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Abstract Accurate forecasting of river flows is one of the

most important applications in hydrology, especially for

the management of reservoir systems. To capture the sea-

sonal variations in river flow statistics, this paper develops

a robust modeling approach to identify and to estimate

periodic autoregressive (PAR) model in the presence of

additive outliers. Since the least squares estimators are not

robust in the presence of outliers, we suggest a robust

estimation based on residual autocovariances. A genetic

algorithm with Bayes information criterion is used to

identify the optimal PAR model. The method is applied to

average monthly and quarter-monthly flow data

(1959–2010) for the Garonne river in the southwest of

France. Results show that the accuracy of forecasts is

improved in the robust model with respect to the unrobust

model for the quarter-monthly flows. By reducing the

number of parameters to be estimated, the principle of

parsimony favors the choice of the robust approach.

Keywords River flows analysis � Periodic time series �
Robust estimation � Genetic algorithms

1 Introduction

In recent years there has been considerable research in the

development of time series models with seasonal or peri-

odic properties in hydrology and water resources (Vecchia

1985a). These models are important for the planning and

the design of water management policies. They aim at

providing accurate forecasts to the river manager for allo-

cating the resource between interest conflicting users for

instance. These forecasts can be obtained using single-

variable approach which doesn’t need to model the phys-

ical processes of the hydrologic system (Hipel and McLeod

1994). When such a hydrologic model exists, time series

models can be used to analyse the difference between the

observed data and the forecasts of the hydrological model

as in Madsen and Skotner (2005) and Gragne et al. (2014).

In both cases, there is a need to find automatic procedure

for the identification and the estimation of the more rele-

vant time series models.

Seasonal time series models like the seasonal autore-

gressive integrated moving average (SARIMA) model

developed originally by Box and Jenkins (1970, chap. 9)

have been extensively studied in the literature of hydro-

logic models. Mishra and Desai (2005) successfully

applied ARIMA and seasonal ARIMA models to forecast

droughts based on the usual stages of model development:

identification, estimation and diagnostic checking. Fer-

nandez et al. (2008) applied a multiplicative SARIMA

model to forecast monthly streamflow in a small watershed

in North West Spain. Durdu (2010) used a SARIMA model

to predict drought in the Büyük Menderes river basin using

the standardized precipitation index (SPI) as drought index.

However, as pointed out by McLeod (1993), river flows

for a particular season of the year may be statistically

similar from year to year, but may depend intrinsically on

the season. This feature cannot be captured by SARMA

models which represent a class of stationary models with

large lag autocorrelations that are invariant with respect to

the season. Moreover it turns out that many seasonal time

series cannot be filtered to achieve second-order station-

arity due to the correlation structure of these time series
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Avenue Léon Duguit, 33608 Pessac CEDEX, France

123

Stoch Environ Res Risk Assess (2016) 30:1785–1795

DOI 10.1007/s00477-015-1193-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-015-1193-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-015-1193-3&amp;domain=pdf


with the season (Vecchia 1985b). As the majority of river

flow time series satisfy the property of periodic stationarity,

meaning that their mean and covariance functions are

periodic with respect to time, the use of periodic autore-

gressive (PAR) modeling in water resources is justify.

Clearly, a PAR model encapsulates a separate autoregres-

sive model for each season of the year, which are poten-

tially different. The PAR model may be also seen as

particular case of the PAR moving average (PARMA) class

of models (Jimenez et al. 1989).

The method of moments based on Yule–Walker equa-

tions (McLeod 1994) and the least squares (LS) method in

the univariate case (Franses and Paap 2004) are efficient to

estimate PAR models. As mentioned by Hipel and McLeod

(1994), when the seasonal data and the model for each

season are used rather than the annual data and the asso-

ciated model, significant gain in parameter efficiency can

be achieved. However the main problem in PAR modeling

relies on the number of parameters to estimate which varies

with the choice of the season for river-flows. Moving from

monthly surveys to quarter-monthly river flow data,

increases both the number of models and the number of

parameters to be estimated. To obtain parsimonious mod-

els, it is of interest to study situations in which linear

constraints on the parameters of a given season are intro-

duced (Ursu and Duchesne 2009). It also justifies the use of

genetic algorithm with Bayes information criterion (BIC)

to identify the optimal order of the PAR model. Tools such

as genetic algorithm (Koutroumanidis et al. 2009), support

vector machine and genetic programming (Wang et al.

