as

ISEi ¼
Z

T

x si; tð Þ � ŷð�iÞ si; tð Þ
� 	2

dt; i ¼ 1; . . .; n;

with ŷð�iÞðsi; tÞ being the predicted curve at location si

when the observation yðsi; tÞ is not in the sample.

4.1 Simulation study I

This simulation study was first considered in Giraldo et al.

(2012). In our case, 225 spatial locations were fixed in a

grid according to the coordinates u ¼ v ¼ ð�20; �16;

�15; �10; �8; �5; �1; 1; 2; 6; 10; 12; 15; 16; 20Þ; on

which a set of spatially correlated functional data were

simulated at 365 equally spaced time points according to

the model

Y si; tð Þ ¼
X15

k¼1

ak sið Þ/kðtÞ þ � si; tð Þ; i: 1; . . .; 225;

where /ðtÞ ¼ ð/1ðtÞ; . . .;/15ðtÞÞ is a cubic B-spline basis,

and each coefficient ak is a realization of a Gaussian ran-

dom field whose covariance structure is defined according

to the exponential model CðhÞ ¼ 2exp �h
8

� �
; where h ¼

ksi � sjk; ði; j ¼ 1; . . .; 225Þ is the Euclidean distance

between two sites si and sj: Finally, �ðsi; tÞ are independent
random errors for each t, with t ¼ 1; . . .; 365; simulated

according to a distribution N(0, 0.09). The spatial locations

are shown in Fig. 2. The simulated data sets, with and

without noise, can be seen in Fig. 3.

The first step for applying both methods, PFSRM and

OKFD, was to approximate the sample curves by using

regression splines in terms of a cubic B-spline basis of

dimension 15 and considering equally spaced knots. As an

example, a sample path without noise (dashed line) toge-

ther with the noisy sample path (grey line) and its basis

representation (solid black line) are displayed in Fig. 4. In

this case, regression splines on 15 basis functions get a

perfect approximation to the true data (without noise).

In the model fitting (second step), the two-dimensional

basis for the space was achieved by considering 6 basis

knots for each marginal cubic B-spline basis. Regard to the

penalty, a 2-order penalty has been considered. For OKFD,

the variograms were selected as a linear combination of

nugget and exponential models.

In order to check the good performance of the proposed

methods, a leave-one-out cross-validation procedure was

carried out to obtain the predicted curve at each unsampled

spatial location. From the multiple box plot related to the

distribution of the ISE’s (Fig. 5) and the statistics summary

given in Table 1, it can be concluded that PFSRM achieves

the lowest values for the mean, the standard deviation and

the median of the prediction errors. On the other hand, in

Fig. 6 the 225 predicted curves are displayed joint to the

mean of the prediction curves (red lines) and the point wise

confidence bands according to the mean � 2 times the

standard deviation.

In order to test if the performance varies depending on

the spatial location, the predicted curves at two outlying

spatial locations (A and C) and a more central spatial

location (B) have been displayed in Fig. 7 (locations A–C

are highlighted in Fig. 2). We can see that PFSRM pro-

vides the best predicted curves closer to the shape of the

true data, independently of the predicted spatial location. It

is interesting to highlight that the worst prediction from

OKFD was in the most distant location C. So, the perfor-

mance of OKFD is not equal across the grid areas.

Finally, in Fig. 8 the residual curves provided by the two

compared methods have been displayed. It can be seen that

the mean residual curve is zero in both cases, and in some

spatial locations OKFD achieves larger residuals than our

method.

4.2 Simulation study II

Let us now consider a set of 80 non regular spatial loca-

tions, which are displayed in Fig. 9, and a set of 100
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Fig. 2 Simulation I: spatial locations
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equally spaced times at the interval ½0; 1	: The idea is to

simulate a set of spatially correlated functional data

according to the model

Y si; tð Þ ¼ aif1 si; tð Þ þ bif2 si; tð Þ � 0:5½ 	 sin cip 
 t � 0:2ð Þ
þ � si; tð Þ; i ¼ 1; . . .; 80;

where

f1ðs; tÞ ¼ e
�ðu�0:2Þ2

5
�ðv�0:5Þ2

3
�ðt�0:5Þ2

4
�1

� �
;

f2ðs; tÞ ¼ e �ðu�0:3Þ2
4

�ðv�0:7Þ2
2

�ðt�0:4Þ2
6

� �
;

with s ¼ ðu; vÞ denoting the pair of coordinates of the

spatial locations, ai; bi; and ci randomly simulated from

a�Uniform½0:5; 2	; b�Uniform½0:5; 1	; and c�
Uniform½1:5; 2	; and �ðs; tÞ being the error term corre-

sponding to an observation of a spatio-temporal Gaussian

process defined through a stochastic partial differential

equation (Sigrist et al. 2015), with parameters ðq0 ¼ 0:1;
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Fig. 3 Simulation I: simulated data without noise (left) and with noise (right)
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Fig. 4 Simulation I: basis representation of the sample curves by using regression splines in terms of a basis of cubic B-splines of dimension 15

