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Abstract A new method is developed to design a multi-

objective and multi-pollutant sensitive air quality moni-

toring network (AQMN) for an industrial district. A dis-

persion model is employed to estimate the ground level

concentration of the air pollutants emitted from different

emission sources. The primary objective of AQMN is

providing the maximum information about the pollutant

with respect to (1) maximum coverage area, (2) maximum

detection of violations over ambient air standards and (3)

sensitivity of monitoring stations to emission sources. Ant

Colony Optimization algorithm (ACO) and Genetic Algo-

rithm (GA) are adopted as the optimization tools to identify

the optimal configuration of the monitoring network. The

comparison between the results of ACO and GA shows that

the performance of both algorithms is acceptable in finding

the optimal configuration of AQMN. The application of the

method to a network of existing refinery stacks indicates

that three stations are suitable to cover the study area. The

sensitivity of the three optimal station locations to emission

sources is investigated and a database including the sen-

sitivity of stations to each source is created.

Keywords Air quality monitoring network �
Ant colony optimization algorithm � Genetic algorithm �
Sensitivity of monitoring station

1 Introduction

Air quality monitoring plays a crucial role in developing

policies and strategies in order to achieve the aims of

environmental policies. The ultimate goal of air quality

monitoring is to collect data by which scientists, politicians

and planners are enabled to make appropriate decisions in

managing and boosting global environmental quality

(Gurjar et al. 2010; Liu et al. 1986; Mofarrah and Husain

2010). Recent developments in online air quality moni-

toring and short-term measuring have led to the introduc-

tion of advanced warning systems and immediate

notifications. These systems can reduce emissions during

pollution episodes and help vulnerable inhabitants to cope

with these conditions. Such developments, and also suc-

cessful air pollution control policies, have led to dramatic

improvements in air quality, public health, and life quality

over the last few decades (Hsu et al. 2013; Kuhlbusch et al.

2014).

The aim of design of air quality monitoring network

(AQMN) is to determine the number and locations of sta-

tions (configuration) which is highly essential in achieving

the air pollution control. Considering the high cost of

monitoring stations, i.e. equipment, maintenance and

operating personnel, optimization of AQMN is crucial for

air pollution control managers (Bayraktar and Turalioglu

2005; Modak and Lohani 1985a; Mofarrah and Husain

2010).

The primary tasks in the optimization of AQMN are

based on empirical and quantitative approaches (Kao and

Hsieh 2006; Nejadkoorki and Baroutian 2012). However,

recent literatures have shown increasing tendencies to

apply multi-objective and systematic approaches in the

design of AQMN (Gómez-Losada et al. 2014; Liu et al.

1986; Lozano et al. 2009a, b, 2010; Maria Grazia et al.
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1999; Mazzeo and Venegas 2008; Nejadkoorki et al. 2011;

Pires et al. 2008a; Zarandi et al. 2008). Table 1 summa-

rizes such descriptive studies.

The studies done in the field of AQMN design can be

classified based on: (1) target objectives for the network,

(2) intended pollutants for monitoring, (3) method to

determine the concentration distribution of pollutants over

the study area, (4) method of finding the number and

locations of stations (design technique), and (5) intended

areas for monitoring.

According to Table 1, most of the studies have proposed

multi-objective planningmethods and cost reduction has been

considered as a sub-objective. In other words, the design and/

or optimization aim has been to achieve the desired objec-

tive(s) withminimum cost, i.e. number of stations.Measuring

the maximum concentrations is usually one of the general

goals of AQMN (Zhang et al. 2014). The common fault of the

methodswhen this objective is considered as the only criterion

in the designprocedure is that the proposed stationswill not be

truly representative of the whole area.

Having in mind the high cost of stations simultaneous

measurement of several pollutants at one station is pre-

ferred. Therefore, newly proposed network design methods

have been established in a way in which multiple pollutants

are considered. In addition, if more than one pollutant is

measured at a common station, estimating missing values

will be possible by using cross-correlations between the

other pollutants (Sarigiannis and Saisana 2008). Various

techniques have been used to determine the concentration

distribution of pollutants over the studied area. In the case

of AQMN design, the area is usually divided into grids and

then the pollutants concentration is determined for each

grid. The centroid of each grid is considered as a potential

location for a monitoring station (Nejadkoorki et al. 2011).

The pollutant concentration in each grid is estimated by

using different methods. Dispersion models with respect to

the distribution of pollution sources are used to determine

the concentration of pollutants in each grid in the source-

oriented siting procedures. Sometimes, available input data

makes the application of dispersion models and complex

numerical tools impossible; thus, the statistical approaches

such as interpolation techniques and Land Use Regression

(LUR) models are used to estimate the pollutants concen-

tration in which the available data like existing monitoring

stations, environmental measurement data, and satellite

turbidity data are considered as input data (Elkamel et al.

2008; Gerharz and Pebesma 2013; Liu et al. 2014b; Sari-

giannis and Saisana 2008). Generally, in most methods, a

score is given to each grid based on the calculated con-

centrations. In the case of multi-objective design (e.g.,

monitoring areas of high population density and detection

of violations over ambient standards) another score is given

to each grid based on the considered objective. After this

stage, each of the presented methods will take different

route. In most studies as seen in Table 1, after determining

the objective function and its value for each grid, the grid

ranking (ranking potential station locations) is used to

select the optimal location. In these methods, simultaneous

determination of the optimal number and locations of the

stations is difficult and usually the number of stations has

been specified in advance based on budget constraints. The

methods in which the number and locations of the stations

are offered simultaneously, i.e. joint solution, would be

more practical. Another major difference between the

proposed methods is the type of monitoring area, where

different types of monitoring areas (such as industrial or

urban) will lead to different objectives, pollutants, disper-

sion models, and design and/or optimization techniques.

Emission of wide variety of pollutants from industrial

plants such as oil refineries has made them one of the

largest sources of air pollution (Abdul-Wahab et al. 2011).