2014) or artificial neural network (Aksoy and Dahamsheh

2009) appear as some of the numerous modern methods of

simulation and optimization in hydrology. An overview of

these simulation and optimization methods used in reser-

voir operation is presented in Fayaed et al. (2013).

A second problem in the parameter estimation of time

series models occurs with the presence of outliers that may

imply serious problems. Hau and Tong (1989) presents a

new approach for outlier detection in autoregressive mod-

els with real data from water ressources. They also present

two types of outliers which are generally discussed in the

time series literature: innovation and additive outliers. As

in Ursu and Pereau (2014), this paper focuses on additive

outliers since their impact on the parameter estimates are

known to be more important than innovation outliers (Li

2004, chap. 4). In particular the sensitivity of the LS esti-

mation method to outliers requires the use of robust

approaches (Denby and Martin (1979) for autoregressive

models of first order; Ben et al. (1999) for vector autore-

gressive moving average (VARMA) models; Shao (2007)

for univariate PAR models). Based on the robust scale

estimator developed by Ma and Genton (2000), Sarnaglia

et al. (2010) analyses its properties in PAR models. In

periodic vector autoregressive (PVAR) models, Ursu and

Pereau (2014) implement a robust estimation method based

on residual autocovariances (RA) to deal with additive

outliers. An extensive review on the impact of outliers in

time series models can be found in Maronna et al.

(2006, chap. 8).

Model identification is typically the most difficult aspect

of the model-building procedure. The examination of the

plots of the periodic partial autocorrelation function as a

tool to identify a periodic model requires a high level of

user experience (see, e.g. Jimenez et al. 1989). Another

approach is to use an automatic selection criterion, such as

the Akaike information criterion (AIC) or the Bayesian

information criterion (BIC) when all possible models are

examined. A possible difficulty with this procedure is the

large number of models to be investigated. The contribu-

tion of the paper to the theoretical literature is to provide an

automatic methodology able to select and estimate PAR

models in the presence of outliers. Moreover from an

operational point of view, this paper shows that such a

methodology can be applied successfully at a quarter-

monthly temporal scale showing that one-step forecasts

with the robust model are always better than the unrobust

approach model various efficiency criteria. This approach

shows that the number of parameters to be estimated is also

lower with the robust model.

This article is organized as follows. In Sect. 2, the PAR

model is introduced and least squares estimators are com-

puted. In Sect. 3, a robust estimation in the presence of

outliers is developed. Section 4 illustrates the results for

the case study of the Garonne river. Section 5 offers some

concluding remarks.

2 Periodic models

The class of PAR models extends the class of autoregres-

sive (AR) models by allowing the autoregressive parame-

ters to vary with the seasons. It is worth pointing out that a

PAR model is formed by defining a different AR model for

each season of the year. A PAR model with 12 periods can

be associated with 12 AR models. It should be noted that,

when the number of periods is 1, PAR model becomes AR

model.

Let Y ¼ fYt; t 2 Zg be a PAR stochastic process given

by

Ynsþm ¼
XpðmÞ

k¼1

/kðmÞYnsþm�k þ �nsþm: ð1Þ

For fixed m and predetermined value s, the random variable

Ynsþm represents the realization during the mth season, with

m 2 f1; . . .; sg, at year n, n 2 Z. With monthly data the
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value m ¼ 12 is naturally selected, whereas that for quarter-

monthly data m ¼ 48. The autoregressive model order at

season m is given by pðmÞ, whereas /kðmÞ, k ¼ 1; . . .; pðmÞ,
represent the autoregressive model coefficients during

season m, m ¼ 1; . . .; s. The error process � ¼ f�t; t 2 Zg in

Eq. (1) corresponds to a periodic white noise, with Eð�tÞ ¼
0 and varð�nsþmÞ ¼ r2ðmÞ[ 0, m ¼ 1; . . .; s. The random

process Yt in (1) is supposed to have zero mean.