(left). A sample path without noise (dashed line) together with the noisy sample path (grey line) and its basis representation (solid line) (right)

OKFD PFSRM

0
50

10
0

15
0

20
0

25
0

Fig. 5 Simulation I: box plot related to the ISE’s of the predictions

provided by OKFD and PFSRM

Table 1 Simulation I: summary of ISE’s from the cross-validation

predictions provided by OKFD and PFSRM

Mean s.d. Median Min. Max. Sum

OKFD 80.62 47.13 68.60 16.87 278.70 18,139.18

PFSRM 72.94 42.82 64.02 3.132 257.80 16,411.87
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r2 ¼ 0:25; f ¼ 0:9; q1 ¼ 0:1; c ¼ 2; a ¼ p=4; lx ¼
0:2; ly ¼ �0:2; s2 ¼ 0:01Þ: The simulated sample paths

with and without error can be seen in Fig. 10.

The first step was to approximate the sample curves by

using basis representations with B-splines. In order to

check the relation between the forecasting performance and
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Fig. 6 Simulation I: mean curve of the predictions and point wise confidence bands according to the mean � 2 times the standard deviation of

the predicted curves by OKFD (left) and PFSRM (right)
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Fig. 7 Simulation I: predicted curves by OKFD in two outlying spatial locations (locations A and C, left and right, respectively) and a more

central location B in the middle of the grid
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Fig. 8 Simulation I: residuals (grey lines) and the mean curve of the residuals (black line) from OKFD and PFSRM
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the dimension of the initial approximation of the sample

paths, regression splines in terms of a cubic B-spline basis

of dimension 13 and 23 with equally spaced knots have

been considered. In Fig. 11 a sample path without noise

(dashed line) together with the noisy sample path (grey

line) and its basis representation (solid black line) are

shown. The regression splines of all curves can be seen in

Fig. 12. Obviously, a higher dimension for the basis pro-

vides noisier sample curves and far away from the original

ones. The two scenarios (13 and 23 basis functions) are

considered and compared. In the model fitting (second

step), the two-dimensional basis for the space was achieved

by considering 15 basis knots for each marginal basis. As

in simulation I, a 2-order P-spline penalty has been con-

sidered. For OKFD, the variograms were selected as a

linear combination of nugget and exponential models.

In this study the differences in the accuracy of the

predictions provided by the two methods are also shown.

According to the statistics summary provided in Table 2,

the proposed method reduces the value of the mean and the

median of the ISE’s independently of the number of basis

functions used at the first step (regression splines fitting).

This fact is also supported by the box plots given in

Fig. 13.
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Fig. 10 Simulation II: simulated data without noise (left) and with noise (right)
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Fig. 11 Simulation II: a sample path without noise (dashed line) together with the noisy sample path (grey line) and its basis representation

(solid line) on a cubic B-spline basis of dimension 13 (left) and 23 (right)
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With respect to the predicted curves obtained by each

method, in Fig. 14 we can check that even in the most

favorable case for OKFD of 13 basis functions, PFSRM

provides the most accurate predictions. In order to test if

the performance of the predictions varies depending on the

spatial location, two outlying spatial locations (A and C)

and a central spatial location (B) have been considered.

Locations A–C are highlighted in Fig. 9. Accordingly,

PFSRM achieves the predicted curves closest to the true

data.