The present study introduces an integrated approach to

design a sensitive AQMN for industrial plants (i.e. oil

refinery and petrochemical plants). This method optimizes

the number and locations of air quality monitoring stations

with respect to the sensitivity of monitoring stations to

emission sources. The sensitive monitoring station has the

capability of quick diagnosis of stochastic accidents in the

emission sources which lead to an increase in the pollutants

concentration. This character attribute of monitoring sta-

tions enables the authorities to specify the defective

emission sources and to take prompt measures to control

them. The optimization algorithm is developed considering

(1) maximum coverage area of the monitoring network, (2)

continuity of coverage area, (3) least overlap among cov-

erage areas, (4) maximum detection of violations over

ambient air standards, and (5) sensitivity of monitoring

stations to emission sources. The developed integrated

method leads to a source-specific monitoring network

which can be used effectively to control emission sources.

The multiple cell approach (MCA), which was described

previously (Fatehifar et al. 2006, 2007, 2008) was expan-

ded and used to simulate air pollution dispersion and

determine ground level concentrations. The outputs of the

MCA model were used as input data for calculation of the

fitness function of optimization algorithms in order to find

the optimal configuration of AQMN. The solution with the

least value of the fitness function offers the best configu-

ration of monitoring stations. In order to get the best

solution to the problem, Ant Colony Optimization Algo-

rithm (ACO) and Genetic Algorithm (GA), integrated with

the MCA model, were used separately as the optimization

tools. ACO and GA are robust methods capable of locating

near global optimal solutions for complex problems. The

proposed methodology was implemented as a MATLAB

program which is flexible and expandable.

780 Stoch Environ Res Risk Assess (2016) 30:779–793

123



T
a
b
le

1
S
y
st
em

at
ic

ap
p
ro
ac
h
es

in
A
Q
M
N

d
es
ig
n
in
g

N
o
.

A
Q
M
N

o
b
je
ct
iv
es

C
o
n
si
d
er
ed

p
o
ll
u
ta
n
ts

P
o
ll
u
ta
n
ts

co
n
ce
n
tr
at
io
n
/

d
is
p
er
si
o
n
m
o
d
el

D
es
ig
n
te
ch
n
iq
u
e

A
re
a/
p
la
ce

R
ef
.

1
D
et
ec
ti
o
n
o
f
v
io
la
ti
o
n
s
o
v
er

am
b
ie
n
t
st
an
d
ar
d
s

S
O
2

D
if
fu
si
o
n
m
o
d
el

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s

U
rb
an

ar
ea
/P
ia
ce
n
za
,

It
al
y

F
in
zi

et
al
.
(1
9
9
1
)

2
P
re
d
ic
ti
o
n
o
f
th
e
sp
at
ia
l
an
d

te
m
p
o
ra
l
p
at
te
rn
s
o
f
th
e

co
n
ce
n
tr
at
io
n
fi
el
d

D
et
ec
ti
o
n
o
f
v
io
la
ti
o
n
s
o
v
er

am
b
ie
n
t
st
an
d
ar
d
s

S
in
g
le

p
o
ll
u
ta
n
t

IS
C
S
T

S
p
at
ia
l
co
rr
el
at
io
n
an
al
y
si
s

te
ch
n
iq
u
e/
co
n
ce
p
t
o
f
p
o
te
n
ti
al

o
f

v
io
la
ti
o
n

A
ro
u
n
d
a
h
y
p
o
th
et
ic
al

p
o
ta
sh

p
la
n
t

A
rb
el
o
a
et

al
.
(1
9
9
3
)

3
M
o
n
it
o
ri
n
g
ar
ea
s
o
f
h
ig
h

p
o
p
u
la
ti
o
n
d
en
si
ty

M
ea
su
ri
n
g
th
e
m
ax
im

u
m

co
n
ce
n
tr
at
io
n
s

H
ig
h
es
t
d
et
ec
ti
o
n
o
f
th
e
v
io
la
ti
o
n
s

O
v
er
al
l

IS
C

G
en
et
ic

al
g
o
ri
th
m

U
rb
an

ar
ea
/K
ao
h
si
u
n
g
,

T
ai
w
an

(C
h
an
g
an
d
T
se
n
g
(1
9
9
9
a)
,

C
h
an
g
an
d
T
se
n
g
(1
9
9
9
b
)

4
M
ea
su
ri
n
g
th
e
m
ax
im

u
m

co
n
ce
n
tr
at
io
n
s

O
v
er
al
l

M
ea
su
ri
n
g
th
e
co
n
ce
n
tr
at
io
n
o
f

ai
r
p
o
ll
u
ta
n
t
w
it
h
a
m
o
b
il
e

an
al
y
ti
ca
l
la
b
o
ra
to
ry
/I
S
C
3

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s

U
rb
an

ar
ea
/S
al
er
n
o
,

It
al
y

C
o
rt
i
an
d
S
en
at
o
re

(2
0
0
0
)

5
A
ss
es
sm

en
ts

o
f
ad
v
er
se

h
u
m
an

h
ea
lt
h
im

p
ac
ts

fr
o
m

ex
p
o
su
re
s

to
ai
rb
o
rn
e
co
n
ta
m
in
an
ts

A
ir
b
o
rn
e

co
n
ta
m
in
an
ts

IS
C
3

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s/
R
is
k
as
se
ss
m
en
t
te
ch
n
iq
u
es

U
rb
an

ar
ea

B
al
d
au
f
et

al
.
(2
0
0
1
,
2
0
0
2
)

6
P
ro
v
id
in
g
ad
eq
u
at
e
in
fo
rm

at
io
n

fo
r
ad
m
in
is
tr
at
iv
e
p
u
rp
o
se
s

C
O
,
S
O
2
,
P
M

1
0
,

O
3

A
v
ai
la
b
le

m
o
n
it
o
ri
n
g
d
at
a

S
h
an
n
o
n
in
fo
rm

at
io
n
in
d
ex

U
rb
an

ar
ea
/S
an
ti
ag
o
,

C
h
il
e

S
il
v
a
an
d
Q
u
ir
o
z
(2
0
0
3
)