Unless otherwise stated we assume that PAR models are

stationary in the periodic sense. Periodic stationarity is

discussed in Gladyshev (1961). Typically, the periodic

models used in water resources and environmental systems

are stationary, in the sense that they do not need to be

differenced to achieve stationarity (or, otherwise put, data

do not have unit roots). In applications, seasonal means are

first removed from the time series.

2.1 Identification and estimation for PAR models

This section summarizes without proofs the relevant

material on identification, and parameter estimation for

PAR models. References that provide detailed proofs are

included in the text.

Several estimation techniques are available for periodic

models, namely the least-square method (Franses and Paap

2004; Lütkepohl 2005), the method of moments based on

Yule–Walker estimation (Pagano 1978; Hipel and McLeod

1994), the maximum likelihood estimation (Vecchia

1985a; Eshete and Vandewiele 1992) and the Kalman fil-

ter (Jimenez et al. 1989).

Consider the time series data Ynsþm, n ¼ 0; 1; . . .;N � 1,

m ¼ 1; . . .; s with sample size n ¼ Ns. Let

zðmÞ ¼ Ym; Ysþm; . . .; YðN�1Þsþm

� �>
;

eðmÞ ¼ �m; �sþm; . . .; �ðN�1Þsþm

� �>
;

XðmÞ ¼

Ym�1 Ym�2 . . . Ym�pðmÞ

Ysþm�1 Ysþm�2 . . . Ysþm�pðmÞ

..

. . .
. ..

.

YðN�1Þsþm�1 YðN�1Þsþm�2 . . . YðN�1Þsþm�pðmÞ

2

666664

3

777775
;

be N � 1, N � 1 and N � pðmÞ random matrices. By

defining the pðmÞ � 1 vector bðmÞ of the parameters as:

bðmÞ ¼ /1ðmÞ; . . .;/pðmÞðmÞ
� �>

; ð2Þ

the PAR model can be written in the following form:

zðmÞ ¼ XðmÞbðmÞ þ eðmÞ; m ¼ 1; . . .; s: ð3Þ

From Eq. (3), the least squares estimators (unconstrained

and constrained) of bðmÞ can be easily found. For more

details we refer the reader to Ursu and Turkman

(2012, Sect. 2). Once the estimates b̂ðmÞ ¼

/̂1ðmÞ; . . .; /̂pðmÞðmÞ
� �>

are obtained, the model residuals

are introduced:

�̂nsþm ¼ Ynsþm �
XpðmÞ

k¼1

/̂kðmÞYnsþm�k; nsþ m[ pðmÞ;

0; nsþ m� pðmÞ;

8
><

>:

which are well-defined for n ¼ 0; 1; . . .;N � 1.

Various selection criteria using AIC or BIC can be used

for PAR model identification. One possible way is to use

the BIC selection criterion separately for each of the sea-

sonal components:

BICðmÞ ¼ log r̂2ðmÞ þ logðNÞ
N

pðmÞ; ð4Þ

where r̂ðmÞ stands for the least squares estimators of rðmÞ,
and pðmÞ represents the number of autoregressive parame-

ters in season m McLeod (1994).

Even if this method reduces the number of models to be

investigated, the number of possible models remains very

high. The large number of possible solutions for the PAR

selection model suggests that genetic algorithms (GA) can

be useful to an efficient examination of the space of solu-

tions and selection of the combination of parameters that

corresponds to the best model. The GA combined with BIC

criterion is a reliable and easy way to identify PAR mod-

els (Ursu and Turkman 2012).

We briefly summarize our GA procedure for subset PAR

modeling.

– String representation Each subset AR model is encoded

as a string, each locus in the string is filled with 1 if the

parameter is free, and with 0 if the parameter is

constrained to zero. Since a maximum search order has

to be selected, every string has the same length L. For

example, if we take s ¼ 12, m ¼ 1 and pð1Þ ¼ 15, and

the model

Y12nþ1 ¼ /6ð1ÞY12n�5 þ /7ð1ÞY12n�6 þ �12nþ1

then, the string representing our model is

000001100000000:

Note that in this case, the number of all possible

models is 12� 215 ¼ 393216.

– Initial population An arbitrarily population of chromo-

somes of size Np is generated. Each chromosome is

encoded as a binary string of length L as described

above. The population size Np and the length of the

chromosome L are chosen by the investigator.