On the other hand, in the Fig. 15 the mean curve of the

predictions (red line) join to the point wise confidence

bands (dashed line) according to the mean � 2 times the

standard deviation are displayed, with OKFD being the
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Fig. 12 Simulation II: basis representation of the sample curves by using regression splines in terms of a cubic B-spline basis of dimension 13

(left) and 23 (right)

Table 2 Simulation II:

summary of ISE’s from the

cross validation predictions by

considering 13 and 23 basis

functions at the initial

regression splines (R-splines)

fitting

Initial fitting Methods Mean s.d. Median Min. Max. Sum

R-splines OKFD 3.3000 2.6879 2.4510 0.2672 12.3500 263.9705

(13 Basis) PFSRM 3.0690 2.8618 2.0950 0.1355 12.0000 245.5324

R-splines OKFD 4.0250 3.1965 3.0360 0.4638 17.5700 321.9834

(23 Basis) PFSRM 3.3870 3.0223 2.5190 0.1391 12.3000 270.9940

P-splines OKFD 3.3050 3.0119 2.5440 0.1609 14.3300 264.4087

(23 Basis) PFSRM 3.0860 2.8937 2.1980 0.1881 12.7900 246.8615

Last couple of rows were obtained by considering P-splines (on 23 basis) at the initial basis representation

of the sample curves

13 cubic B-spline basis 23 cubic B-spline basis

OKFD PFSRM

0
2

4
6

8
10

12

OKFD PFSRM

0
5

10
15

Fig. 13 Simulation II: box plot

related to the ISE of the

predictions by OKFD and

PFSRM, considering 13 and 23

basis functions at the initial

regression splines fitting
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method that provides the noisier mean curve and the pre-

dictions with more variability. Let us also observe that

PFSRM achieves the smoothest predicted curves while

OKFD provides predicted curves further away from the

real ones. Taking into account that OKFD seems to be very

sensitive to the dimension of the basis, other possibility

could be pre-smoothing the data by using P-splines. The

measures of accuracy of the predictions provided by the

two methods figure in Table 2. In this case the prediction

errors decrease for both methods, but the ones given by

PFSRM continue being lower.

Therefore, we can say that independently of the basis

dimension used to approximate the sample curves at the

beginning, OKFD has not been able to predict curves with

the same shape than the true data while PFSRM gets more

accurate predictions in both scenarios. Then, PFSRM is

more robust than OKFD in the sense that it is not so sen-

sitive to the selection of the dimension of the basis.

5 Application to Canadian Maritime weather data

In this study we use averages (over 30 years) of daily

temperature curves observed at 35 Canadian Maritime

weather stations. This is a clear example of functional data

presenting spatial dependence, since curves located at

closer geographical locations will be similar to other there

are further apart (see Fig. 1).

The first step for both methods is to consider the basis

representation of the raw sample paths in terms of cubic

B-spline basis functions. In order to get more general

conclusions, different number of basis functions have been

considered for the initial basis representation of the sample

paths, exactly 33 (Case 1) and 65 (Case 2). The regression

splines fitted in the two cases are displayed in Fig. 16. As

in both simulation studies, a 2-order P-spline penalty was

considered. Furthermore, the variograms were selected as a

linear combination of nugget and exponential models.

In order to get the predicted curve on each geographical

site a leave-one-out cross-validation procedure was carried

out. The predicted curves obtained by OKFD and PFSRM

next to their mean curve and point wise confidence bands

(according to the mean � 2 times the standard deviation)

can be seen in Fig. 17. In both cases (Cases 1 and 2), the

spatial basis is made by considering 6 knots for each

marginal basis. It can be seen that when the dimension of

the basis for fitting the regression splines increases (Case

2), the predictions provided by OKFD are noisier than in

Case 1. By contrast, PFSRM provides similar predictions

independently of the number of basis functions used to fit
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Fig. 14 Simulation II: predicted curves by OKFD and PFSRM in two

outlying spatial locations (locations A and C, left and right,

respectively) and a centered spatial location B (in the middle).

Locations A–C are highlighted in Fig. 9. The initial sample curves

were approximated by using regression splines on 13 (first row) and

23 (second row) B-spline basis functions
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the initial regression splines. In that sense, PFSRM is more

robust than OKFD with respect to the dimension of the

initial B-spline expansions in the time domain. This is an

important advantage of our method, since the selection of

the number of initial basis functions is not as relevant as in

functional kriging. For two Canadian Maritime provinces,

the predicted temperature curves by OKFD (blue) and

PFSRM (red) are plotted together with the observed tem-

perature curves in Fig. 18. Independently of the basis

dimension, PFSRM provides smoother and more accurate

predicted curves than OKFD and also maintains the trend

of the raw data.