7
D
et
ec
ti
o
n
o
f
v
io
la
ti
o
n
s
o
v
er

am
b
ie
n
t
st
an
d
ar
d
s

M
o
n
it
o
ri
n
g
ar
ea
s
o
f
h
ig
h

p
o
p
u
la
ti
o
n
d
en
si
ty

N
O
2

A
v
ai
la
b
le

m
o
n
it
o
ri
n
g
d
at
a/
li
n
ea
r

re
g
re
ss
io
n
m
o
d
el

L
-A

p
ro
ce
d
u
re
/U
si
n
g
th
e
E
S
R
I’
s

A
R
C
/I
N
F
O

so
ft
w
ar
e

U
rb
an

ar
ea
/T
o
ro
n
to
,

C
an
ad
a

K
an
ar
o
g
lo
u
et
al
.
(2
0
0
5
)
an
d

H
ar
ri
s
et

al
.
(2
0
1
4
)
fo
r

w
at
er

q
u
al
it
y
n
et
w
o
rk

8
E
n
v
ir
o
n
m
en
ta
l
o
b
je
ct
iv
es
:

m
o
n
it
o
ri
n
g
h
ig
h
es
t
p
o
ll
u
ta
n
t
(a
n
d

av
er
ag
e)

co
n
ce
n
tr
at
io
n

m
o
n
it
o
ri
n
g
L
ar
g
es
t
v
io
la
ti
o
n
s
an
d

v
io
la
ti
o
n
s
o
v
er

am
b
ie
n
t

st
an
d
ar
d
s

m
o
n
it
o
ri
n
g
L
ar
g
es
t
em

is
si
o
n

so
u
rc
es

(t
o
ta
l,
in
d
u
st
ri
al
,
an
d

m
o
b
il
e
so
u
rc
es
)

S
o
ci
al

o
b
je
ct
iv
es
:

m
o
n
it
o
ri
n
g
L
ar
g
es
t
p
o
p
u
la
ti
o
n
,

se
n
si
ti
v
e
re
ce
p
to
rs
,
tr
af
fi
c

v
o
lu
m
e,

an
d
ai
r
p
o
ll
u
ti
o
n

p
et
it
io
n
s

P
M

1
0
,
S
O
X
,

N
O
X
,
N
M
H
C

IS
C
3

T
h
e
m
o
d
ifi
ed

b
o
u
n
d
ed

im
p
li
ci
t

en
u
m
er
at
io
n
al
g
o
ri
th
m
/t
h
e

co
n
st
ra
in
t
ar
ra
n
g
em

en
t
m
et
h
o
d

U
rb
an

ar
ea
/T
ao
y
u
an
,

T
ai
w
an

C
h
en

et
al
.
(2
0
0
6
)

Stoch Environ Res Risk Assess (2016) 30:779–793 781

123



T
a
b
le

1
co
n
ti
n
u
ed

N
o
.

A
Q
M
N

o
b
je
ct
iv
es

C
o
n
si
d
er
ed

p
o
ll
u
ta
n
ts

P
o
ll
u
ta
n
ts

co
n
ce
n
tr
at
io
n
/

d
is
p
er
si
o
n
m
o
d
el

D
es
ig
n
te
ch
n
iq
u
e

A
re
a/
p
la
ce

R
ef
.

9
D
et
ec
ti
o
n
p
o
ll
u
ta
n
t
co
n
ce
n
tr
at
io
n

M
ea
su
ri
n
g
th
e
m
ax
im

u
m

co
n
ce
n
tr
at
io
n
s

M
ax
im

u
m

co
v
er
ag
e
ar
ea

M
ax
im

u
m

p
o
p
u
la
ti
o
n
p
ro
te
ct
io
n

O
v
er
al
l

IS
C
S
T
3

T
ra
d
e-
o
ff

re
la
ti
o
n
sh
ip

b
et
w
ee
n

o
b
je
ct
iv
es
/u
si
n
g
co
n
ce
p
t
S
O
I

In
d
u
st
ri
al

d
is
tr
ic
t/

T
o
u
fe
n
In
d
u
st
ri
al

D
is
tr
ic
t
in

T
ai
w
an

K
ao

an
d
H
si
eh

(2
0
0
6
)

1
0

P
ro
v
id
in
g
m
ax
im

u
m

in
fo
rm

at
io
n

ab
o
u
t
m
u
lt
i-
p
o
ll
u
ta
n
ts

D
et
ec
ti
o
n
o
f
v
io
la
ti
o
n
s
o
v
er

am
b
ie
n
t
st
an
d
ar
d
s

O
v
er
al
l

A
m
at
h
em

at
ic
al

m
o
d
el

b
as
ed

o
n

th
e
m
u
lt
ip
le

ce
ll
ap
p
ro
ac
h

S
p
at
ia
l
co
rr
el
at
io
n
an
al
y
si
s
an
d
th
e

m
in
im

u
m

sp
an
n
in
g
tr
ee
-

S
eq
u
en
ti
al

in
te
ra
ct
iv
e
co
m
p
ro
m
is
e

A
ro
u
n
d
an

o
il
re
fi
n
er
y
/

T
o
u
fe
n
In
d
u
st
ri
al

D
is
tr
ic
t
in

T
ai
w
an

E
lk
am

el
et

al
.
(2
0
0
8
)

1
1

D
et
ec
ti
o
n
o
f
v
io
la
ti
o
n
s
o
v
er

re
fe
re
n
ce

le
v
el

N
O
X

D
A
U
M
O
D
,
IS
C
S
T
3

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s

U
rb
an

ar
ea
/B
u
en
o
s

A
ir
es
,
A
rg
en
ti
n
e

M
az
ze
o
an
d
V
en
eg
as

(2
0
0
8
)

1
2

M
o
n
it
o
ri
n
g
ar
ea
s
w
it
h
si
m
il
ar

ai
r

p
o
ll
u
ti
o
n
b
eh
av
io
r

S
O
2
,
P
M

1
0
,
C
O
,

N
O
2
,
O
3

A
v
ai
la
b
le

m
o
n
it
o
ri
n
g
d
at
a

P
ri
n
ci
p
al

co
m
p
o
n
en
t
an
al
y
si
s
(P
C
A
)

an
d
cl
u
st
er

an
al
y
si
s
(C
A
)

U
rb
an

ar
ea
/O
p
o
rt
o
,

P
o
rt
u
g
al

P
ir
es

et
al
.
(2
0
0
8
a,

b
)