– A fitness function Each chromosome is evaluated by

means of a positive real-valued function called fitness

function. Since the BICðmÞ may be negative, a natural
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candidate for the fitness function is an exponential

transformation

fjðmÞ ¼ exp fBICjðmÞ=dg;

where BICjðmÞ stands for the BICðmÞ value for the jth

chromosome in the current population and d is a scaling

constant. For yet another appropriate fitness function

we refer the reader to Gaetan (2000).

– Generating a new population A new population of

potential chromosomes is created, using evolutionary

operators as: selection, crossover and mutation. This

cycle continues until the maximum number of gener-

ations Ng is attained, or until a stop condition is

reached.

For many variations of the basic GA and detailed expla-

nations, see Goldberg (1989), Mitchell (1996), Sivanan-

dam and Deepa (2008).

2.2 Forecasting with PAR model

Forecasting with PAR models proceeds in the same way

than standard AR models. The objective is to obtain a

forecast with the lowest possible error, leading to the

minimum mean squared error forecast (MMSE). The

MMSE forecast is given by its conditional expecta-

tion (Hipel and McLeod 1994).

Assuming that observations and innovations are known

up to the n-th year and m-th season, one takes the condi-

tional expectation of eq. (1) to obtain the MMSE forecast

ŶnsþmðlÞ, where ŶnsþmðlÞ is interpreted as the l-step ahead

forecast at the forecast origin t ¼ nsþ m. For example, the

1-step ahead forecast made at the origin t ¼ nsþ m is

Ŷnsþmð1Þ ¼E Ynsþmþ1jYnsþm; Ynsþm�1; . . .½ �
¼/1 ðmÞYnsþm þ /2ðmÞYnsþm�1 þ � � �

þ /pðmÞYnsþm�pþ1

The causal representation of PAR models (Uesu and

Duchesne 2009, Eq. 5) can be use to compute confidence

intervals for forecasts but this is beyond the scope of this

paper. The best general reference for confidence intervals

in periodic models are Hipel and McLeod (1994, chap. 15)

and Anderson et al. (2013). The forecasting performance

of several time series models used in river flow analysis is

presented in Noakes et al. (1985). Results suggest that the

PAR models provide the most accurate forecasts.

3 Robust modeling of PAR models

As it is well-known, estimation methods may be seriously

affected in the presence of additive outliers that are the

most recording errors (Bustos and Yohai 1986; Shao

2007). Additive outliers refer to a PAR process with

probability 1� x and a PAR process plus an error with

probability x. The occurrence of outliers is generally small

(x� 0:05).

Robust estimators based on robust autocovariances for

ARMA models were proposed by Bustos and Yohai

(1986). Their methodology was extended for multivariate

PAR models by Ursu and Pereau (2014). The system of

equations obtained in Ursu and Pereau (2014, Eqs. (6) and

(9)) can be easily adapted for PAR processes.

Therefore, in order to reduce the influence of the

residuals suspected to be outliers, the residuals �̂nsþm

defined in Sect. 2 are replaced by their modified residuals

~�nsþm defined as:

~�nsþm ¼ w
�̂nsþm

r̂ðmÞ

� �
; ð5Þ

where w stands for an odd and bounded function and r̂ðmÞ
is an robust estimator for rðmÞ. An usual choice for the w
function is the Huber function:

wH;kðxÞ ¼ sgnðxÞmin fjxj; kg;

where k is a constant and sgnðxÞ is the signum function.

Generally, an iterative algorithm is proposed for ARMA

models in Bustos and Yohai (1986) and for PAR models

in Ursu and Pereau (2014).

In all the simulations, we did not experienced any

problems of convergence with the iterative algorithm as

in Ursu and Pereau (2014). Other recent works on robust-

ness in periodic time series include the estimator of PAR

models proposed by Sarnaglia et al. (2010). Also, a robust

estimation for PAR models was discussed in Shao (2007).

4 Case study: the Garonne river

The PAR model is applied to the average monthly river

flows and average quarter-monthly river flows of the

Garonne river located in the southwest of France. This river

goes down from its source in Spain to the Atlantic Ocean

over 647 km. It is the main contributor to the Gironde

Estuary which is the major European fluvial-estuarine

system. The Garonne river is the third largest river in

France in terms of flow, with a catchment area of

51,500 km2 at Tonneins, the outlet of the watershed.