In order to compare the prediction ability of the two

methods, the box plots related to the SSE’s (with respect to
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Fig. 15 Simulation II: mean curve of the predictions and point wise

confidence bands according to the mean curve � 2 times the standard

deviation of the predicted curves by OKFD and PFSRM. The initial

sample curves were approximated by using regression splines on 13

(first row) and 23 (second row) B-spline basis functions
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Fig. 16 Application: regression splines fitted from the temperature raw data by using 33 and 65 cubic B-spline basis functions (Cases 1 and 2,

respectively)
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the observed data) obtained by cross validation for Cases 1

and 2 can be seen in Fig. 19. Also, the mean, the standard

deviation and the median of the 35 SSE’s are summarized

in Table 3. Again, independently of the dimension of the

basis used in the initial regression splines, the lowest values

of the median of the SSE’s are always obtained by PFSRM.

Finally, as goodness-of-fit measure, in Fig. 20 the residual

curves have been displayed, highlighting the residuals related
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Fig. 17 Application: predicted curves (grey) by OKFD (at the top)

and PFSRM (at the bottom) from the regression splines of the

temperature raw data [using 33 (Case 1) and 65 (Case 2) cubic B-

spline basis functions] join to its mean curve (blue and red line) and

the point wise confidence bands according to the mean � 2 times the

standard deviation (black and dashed line)
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Fig. 18 Application: the predicted curve by OKFD (blue) and

PFSRM (red) from the regression splines of the temperature raw data

[using 33 (Case 1) and 65 (Case 2) cubic B-spline basis functions]

and the observed temperature curve (black) in two of the 35 Canadian

Maritime provinces
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to three spatial locations (color and dashed lines). From this

figures we can conclude that both methods provide a con-

siderable number of residuals close to zero, but in some

locations OKFD provides larger residuals than PFSRM.

6 Conclusions

The aim of this paper is to provide a new tool to predict

spatially dependent functional data as alternative to other

geostatistical prediction techniques, such as functional

kriging. From a formal definition of spatial functional data,

which was presented in Sect. 2, a penalized estimation of a

functional spatial regression model has been proposed in

this paper by introducing a three-dimensional P-spline

penalty at the least squares fitting criterion (Sect. 2.1).

In order to compare the proposed method with functional

kriging on different scenarios, two different simulation

schemes have been carried out. The first considers non

equally spaced spatial locations on a grid and independent

randomerrors. The second onewas simulated by considering

non-regular spatial locations and random errors simulated

from a spatio-temporal Gaussian process. Furthermore, an

application to climatological real data has been presented.

In both simulation studies and the application to real

data, the first step was to approximate the sample curves

from their discrete observations by using regression splines

on cubic B-spline basis with different dimensions just for a

comparison purpose (the number basis functions at each

study was proposed attending to the corresponding data

structure). Regard to the P-spline penalty used in the model

fitting, in all cases a 2-order penalty was considered.

A leave-one-out cross-validation procedure was carried

out to obtain the predicted curve at each unsampled spatial
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Fig. 19 Application: box plots

related to the SSEs (with respect

to the raw data) obtained in the

cross validation for Cases 1 and

2

Table 3 Application: the median, the mean and the standard devia-

tion of the SSEs (with respect to the observed data) obtained in the

cross validation for Cases 1 and 2

Case 1 Case 2

OKFD PFSRM OKFD PFSRM

Median 320.1 244.5 253.4 240.1

Mean 391.2 307.8 299.5 309.2

s.d. 308.4 181.2 178.4 186.8
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Fig. 20 Application: residuals (grey lines) and the mean curve of the residuals (black line) from OKFD and PFSRM, considering 33 basis

functions at the initial regression splines fitting. In dashed and color lines two residuals have been highlighted
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location. Also, in order to test if the forecasting perfor-

mance varies depending on the spatial location, the pre-

dicted curves in three outlying spatial locations were

analyzed in both simulation studies.

The first simulation study revels that even in the most

favorable (where the initial regression splines are closer to

the true data without noise), PFSRM provides the most

accurate predicted curves very close to the shape of the true

data, independently of the spatial location. By contrast, the

forecasting performance of OKFD is not equal across the

grid areas.

The second simulation study highlights that indepen-

dently of the basis dimension used to approximate the

sample curves at the beginning, OKFD has not been able to

predict curves with the same shape than the true data while

PFSRM gets the most accurate predictions in the two

considered scenarios. In addition, we can say that PFSRM

is more robust than OKFD in the sense that it is not as

sensitive as OKFD to the selection of the basis dimension.

In general, from the two simulation studies, it is clear

that PFSRM provides the most accurate predicted curves

(even in outlying spatial locations) and reduces the mean

and the median of the ISE’s with respect to OKFD, inde-

pendently of the number of basis functions used at the

initial smoothing with regression splines.