1
3

D
et
ec
ti
o
n
o
f
v
io
la
ti
o
n
s
o
v
er

re
fe
re
n
ce

le
v
el

M
ax
im

u
m

co
v
er
ag
e
ar
ea

M
ax
im

u
m

g
ai
n
o
f
in
fo
rm

at
io
n
,
in

te
rm

s
o
f
ex
p
o
su
re

o
f
p
o
p
u
la
ti
o
n
,

la
n
d
-u
se

an
d
v
u
ln
er
ab
le

cu
lt
u
ra
l

O
v
er
al
l

A
tm

o
sp
h
er
ic

tu
rb
id
it
y
as

su
rr
o
g
at
e
fo
r
ai
r
p
o
ll
u
ti
o
n

lo
ad
in
g

L
in
ea
r
re
g
re
ss
io
n
an
al
y
si
s/
ra
n
k
in
g

p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g
si
te
s

U
rb
an

ar
ea
/B
re
sc
ia
,

It
al
y

S
ar
ig
ia
n
n
is
an
d
S
ai
sa
n
a

(2
0
0
8
)

1
4

M
ea
su
ri
n
g
th
e
m
ax
im

u
m

co
n
ce
n
tr
at
io
n
s

B
en
ze
n
e,

T
o
lu
en
e,

n
-H

ex
an
e

S
am

p
li
n
g
d
at
a/
in
te
rp
o
la
ti
o
n

m
et
h
o
d
s

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s

U
rb
an

ar
ea
/M

u
rc
ia
,

S
p
ai
n

F
er
ra
d
ás

et
al
.
(2
0
1
0
)

1
5

M
ea
su
ri
n
g
th
e
m
ax
im

u
m

co
n
ce
n
tr
at
io
n
s

N
O
2
,
O
3

S
am

p
li
n
g
d
at
a/
in
te
rp
o
la
ti
o
n

m
et
h
o
d
s

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s

U
rb
an

ar
ea
/J
ae
n
,
S
p
ai
n

L
o
za
n
o
et

al
.
(2
0
1
0
)

1
6

M
o
n
it
o
ri
n
g
ar
ea
s
o
f
h
ig
h

p
o
p
u
la
ti
o
n
d
en
si
ty

S
O
2
,
C
O
,
N
O
X
,

P
M

IS
C
3

T
ri
an
g
u
la
r
fu
zz
y
n
u
m
b
er
s,
ra
n
k
in
g

p
o
te
n
ti
al
ai
r
m
o
n
it
o
ri
n
g
si
te
s/
u
si
n
g

co
n
ce
p
t
S
O
I

U
rb
an

ar
ea
/R
iy
ad
h
,

S
au
d
i
A
ra
b
ia

M
o
fa
rr
ah

an
d
H
u
sa
in

(2
0
1
0
)

1
7

C
ap
tu
re

th
e
m
ax
im

u
m

v
ar
ia
n
ce

in

m
ea
su
re
d
p
o
ll
u
ta
n
ts

T
S
P

A
v
ai
la
b
le

m
o
n
it
o
ri
n
g
d
at
a/

in
te
rp
o
la
ti
o
n
m
et
h
o
d
s

R
an
k
in
g
p
o
te
n
ti
al

ai
r
m
o
n
it
o
ri
n
g

si
te
s

U
rb
an

ar
ea
/Y
az
d
,
Ir
an

N
ej
ad
k
o
o
rk
i
et

al
.
(2
0
1
1
)

1
8

Q
u
ic
k
d
et
ec
ti
o
n
o
f
ar
ea
s
w
it
h

h
ig
h
es
t
em

is
si
o
n
v
ar
ia
b
il
it
y

H
ea
v
y
m
et
al
s,

P
A
H
s,
P
M

1
0
,

P
M

2
.5
,

M
er
cu
ry

G
eo
g
ra
p
h
ic

in
fo
rm

at
io
n

sy
st
em

/n
at
io
n
al

ai
r
q
u
al
it
y

m
o
d
el

M
IN

N
I

N
ei
g
h
b
o
u
rh
o
o
d
st
at
is
ti
c
fu
n
ct
io
n

It
al
ia
n
n
at
io
n
al

m
o
n
it
o
ri
n
g
st
at
io
n
s/

N
o
rt
h
er
n
an
d
ce
n
tr
al

It
al
y

R
ig
h
in
i
et

al
.
(2
0
1
4
)

782 Stoch Environ Res Risk Assess (2016) 30:779–793

123



2 Materials and methods

2.1 Air pollutant dispersion model

In this study, the multiple cell approach (MCA) based on

the solution of the three-dimensional diffusion equation is

used to predict ground level pollutant concentrations. The

model based on the previous papers (Fatehifar et al. 2006,

2007, 2008) is developed in a way that can consider wind

direction in the prediction of ground level pollutant con-

centrations in order to make it more adapted for AQMN

optimization. However, a brief description of its main

considerations and assumptions is included below.

The program of the model uses MATLAB-based

graphical user interface (GUI) and it is applicable for

network of refinery stacks, petrochemical complexes, urban

and industrial stacks. The model is based on Eulerian

Model and k-theory in which the advection and diffusion of

pollutants from point sources in Cartesian Coordinates

(considering constant wind velocity and turbulent diffu-

sivities) are expressed by a advective–diffusive equation

(Fatehifar et al. 2008). The simplifying assumptions of the

model are:

1. Steady state conditions.

2. The initial conditions are arbitrarily set at zero.

3. Transport by bulk in wind direction exceeds diffusion

in that direction, i.e., the x-axis eddy diffusion

coefficients of the model were neglected.

4. The wind velocity is constant, a function of z and only

in x direction.

5. There is no chemical reaction and no deposition in the

system.

Figure 1 shows the schematic view of selected domains

for modeling of pollutants dispersion. As can be seen, two

domains for modeling procedure are introduced: main and

modelling domains.

The main domain is defined in a way which includes all

the area that pollution gets dispersed over, in different wind

directions. The modeling domain is a moving domain

which can rotate based on the wind direction, around the

central point of the main domain. The network of the point

sources is located in the center of the main domain.

The empirical equations (which are dependent on the

stability classes of atmosphere and functions of surface

roughness length and friction velocity) are used to calculate

eddy diffusivities in the lateral and vertical directions and

wind velocity at different heights. The modified Holland’s

equation is used for plume rise calculation. Application of

this model to industrial stacks has shown results that agree

with observational data within a reasonable accuracy

(Fatehifar et al. 2006, 2007, 2008).