The Garonne River is managed by the Adour-Garonne

Water Agency in charge of the planning and design of

water policies related to various issues as urban water

supply, hydropower, irrigation management, flood and

drought control, pollution, protection of endangered fishes,

wetland and habitats conservation (Baker and Vervier

2004; Muylaert et al. 2009; Oeurng et al. 2011; Maire et al.
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2013). River authorities aim at controlling the quantitative

management of water to achieve a good water status

according the ecological requirements imposed by the

European Water Framework Directive. To ensure a good

functioning of the economic and ecological system, the

Adour-Garonne Agency sets at different gauging stations

of the river some minimal threshold values measured in

cubic meter per second (m3/s) for the river-flows. These

thresholds have to be reached every year during low water

periods between the 1st of July–October 31st. To comply

with these flow objectives, water storage policies consist-

ing in water saving measures and water releases from dams

and reservoirs have to be implemented upstream the

gauging stations. In a context of higher water pressure

increased by the climate change (Caballero et al. 2007,

Boe et al. 2009), Tisseuil et al. (2010) show significant

reduction in river flows at different gauging station of the

Garonne River and in particular at Tonneins. Based on a

rainfall-runoff model coupled with a reservoir management

system, Hendrickx and Sauquet (2013) show that earlier

filling of reservoirs will be necessary in winter to ensure

that water releases during the warm periods will comply

the flow objectives.

Flow measures are recorded at the latest gauging station

of the Garonne river at Tonneins. Data are obtained from

daily discharge measurements in cubic meter per second

(m3/s) from January 1959 to December 2010 (DIREN-

Banque Hydro, French water monitoring). Daily data flows

are then transformed in monthly data, respectively quarter-

monthly data, consisting in flows averaged for one month,

respectively from the 1st to the 7th, from the 8th to the

15th, from the 16th to the 22nd, and from the 23rd to the

end of the month as in Hipel and McLeod (1994). At

Tonneins, the threshold value of the daily flow is equal to

110 m3/s for the dry season between the 1st of July to

October 31st which corresponds to periods 25 to 40.

Figure 1 plots the annual flows of the Garonne river

between 1959–2010. It shows that several episodes of

severe drought occurred in 1989–1990 and in 2005. This

figure also shows that annual flows remained below the

mean of 600 m3/s for several years during the last decade.

To capture the periodic pattern of river flows, average

monthly and quarter-monthly flow series are analysed.

Tables 1 and 2 show respectively the sample mean, median

and standard deviation for each flow series. A partial plot

of monthly and quarter-monthly surveys between 1980 and

2000 is given in Fig. 2.

Figure 2 shows that a periodic fluctuation in the means

and variances is clearly displayed. For monthly data, river

flows are higher in February and much lower in August. For

quarter-monthly data, most peaks occurred during the 4th,

5th, 6th and 7th period andmost troughs occurred in the 30th,

31th, 32th and 33th period.Maximummean quarter-monthly

discharge was observed at 48th period in 1959 as 4059 m3/s,

while a minimum mean quarter-monthly discharge of 55.86

m3/s was recorded at 27th period in 2003. The driest periods

for monthly and quarter-monthly data are in August (8th

month) and in period 31 respectively while February (2nd

month) and the 4th period are the wettest period for monthly

and quarter monthly data.

Figures 3 and 4 display the pattern of the series over the

period 1959–2010. For the driest periods, we observe that

the 10-year moving average has increased from 1959 to

1975, then it was stabilized between 1975 to 1980 followed

by a decrease from 1980 to 1990. By 1990, the 10-year

moving average was around 110 m3/s and seems to remain

stable. A similar behavior is observed for the wettest

periods. Changes in the average hydrological conditions in

the Garonne river flows can be explained by several factors

related to natural changes after the severe droughts of

1989–1990 or human activities with increased irrigated

agriculture and urban growth. Since the mid of the 1990s,

the stabilization of the 10-year moving average around the

value of 110 m3/s can be explained by the implementation

of water management policies.

Figure 5 shows how many periods the quarter-monthly

flows remain below the threshold value of 110 m3/s.