In addition, one of the advantages of our method is that

it can be used when the spatial locations where measure-

ments are taken change from one time point to another, and

also the model can easily cope with missing space or time

points.

Summarizing, it can be concluded that in order to pre-

dict functional data with spatial dependence, the proposed

PFSRM is a more accurate and computationally efficient

alternative to existing geostatistical predictors as ordinary

functional kriging.
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Appendix

Taking into account the following properties (Harville

1997)

vecðAÞ0ðD � BÞvecðCÞ ¼ traceðA0BCD0Þ;
traceðA0ABÞ ¼ traceðABA0Þ;

ð6Þ

the Eq. (5) can be rewritten as

PSSEðy; aÞ ¼ traceðC0CWÞ þ traceðZ 0ZAWA0Þ
� 2traceðAWC0ZÞ

þ k1trace A0 DU0

d DU
d � Iq

� 	
A

� 	

þ k2trace A0 Ip � DV 0

d DV
d

� 	
A

� 	

þ k3trace A DT 0

d DT
d

� 	
A0

� 	
;

ð7Þ

with W ¼
R
/T/T being the inner product matrix between

the basis functions. Next step is to compute the derivatives

of Eq. (3) with respect to A. By considering the following

properties (Harville 1997),

otraceðXAX0Þ
oX

¼ XðA þ A0Þ; ð8Þ

otraceðX0AXÞ
oX

¼ ðA þ A0ÞX; ð9Þ

otraceðXAÞ
oX

¼ A0; ð10Þ

we have that

otraceðC0CWÞ
oA

¼ 0;

otraceðZ 0ZAWA0Þ
oA

¼ð3Þ Z 0ZAðWþW0Þ

¼ðsymmetryÞ
2Z 0ZAW;

o� 2traceðAWC0ZÞ
oA

¼ð5Þ �2Z 0CW0;

ok1traceðA0ðDU0

d DU
d � IqÞAÞ

oA
¼ð4Þ 2k1 DU0

d DU
d � Iq

� 	
A;

ok2traceðA0ðIp � DV 0

d DV
d ÞAÞ

oA
¼ð4Þ 2k2 Ip � DV 0

d DV
d

� 	
A;

ok3traceðAðDT 0

d DT
d ÞA0Þ

oA
¼ð3Þ 2k3A DT 0

d DT
d

� 	
:

Then, A satisfies the matrix system of linear equations

given by

Z 0ZAWþ k1 DU0

d DU
d � Iq

� 	
A þ k2 Ip � DV 0

d DV
d

� 	
A

þ k3A DT 0

d DT
d

� 	
¼ Z 0CW0:

ð11Þ

In order to get the solution to A, the Kronecker product is

used to express Eq. (9) in conventional matrix algebra
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vecðZ 0ZAWÞ ¼ð1Þ ðW� ðZ 0ZÞÞvecðAÞ;

vec k1 DU0

d DU
d � Iq

� 	
A

� 	
¼ vec k1 DU0

d DU
d � Iq

� 	
AIr

� 	

¼ð1Þ k1 DU0

d DU
d � Iq � Ir

� 	
vecðAÞ;

vec k2 Ip � DV 0

d DV
d

� 	
A

� 	
¼ vec k2 Ip � DV 0

d DV
d

� 	
AIr

� 	

¼ð1Þ k2 Ip � DV 0

d DV
d � Ir

� 	
vecðAÞ;

vec k3A DT 0

d DT
d

� 	� 	
¼ vec k3 Ip � Iq

� �
A DT 0

d DT
d

� 	� 	

¼ð1Þ k3 Ip � Iq � DT 0

d DT
d

� 	
vecðAÞ:

Then, Eq. (9) can be re-written as follows

W� ðZ 0ZÞ þ PEN
U;V ;T
d

� �
vecðAÞ ¼ vecðZ 0CW0Þ;

where PEN
U;V ;T
d is a P-spline penalty developed by Eilers

et al. (2006), which is given by

PEN
U;V ;T
d ¼ k1 DU0

d DU
d � Iq � Ir

� 	
þ k2 Ip � DV 0

d DV
d � Ir

� 	

þ k3 Ip � Iq � DT 0

d DT
d

� 	
:

Finally, A is given by

vecðAÞ ¼ W� ðZ 0ZÞ þ PEN
U;V ;T
d

� ��1
vecðZ 0CW0Þ:
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