2.2 Objectives of the air quality monitoring network

The main goal of designing an AQMN is to collect the

most possible information in the least expensive way. So,

the monitoring stations must be located in the points where

they properly represent pollutant concentration of the rel-

evant surrounding area and provide the maximum coverage

area with the minimum number of stations. Therefore, the

minimum overlap among covered areas of stations (which

leads to the maximum coverage area) can be considered as

an objective. Furthermore, the stations must be located in

areas which have the maximum air pollutant concentration

and also, high fluctuations of pollutant concentration which

leads to the estimation of sensitivity of stations to pollu-

tants sources. Maximum population coverage can also be

considered when resident safety is a concern, but consid-

ering the studied area, which is located far from urban and

Fig. 1 Schematic of selected domains for modeling
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high density areas, population protection is not an objective

in this study.

2.2.1 The coverage area

To determine the coverage area of the stations, the concept

of sphere of influence (SOI) along with the continuity of

coverage is used. The continuity of coverage area leads to

an increment of accuracy of monitoring. The concept of

SOI has been widely used in the literature (Baldauf et al.

2001, 2002; Chang and Tseng 1999a, b; Elkamel et al.

2008; Kao and Hsieh 2006; Liu et al. 1986; Mofarrah and

Husain 2010; Mofarrah et al. 2011; Arbeloa et al. 1993;

Tseng and Chang 2001) without considering the continuity

of coverage area.

The contiguous SOI of a station is defined as the sur-

rounding area of the station where the air quality data can

be considered as representative of the whole area. It is

based on the similarity between the information contained

in a given station compared with the rest of area. To cal-

culate the contiguous SOI, a spatial correlation coefficient

(r) based on the extent of similarity in ground level pol-

lutants concentration is used. The ground level pollutants

concentration are estimated by the MCA model. Presuming

that C1 = (C11, C12, C13, …, C1n) and C2 = (C21, C22, C23,

…, C2n) are the indicators of pollutant concentration in two

various network points calculated by the MCA model at the

same time, the spatial correlation coefficient for a sample

size n can be expressed as:

r ¼
Pn

i¼1 C1i � �C1ð Þ C2i � �C2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 C1i � �C1ð Þ2
Pn

i¼1 C2i � �C2ð Þ2
q ð1Þ

where, �C1 and �C2 are the average concentrations at loca-

tions 1 and 2, respectively.

�C1 ¼
1

n

Xn

i¼1

C1i and �C2 ¼
1

n

Xn

i¼1

C2i ð2Þ

To calculate contiguous SOI in each point, the r value

obtained for each point is compared to a predefined

value called cut-off value (rc). If the spatial correlation

coefficient (r) is higher than rc, the corresponding points,

which are interconnected to each other (Fig. 2), would be

considered as correlated. The coverage area of ith can-

didate location is defined as the number of potential

locations placed inside the contiguous SOI of candidate

location i can be quantified in terms of pattern scores.

Pattern score for an ith candidate location is denoted by

Ni
p.

Therefore, determining the optimum number and loca-

tions of monitoring stations, where the overall pattern score

is maximized, is the first interest in AQMN design. High

overall pattern score leads to the optimal coverage area.

This objective of the design can be expressed as:

Maximize
Pm

i¼1 N
i
p.where, m is the number of stations.

2.2.2 Violation over ambient standards

The concept of violation score is used to determine the

extent of violation over ambient standards for each point:

the point with higher violation score is assumed to have a

high potential of detecting the violations and a high sen-

sitivity to emission sources. A weighted scoring is used to

determine the violation scores based on the concentration

of pollutants which depends on:

1. The threshold level of pollutant concentration;

2. Weighing factor between each threshold range and

weighing function.

A decision on threshold levels and weighing factors is

indeed pollutant-specific and dependent upon the considered

average time. Several weighing functions such as linear,

segmented linear, non-linear, and segmented non-linear can

be employed (Elkamel et al. 2008). In this study, a segmented

non-linear function is used. The violation score for each

candidate location is calculated using the equation:

Ni
v ¼

XT

i¼1

XNt

k¼1

wkþ1 � wkð Þ xi � xkð ÞX
xkþ1 � xkð Þ ð3Þ

where, Ni
v is the violation score for the ith candidate

location, wk is the weighing factor corresponding to

Fig. 2 Continuity of SOI
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threshold xk, xk is the kth threshold, X = 0 if (xi - xk) B 0,

otherwise X = 1, Nt is the total number of thresholds and

T is the total number of simulated observations. The

threshold values are chosen based on the United States

Environmental Protection Agency (USEPA) limit values of

common pollutants (Elkamel et al. 2008; Sarigiannis and

Saisana 2008).

The second interest of optimization could therefore be

deliberated as the identification of the optimum number (m)

and locations of monitoring sites so that the overall vio-

lation score is maximized. High overall violation score

leads to more sensitivity of stations to pollutants sources

and achieving a maximum detection of violations over

ambient air standards. This objective of the designing can

be expressed as:

Maximize
Pm

i¼1 N
i
V

where m is the number of stations.

2.2.3 Sensitivity of candidate locations to emission sources

The sensitivity of candidate locations to emission sources

is calculated using the following procedure for every

meteorological scenario:

Initially, the MCA model is used to calculate the ground

level concentration of pollutant at each point for the eth

meteorological scenario using the average concentration of

pollutant emitted from emission sources. In the next step, the

concentration of pollutant is raised 25 % in the first source

(concentrations of other sources are constant) and the ground

level concentration of pollutant is obtained (using MCA

model) at each point again. This procedure is done accord-

ingly for all of the sources at 25, 50, 75 and 100 %. Finally,

the score of sensitivity of candidate locations to emission

sources are calculated using the following equation:

Ni
s ¼

XE

e¼1

XS

s¼1

Sles ð4Þ

where, Ni
s is the sensitivity score for the ith candidate

location, Sles is the slope of concentration variation at ith

candidate location versus concentration changes in pollu-

tion source s and meteorological scenario e, S is the

number of emission sources, and E is the number of

meteorological scenarios.

This objective of the designing can be expressed as:

Maximize
Pm

i¼1 N
i
s

where m is the number of stations.