Between 1959 and 2010, it occurs more frequently during

periods 28 to 33 with a maximum of 20 times for period 31.

The last year of the data set (12 months or 48 obser-

vations) has been omitted for the selection and the esti-

mation of the periodic model. To ensure that residuals of

the fitted model are approximately normally distributed and

homoscedastic, a Box–Cox transformation has been use-

d (Eshete and Vandewiele 1992; McLeod and Gweon

2013). The Box–Cox analysis shows that residuals are

year

m
3

s

1960 1970 1980 1990 2000 2010

20
0

40
0

60
0

80
0

10
00

Fig. 1 Plot of average annual flows of Garonne river at Tonneins

between 1959 and 2010 in cubic meter per second (m3/s)
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more symmetrical when flow data are transformed in nat-

ural logarithms.

4.1 Unrobust modeling of river flows

In the unrobust case modeling, data have been centered by

subtracting the seasonal means of the logarithmic series.

The PAR model is fitted to the truncated series. The

number of AR models used in PAR model is equal to the

number of season associated to the choice of data set. It

gives 12 AR models for monthly data and 48 models for

quarter-monthly data. Note that with the monthly model,

the number of possible models to be estimated is approx-

imately 4� 105 and it increases to 16� 105 with quarter-

monthly data. This large number of possible solutions

suggest the use of GA techniques to reduce the space of

solutions and to select the combination of parameters

which gives the best model. For each season, the parame-

ters of the identified AR model are estimated by using the

least squares with linear constraints.

Using GA methods, only 29 and 112 parameters have

been estimated for the 12 and 48 different AR models,

respectively. The most complicated model for quarter-

monthly logarithmic flows is obtained for the 48th season

Table 1 Sample mean, median

and standard deviation of the

average monthly flow series

Period Mean Median SD Period Mean Median SD

1 927.89 854.70 493.66 7 258.06 235.60 159.46

2 984.70 876.25 477.15 8 161.63 146.85 81.52

3 824.19 810.80 321.06 9 212.13 175.10 118.54

4 840.39 808.65 331.90 10 344.47 274.75 226.29

5 798.71 756.15 320.76 11 524.22 438.10 322.96

6 527.83 482.65 249.42 12 823.28 721.80 600.96

Period 1 corresponds to January. All measures are in cubic meter per second (m3/s)

Table 2 Sample mean, median

and standard deviation of the

average quarter-monthly flow

series

Period Mean Median SD Period Mean Median SD

1 898.87 738.21 749.83 25 334.77 283.57 198.61

2 864.82 682.19 574.70 26 306.38 236.38 273.73

3 907.50 822.93 536.55 27 227.25 207.21 125.45

4 1022.39 911.33 639.42 28 179.41 161.72 87.35

5 1001.22 795.86 675.40 29 166.54 145.43 106.39

6 998.22 778.56 608.97 30 164.21 145.62 84.26

7 995.64 833.93 559.70 31 150.34 130.29 72.73

8 938.86 795.71 507.46 32 164.31 151.00 92.44

9 843.37 754.29 388.77 33 171.39 157.36 91.53

10 778.47 707.50 361.49 34 179.45 156.81 86.64

11 809.78 695.36 494.55 35 226.81 173.57 199.56

12 861.10 722.28 463.38 36 267.63 177.00 221.72

13 810.89 793.29 387.19 37 288.85 212.07 233.54

14 821.18 686.50 433.57 38 316.05 276.94 222.85

15 829.67 764.93 371.26 39 352.91 285.21 210.20

16 894.76 782.81 469.93 40 406.41 299.56 327.58

17 867.98 707.86 458.46 41 441.59 308.57 382.77

18 835.76 777.50 407.20 42 515.26 367.38 352.86

19 768.96 678.14 379.08 43 550.07 470.36 399.15

20 735.05 683.44 349.19 44 582.86 462.31 403.36

21 630.39 596.71 258.53 45 779.49 533.71 678.62

22 612.22 506.50 387.94 46 835.27 563.38 756.48

23 484.57 399.00 256.52 47 829.46 579.00 680.99

24 391.56 351.75 196.47 48 841.88 610.22 735.66

All measures are in cubic meter per second (m3/s)
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where an AR model with nine parameters was identified.