2.2.4 Fitness function

Given that having a network with high overall pattern

score, overall violation score, and overall sensitivity score

is desirable, a combination of functions is used to achieve

the simultaneous maximum pattern score, violation score,

and sensitivity score. Several forms of combinations (e.g.,

additive or multiplicative form) could be used for com-

bining these independent variables, out of which the mul-

tiplicative form is used:

F ¼ ðNpÞb1 � ðNvÞb2 � ðNsÞb3 ðwhere b1 þ b2 þ b3 ¼ 1Þ
ð5Þ

The parameters b1, b2, and b3 are used to weigh the

relative importance given to the three objectives and their

value depends on the purpose of the network to be devel-

oped. The multiplicative form implies an intensity func-

tion, and for positive high correlations, the interests for a

location are quite well represented by the product

(Np 9 Nv 9 NS), rather than the addition (Elkamel et al.

2008; Modak and Lohani 1985b). Also this structure of the

objective function ensures that if any of the three sub-

objectives become zero, the overall objective function

(F) will also has a zero value. For example, if a potential

station location has a high violation score, but zero effec-

tive pattern score, then it will be discarded in the optimal

design.

It should be noted that the effect of weighting factors on

F, Np, Nv, and Ns values of each pollutant were investigated

to give appropriate weight value for each component.

Since the objective of this research is to design an

AQMN for multiple pollutants, an aggregating approach is

used:

UFiðuÞ ¼
Xp

j¼1

wjF
i
j ð6Þ

and

Xp

j¼1

wj ¼ 1 ð7Þ

where, wj is the importance associated with pollutant j,

Fi
j is the objective function for pollutant j at location

i and UFi(u) is the additive/overall objective for P pol-

lutants at location i. Considering that each pollutant had

the same importance (in this case study), the equal

weight values were used to give the same tendency for

each pollutant.

Now, given the defined equations, the objective of the

network design is to achieve the maximum sum of theUFi of

stations. In order to reach this maximum value, theminimum

number of overlap points among the coverage areas of sta-

tions (which is inconsistent with this maximum value) is

used. For the sake of design a fitness function of ACO and

GA the two dimensionless parameters are defined as:

UFn ¼ UFmax � m
Pm

i¼1 UFiðuÞ
ð8Þ
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OLn ¼ number of overlaped grids

maximum number of possible overlaped grids

ð9Þ

where, UFn is Overall Objective number of network, OLn is

Overlap Number, m is the number of stations and UFmax is

the maximum value of UF(u) among all UF(u)s of the

potential station locations.

Finally, since obtaining least UFn and OLn simultane-

ously is desirable in network design (leading to more

coverage area), an aggregate function, is used as follow:

G ¼ g1 � OLn þ g2 � UFn ðg1 þ g2 ¼ 1Þ ð10Þ

where, g1 and g2 are the weight coefficients defined

according to the relative importance of each parameter.

The variation of the coverage efficiency versus g1
(g2 = 1 - g1) was investigated in order to find the best

weight values.

In order to find the least value of G where the sum of the

UFi of stations is maximum and the overlap among the

coverage areas of stations is minimum, GA and ACO are

used separately and then the results are compared in order

to confirm the obtained results.

ACO is a metaheuristic optimization algorithm based on

the behavior of ants seeking a path between their colony and

a source of food. This collective trail-laying and trail-fol-

lowing behavior in which an ant is influenced by the pher-

omone trail left by other ants is the source of inspiration for

ACO. This algorithm benefits from artificial ants which

deposit pheromone based on the fitness and goodness of the

identified trial solutions (Emami Skardi et al. 2015; Fayaed

et al. 2013). The GA is a stochastic search algorithm, which

mimics evolution in nature and it is an efficient tool in

searching for the global optimum. This algorithm is widely

used to optimize functions in various geocomputational

applications (Liu et al. 2014a; Shad et al. 2009).

Overall, the AQMN designing procedure with sensitiv-

ity of monitoring stations to emission sources can be

summarized by a flowchart as shown in Fig. 3.

3 Illustrative case

The algorithm defined above was used for optimizing

AQMN around Tabriz Oil Refining Company. The com-

pany is located in the southwestern part of Tabriz, East

Azerbaijan province, Iran. The refinery has 14 refining

units and 10 utility units which include 26 furnaces. Given

that the exhausts of some of furnaces are joined to each

other, 20 stacks disperse the exhaust pollutants over the

surrounding area. The MCA model was used to create

spatial distributions for the concentrations of the pollutants

(SO2, NOx, CO) using 1 year’s collected data. Normally

1 year is considered to be the minimum period which can

reflect the meteorological fluctuations (Elkamel et al. 2008;

Arbeloa et al. 1993). A flue gas analyzer (MRU Varioplus,

Germany) was used to measure the temperature, velocity

and concentration of the flue gas species. The measurement

was done periodically every week during the year 2012.

Totally, 48 data sets were collected. The other information

of emission source that needs to be input into the model are

the physical stack dimensions such as height, location and

internal diameter. It should be noted that the effect of

background concentration is negligible with regard to the

refinery location and prevailing wind directions. Table 2

summarizes the emission sources information.

In addition, the meteorological data such as wind speed,

wind direction, ambient temperature, height of the mixing

layer, and stability class, registered at a closest weather

station of Tabriz Meteorological Organization, were used

as the input data. Figure 3a shows the location of Tabriz

Oil Refining Company and the positions of air pollution

sources. Location 1 includes 18 sources and each of the

locations 2 and 3 include only one source. Investigation of

the wind regimes of the study area between the years 2005

and 2012 indicated that the prevailing wind directions

throughout the study area were eastern (90�) and north

eastern (45�) for more than 80 % of the time. Thus, only

these two directions were used in the modelling and opti-

mization procedures. Tabriz has a semi-arid climate with

dry and semi-hot summer and snowy cold winter. The

temperature varied from -12 and 39 �C during the year

2012. It is worth noting that Tabriz Oil Refining Company

is located at a smooth plate.

4 Results and discussion

At the beginning of AQMN designing, the study area was

divided into 100 9 100 m continuous grids in which each

grid represented a potential site for monitoring stations.

According to the prevailing wind directions throughout the

study area, the area was divided into 3245 grids (59 9 55)

and they were numbered sequentially according to Fig. 4a.