With monthly logarithmic flows, the number of estimated

parameters is six for the month of November.1 A parsi-

monious PAR model may be obtained by using a single

model for all seasons in a given group and therefore the

number of parameters in a PAR models is decreas-

ing (Hipel and McLeod 1994, chap. 14).

The proposed models for Garonne are then used to

generate one-step-ahead forecasts for both logarithmic flow

series. To obtain the forecasts in the untransformed domain

we take the inverse Box–Cox transformation of the fore-

casts in the transformed domain. Figure 7 shows forecast

and the observed data for the last year of the data set

(2010). Figure 1 shows that the river flow in 2010 is about

400 m3/s which is lower than the mean of the whole

sample. It could be considered as a dry year.

4.2 Robust modeling of river flows

Figure 6 shows that several observations can be identified

as outliers in the seasonal boxplots (according to the one

and half inter-quartile range rule). Outliers appear to be

more numerous in quarter-monthly logarithmic flows than

in monthly logarithmic flows in the wettest period (from

periods 3 to 7), but also at the end of the driest periods

(from periods 35 to 42).

Contrary to the unrobust case, data have been centered

by subtracting the seasonal medians of the logarithmic

series instead of seasonal means. As indicated by Shao

(2007), the seasonal medians are preferred due to the lower

impact of outliers on the medians. The robust procedure

described in Sect. 3 is then applied. As mentioned in Sect.

2, the best approach for identifying the AR parameters

required in each season for the PAR model is to use the

genetic algorithm techniques. It is worth emphasizing that

the number of estimated parameters for monthly and

quarter-monthly logarithmic flows were 23 and 108

respectively. The most complicated AR model (for one

period) implies five parameters (in November) and six

parameters (27th period) for the logarithmic monthly and

quarter-monthly data, respectively.
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Fig. 2 Partial plot of average monthly and quarter-monthly flows of

Garonne river at Tonneins between 1980 and 2000 in cubic meter per

second (m3/s)
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(b) Quarter-monthly periods

Fig. 3 The driest monthly (August) and quarter-monthly flows (31th

period) of Garonne river at Tonneins from 1959 to 2010. The long

term mean (for August) is 161.27 m3/s and 150.34 m3/s for period 31.

1 The identified model associated to this month can be written as

Y12nþ11 ¼ /̂1Y12nþ10 þ /̂4Y12nþ7 þ /̂5Y12nþ6 þ /̂8Y12nþ3 þ /̂11Y12n

þ /̂14Y12n�3 þ �̂12nþ11;

where /̂1 ¼ 0:823, /̂4 ¼ �0:518, /̂5 ¼ 0:444, /̂8 ¼ �0:224, /̂11 ¼
0:146 and /̂14 ¼ �0:335.
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The robust models for Garonne data are used to generate

one-step-ahead forecasts for the average flow series. Once

again the inverse Box–Cox transformation has been

applied. Robust forecasts and the observed data for 2010

are shown in Fig. 7.

The forecast accuracy of the unrobust and robust models

is evaluated with respect to the following measures: the

root mean square error (RMSE), the mean absolute error

(MAE) and the mean absolute percentage error (MAPE).

These measures are explicitly defined in Hyndman and

Koehler (2006). The MAE and the RMSE between the

proposed model and the observed data are calculated in the

same units of the observed data. A smaller value indicates a

better model performance. The MAPE measure is based on

percentage errors. These criteria have to be interpreted only

as an indication to which model performs better, but no

statement can be made from this comparison. To test the

null hypothesis of no difference in the accuracy of the

proposed models, a Wilcoxon signed rank test for paired

data may be used (Noakes et al. 1985). Besides RMSE,

MAE and MAPE measures, we provide the relative index

of agreement (rd), the coefficient of determination (R2) and

the Nash-Sutcliffe efficiency (NSe) for better comparison.