The MCA model was used to model the distribution of

pollutants concentrations in the area based on the 48 col-

lected data. A matrix of 48 9 3245 for SO2, NOx, and CO

concentrations that has been generated at the specified

3245 candidate locations was used as an input to the

optimization algorithm. Figure 4b schematically shows the

modeling grids, location of sources and potential zones for

locating monitoring stations according to the prevailing

wind directions.

As an example, Fig. 5 shows the ground level concen-

tration of pollutant for a selected domain at different wind

directions and meteorological conditions.
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Given the air pollution dispersion, a ‘‘potential zone’’ is

recommended for locating the stations. A potential zone is

an area in which the pollutant concentrations are higher

than a predefined threshold value (Kao and Hsieh 2006).

According to the Fig. 5, a potential zone can be diagnosed

from the pollutant concentration profile at ground level of

simulation examples.

Considering the intended objectives for the AQMN, the

candidate locations with high value of Np, Nv and NS will

occur in the potential zone. So, the output results of the

MCA model determine the location of the potential zone in

each modelling scenario and subsequently the behavior of

integrated optimization algorithms (ACO and GA). The

length and the distance of the potential zone from the

emission sources are dependent on the pattern of pollutant

concentration which is a function of meteorological

conditions and emission rates. Accordingly, the effects of

important meteorological parameters such as wind veloc-

ity, atmospheric stability, air temperature and dispersion

coefficient and also effective parameters of emission

sources on the dispersion of pollution and the location of

the potential zone were investigated. The results showed

that when the wind velocity increases, the pollution dis-

persion decreases and pollutants go far from the stacks. The

distribution of pollutants increases with increasing atmo-

spheric instability, so the pollutants do not go far from the

emission sources. The dispersion of pollutants increases

with increasing air temperature and pollutants come down

near the emission sources. Increasing the stack exit velocity

and temperature leads to a decrease of the ground level

concentration. Therefore, it can be concluded that the

distance of potential zone from the emission sources
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Fig. 3 Flowchart of proposed method for optimal allocation of monitoring stations with sensitivity to emission sources
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increases by increasing the wind velocity and atmospheric

stability, and decreasing the stack exit velocity and tem-

perature and the air temperature.

In order to verify the predictions of the model, a com-

parison of model output with the measured ambient con-

centration data was done. The measured data was collected

around the refinery simultaneously with stack sampling.

The measurement was done twice at downwind distances

of 400, 800, and 1200 m from the emission sources. Note

that the measurements at sampling points were not done

simultaneously.

Figure 6 illustrates a comparison between measured

data and model results. As can be seen, there was good

agreement between the measured data and modeling

Table 2 Information of Emission sources

Source Coordinate** Stack height

(m)

Stack

diameter (m)

Stack temperature

(oC)*

Stack velocity

(m/s)*

SO2 CON

(ppm)*

CO CON

(ppm)*

NOx CON

(ppm)*
x y

1 0 655 73 3.5 179.4 6.8 148.3 17.3 101.0

2 24 655 73 3.5 146.4 9.4 14.4 14.2 51.3

3 46 655 73 3.5 153.6 6.1 50.6 3.3 19.6

4 125 674 36.6 1.9 327.9 5.4 26.5 11.2 56.2

5 128 854 43 3.57 308.2 6.9 30.5 25.6 91.7

6 139 854 36.6 2.18 337.8 10.1 27.5 32.5 70.8

7 162 677 36.6 0.92 407.6 6.2 17.3 91.4 66.5

8 162 685 46 1.81 290.6 4.2 3.8 7.8 62.0

9 162 694 46 2.18 242.4 6.0 3.3 22.2 71.2

10 220 667 36.6 2.2 565.9 10.6 56.6 194.6 62.3

11 246 667 36.6 4.35 488.3 8.6 39.4 56.3 60.4

12 272 667 36.6 2.35 310.6 2.6 13.7 20.7 41.5

13 365 676 52 2.52 442.1 4.1 3.8 252.4 44.9

14 406 672 73.2 3.58 167.3 5.3 78.1 75.6 55.3

15 396 672 36.6 1.5 549.7 6.6 144.5 29.3 54.7

16 429 677 52 2.38 345.3 6.9 224.5 13.2 55.6

17 435 677 53 1.5 374.9 5.4 148.0 6.7 49.6

18 436 817 36.6 1.58 365.9 7.2 52.3 23.9 54.7

19 351 667 36.6 3 586.6 5.4 72.2 35.6 47.4

20 200 515 60.8 2.35 467.3 6.8 2966.1 1474.4 99.1

* Average of collected values

** Coordinate system transformed to the center of modeling domain

Fig. 4 a Location of industrial plant and emission sources, b Modeling grids, location of emission sources, potential zones and wind directions
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results. The mean error between measured and modelled

values was less than 10 %.

In order to give appropriate weight value for each

component in Eqs. (5) and (10), their sensitivity was

investigated. In the case of Eq. (5), the results showed that

by increasing the b1 (decreasing b2 and b3) the overall Nv

and Ns values of the network decrease and the F value and

the coverage efficiency of the network increase. Increasing

the b2 and b3 (decreasing b1) showed almost the same trend

(decreasing the coverage efficiency and overall Np of the

network). For b1 values lower than 0.8, the coverage effi-

ciency decreases significantly. Having in mind that the low

coverage efficiency is not appropriate for AQMN and it

leads to a network with more monitoring stations which is

not economically feasible, the 0.8 was considered as the

minimum value of b1 which causes a network with

acceptable coverage efficiency. For the b1 values higher

than 0.9 the overlap among coverage areas of stations

increases markedly and also the overall Nv and Ns values of

the network decrease. Finally in order to have a sensitive

monitoring station with high capability of detection of

violations over ambient air standards, the equal weight

values were used for Nv and Ns (b1 = b2 = 0.1 and

b2 = 0.8). It should be noted that the selected weight

values are not applicable to any case study. Because the Np,

Nv and Ns values are dependent to the air pollutants dis-

persion and the characteristics of emission sources.

The results of sensitivity analysis of Eq. (10) showed

that for the g2 values lower than 0.92 the coverage effi-

ciency (and UFn) decreased markedly due to the increasing

overlap among covered areas of stations. On the other hand

for the g1 values of higher than 0.8 the OLn and also the

coverage efficiency had acceptable values. So, the g1 = 0.8

and g2 = 0.92 were selected as the weight values to reach

Fig. 5 Concentration of pollutants at ground level with wind blowing direction: a 45, b 90
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the best configuration of AQMN, in which the optimization

results (e.g., Figure 9) confirm the selected weight values.

4.1 Comparison of ACO and GA results

The optimization algorithm was implemented for different

cut-off values rc (0.75–0.95) and different station numbers

(1–6). Table 3 shows the locations of stations which were

obtained by using ACO and GA for cut-off values 0.75 and

0.95. Due to the different structure of the algorithms, the

obtained station locations were different.

Figure 7 shows the overall UFi of Network for different

configurations denoted in Table 3. As shown in the figure,

by decreasing the rc, the overall UFi of network increases,

which causes an enlargement of the network coverage area.

For a stipulated budget, an air quality monitoring organi-

zation can maintain either a high or a low rc value based

network. A high rc based network may not necessarily

cover the entire region, but the covered region could be

well represented. A low rc based network, on the other

hand, would offer more coverage of the area, but the

covered area may not be satisfactorily represented (Elka-

mel et al. 2008).

Considering Figs. 7 and 8 it becomes obvious that the

overall UFi and overlap among coverage areas of designed

network by GA were higher than that of ACO. However,

concurrent comparison of overall UFi of the network, the

overall number of overlapped grids and also the number of

covered grids of network showed that both algorithms up to

three stations had the same trend. Figure 7 indicates that by

increasing the number of stations (from 4 to 6), increasing

rate of overall UFi of network decreased. In contrast Fig. 8

shows a sharp increase of overall number of the overlapped

Table 3 Optimal locations for air quality monitoring stations,

obtained using ACO and GA (rc = 0.75 and rc = 0.95)

Station location 1 2 3 4 5 6

ACO rc = 0.75 1036

720 1036

1036 954 1153

716 1094 594 1550

540 793 859 1559 1440

1129 1272 2539 110 1791 654

rc = 0.95 1152

1267 962

1383 3071 719

1497 906 2081 848

1786 1150 1023 840 2146

3015 971 2254 2599 781 1387

GA rc = 0.75 1210

853 1210

853 1095 1210

1210 892 1324 853

1210 841 663 2978 1095

1210 1393 1154 667 1209 1124

rc = 0.95 1324

1324 853

853 1324 1210

968 1324 853 1617

1324 1502 2494 2075 853

1439 841 955 1082 1210 2024

(The numbers indicate grid points according to the Fig. 4b.)
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grids. In general, it can be concluded that increase of

overall UFi of the network was due to the coverage of

identical points by several stations, or in the other words,

increasing the number of overlapped grids. In conclusion,

establishing a network with more than three stations would

not be economically justified for the study area.

A comparison between the results of the current study

and a previous study (Elkamel et al. 2008) was made in

order to evaluate the performance of the proposed method.

The results of the comparison indicated that the new

method performed better than the previously reported

method. The new method led to a sensitive network with

more coverage area and high accuracy of monitoring while

the number of proposed stations was the same in both

studies. Higher coverage area with the same number of

monitoring devices leads to more information and

decreasing costs of equipment, maintenance and operating

personnel. The reduction in costs is due to the fact that

even by increasing (almost doubling) the coverage area,

AQMN was designed in a way that requires the same

number of stations. However, considering the doubling of

the coverage area, if the previously reported method was

used at least six stations would be required.

4.2 Sensitivity of monitoring stations to emission

sources

Using values obtained at sensitive monitoring stations and

having the knowledge of the sensitivity of the monitoring

stations to emission sources will allow to quickly identify

the defective sources, and then take the necessary measures

to control them. Defective sources are the emission sources

in which, due to the unexpected or stochastic changes, the

amount of released pollutants has been higher than normal

value.

For this purpose, a database of the sensitivity of the location

of monitoring stations to emission sources was created and a

program capable of ranking the defective sources by using the

created sensitivity database and changes in measured con-

centration at monitoring station was designed to be used after

setting up the stations. Three candidate locations (795, 1152

and 1505) with rc = 0.85 were selected for the placement of

the monitoring stations. Development of the database was

done using the data which are used to calculate the sensitivity

scores of selected optimal locations.

Figure 9 shows the coverage area of AQMN for selected

location of stations for rc = 0.85 and pollutants NOx, SO2

and CO.

cFig. 9 Coverage area of AQMN for selected location of stations:

a Pollutant NOx, b Pollutant SO2, and c pollutant CO
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5 Conclusions

Designing air quality monitoring networks is an important

task for environmental protection authorities. It is neces-

sary for AQMN to be planned effectively and systemati-

cally. An improved methodology is presented to optimize

the number and location of air quality monitoring stations

with respect to multi-pollutants and multi-objective model.

In this approach, the developed MCA model was

employed to model the distribution of pollutants concen-

trations, and the results of dispersion model were used as

inputs for the optimization algorithm. The generated

monitoring network provides the optimal number and

location of monitoring stations with respect to maximum

coverage area with the minimum overlap among coverage

areas as well as the maximum detection of violations over

ambient standards and the maximum sensitivity of moni-

toring stations to emission sources for primary gaseous

pollutants such as SO2, NOx and CO. Ant colony opti-

mization algorithm and Genetic algorithm were used in the

optimization procedure. This approach was applied to the

case of Tabriz Oil refining Company.

The results of the optimization procedure were investi-

gated for different values of the correlation coefficient (rc)

which showed that as the cut-off correlation coefficient was

increased, the coverage area of stations and the overlap

region were decreased.

Comparison of the performance of the ACO and GA

indicated that ACO has better ability for reduction of

overlap among coverage areas of monitoring station than

GA. However both algorithms have good ability in finding

the best configuration of AQMN and maximizing the

coverage area of monitoring stations.

A comparison between the results of the current study and

a previous study (Elkamel et al. 2008) indicated that the new

method provides more coverage area. This increase in cov-

erage efficiency will be remarkable when the increase of

network coverage area (due to considering the prevailing

wind directions) and accuracy of monitoring (due to con-

sidering the continuity of coverage area) be considered.

Finally, three sensitive stationswere suggested forAQMNof

study area which enables the authorities to specify defective

sources and then take prompt measures to control them.
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