These measures are defined in Krause et al. (2005). The rd

index varies between 0 and 1. A value of 1 indicates a

perfect match, and 0 indicates no agreement at all. The

range of NSe lies between �1 to 1. Essentially, the closer

to 1, the more accurate model is. The range of R2 lies

between 0 and 1 and a higher coefficient is an indicator of a

better model. All the measures are calculated using the

hydroGOF and forecast packages in R. For another
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Fig. 4 The wettest monthly (February) and quarter-monthly flows

(4th period) of Garonne river at Tonneins from 1959 to 2010. The

long term mean for February is 984.7 m3/s and 1022.39 m3/s for

period 4

periods

F
re

qu
en

cy

25 30 35 40

0
5

10
15

20
25

Fig. 5 Histogram of driest quarter-monthly flows of Garonne river at
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Fig. 6 Box-plots of the monthly and quarter-monthly logarithmic

flows of Garonne river at Tonneins
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measures of forecast accuracy we refer to Hyndman and

Koehler (2006), Krause et al. (2005).

Another monthly predictions can be derived from the

aggregation of the quarter-monthly predictions. They are

obtained by taking the average over the four periods of

each month. Table 3 gives the measures RMSE, MAE,

MAPE, rd, R2 and NSe for monthly, quarter-monthly and

aggregated quarter-monthly predictions. Results show that

the robust model is better with respect to all criteria for the

quarter-monthly and aggregated quarter-monthly data. On

the contrary, the unrobust model seems to perform better

for monthly data. This can be explained by the low number

of outliers (equals to 11) but even in this case the robust

model may be preferred due to the principle of parsimony.

Results show that the number of estimates is lower in the

robust case. Moreover the behaviour of the robust estimates

was in most cases reasonable even if the outliers are

missing as shown by Ursu and Pereau (2014) using

simulation.

5 Conclusions

Accurate forecasting of river flows is one of the most

important applications in hydrology, especially for the

management of reservoir systems. The accuracy of the

forecast analysis is important for the river management

authorities to achieve minimal flow objectives during the

driest seasons. Based on a robust modeling approach for

the identification and the estimation of PAR time series

model, this paper provides an application to the Garonne

River over the period 1959–2010. To deal with the problem

of large number of parameters needed to be estimated

especially with quarter-monthly models, an automatic

method using genetic routines has been developed. Results

show that detection of outliers is higher with quarter-

monthly flow data than monthly data, implying better

robust estimators than the least square (unrobust) estima-

tors. Results show that 1-year forecasts are better in quar-

ter-monthly robust models rather than unrobust models.

The aggregated quarter-monthly forecasts also shows better

performance than the monthly forecasts in the robust

analysis.

Our analysis also suggests to integrate the evolutionary

algorithm for optimization of reservoir operation. As

shown by Wang et al. (2014), the use of more sophisti-

cated methods as genetic algorithm or support vector

machine may improve the quality of hydrologic prediction

over the classical autoregressive models. Future research

dealing with periodic threshold models should be done to

improve river flow fitting and forecasting. In particular,

data measures suggest a structural change in the hydro-

logical regime around the year 1990. This requires to
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Fig. 7 The observed data for the first 51 years appear in solid line (in

red), robust forecast are in dashed line (in blue) and unrobust forecast

are in dotted line (in black). The observed data for the next year (52)

have not be used in the forecast. In a forecasts are for the 12 months

while, b deals with forecasts over the 48 quarters. Flows are in m3/s

Table 3 Accuracy of one-step

forecasts of Garonne river flows
Criterion Monthly Quarter-monthly Agg. quarter-monthly

Unrobust Robust Unrobust Robust Unrobust Robust

MAPE 20.37 22.65 31.05 29.96 24.34 23.39

MAE 91.47 103.38 128.32 123.52 101.37 95.64

RMSE 121.44 139.87 175.46 169.56 133.43 125.26

rd 0.93 0.92 0.85 0.86 0.90 0.92

R2 0.73 0.67 0.56 0.59 0.68 0.72

NSe 0.72 0.63 0.53 0.57 0.67 0.71
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develop a new PAR modeling approach with endogenous

switching points as in Koutroumanidis et al. (2009).

To address the question of the homoscedastic properties

of streamflow residuals which is an important question in

hydrological modeling, future research is need to imple-

ment a robust portmanteau test in PAR models. Such a

robust test exists for ARMA time series models (Li 1988)

but not for PAR models. McLeod (1994) has developed a

non robust test in PAR models. The residuals properties

can also be better captured by combining periodic models

with the extreme value theory as in Tesfaye et al. (2006).
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