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Abstract Long flood series are required to accurately

estimate flood quantiles associated with high return peri-

ods, in order to design and assess the risk in hydraulic

structures such as dams. However, observed flood series

are commonly short. Flood series can be extended through

hydro-meteorological modelling, yet the computational

effort can be very demanding in case of a distributed model

with a short time step is considered to obtain an accurate

flood hydrograph characterisation. Statistical models can

also be used, where the copula approach is spreading for

performing multivariate flood frequency analyses. Never-

theless, the selection of the copula to characterise the

dependence structure of short data series involves a large

uncertainty. In the present study, a methodology to extend

flood series by combining both approaches is introduced.

First, the minimum number of flood hydrographs required

to be simulated by a spatially distributed hydro-meteoro-

logical model is identified in terms of the uncertainty of

quantile estimates obtained by both copula and marginal

distributions. Second, a large synthetic sample is generated

by a bivariate copula-based model, reducing the compu-

tation time required by the hydro-meteorological model.

The hydro-meteorological modelling chain consists of the

RainSim stochastic rainfall generator and the Real-time

Interactive Basin Simulator (RIBS) rainfall-runoff model.

The proposed procedure is applied to a case study in Spain.

As a result, a large synthetic sample of peak-volume pairs

is stochastically generated, keeping the statistical proper-

ties of the simulated series generated by the hydro-mete-

orological model. This method reduces the computation

time consumed. The extended sample, consisting of the

joint simulated and synthetic sample, can be used for

improving flood risk assessment studies.

Keywords Flood stochastic generation � Copulas �
Rainfall-runoff modelling � Short data series � Flood
frequency analysis

1 Introduction

Estimates of flood quantiles for high return periods are

essential for designing and assessing flood risk in hydraulic

structures such as dams. Such quantiles are usually esti-

mated by flood frequency analyses. There are many studies

throughout the literature that involve univariate flood fre-

quency analyses, usually focused on the study of the peak

flow (e.g., Cunnane 1989; GREHYS 1996). Nevertheless,

the multivariate nature of floods requires a multivariate

flood frequency analysis (Chebana and Ouarda 2011) for

certain applications. Lately, bivariate approaches studying

the peak flow and hydrograph volume jointly have become

widespread (e.g., Goel et al. 1998; Yue et al. 1999; Favre

et al. 2004; Shiau et al. 2006). The more complex trivariate

approach is considered in some studies by including the

duration of the hydrograph (e.g., Serinaldi and Grimaldi

2007).
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Long flood series are required to obtain accurate esti-

mates of quantiles associated with high return periods

(Saad et al. 2015), which in the case of a multivariate flood

frequency analysis is even more important because of a

higher uncertainty derived from a larger number of

parameters involved in the study. Nevertheless, the avail-

able flood data series are short in practice, commonly

between 30 and 80 years (e.g., Zhang and Singh 2007;

Klein et al. 2010; Requena et al. 2015b). The need for

extending observed data series to perform a proper flood

frequency analysis can be addressed by either: (i) simula-

tion via hydro-meteorological modelling, reproducing the

catchment response by using long (observed or synthetic)

rainfall series; or (ii) stochastic generation via a statistical

analysis, such as by a multivariate model that represents

the joint distribution of the studied variables.

Regarding hydro-meteorological simulation, Beven

(1987) first proposed the idea of coupling a stochastic

rainfall generator and a rainfall-runoff model to reproduce

the flood frequency curve in a Welsh catchment, following

the theoretical work presented by Eagleson (1972). Later,

Cameron et al. (1999) elaborated on the idea of calibrating

the predicted flood frequency curve by a model through the

observed flood series for small return periods and using it

to extrapolate flood magnitudes for larger return periods.

Blazkova and Beven (1997, 2004) applied the procedure to

several Czech catchments for dam safety evaluation. Cal-

ver and Lamb (1995) evaluated the proposed approach in

ten catchments in the UK. Similar methodologies have

been applied in Australia, (Boughton et al. 2002), US

(England et al. 2007), France (Paquet et al. 2013), Norway

(Lawrence et al. 2014), Russia (Kuchment et al. 2003),

South Africa (Chetty and Smithers 2005) and other coun-

tries (Boughton and Droop 2003). These approaches are

based on combining a stochastic rainfall generator and a

hydrological model that reproduces the rainfall-runoff

response in the catchment (Vrugt et al. 2002; Engeland

et al. 2005). Such hydrological models can be classified

into distributed or lumped, depending on whether the

parameter values are spatially distributed or averaged in the

catchment; and continuous or event-based, depending on

whether a long time series, usually with a daily time step,

or independent flood events, usually with around an hourly

time step, are simulated. The underlying assumption is that

a hydrological model calibrated with the observed data is

able to simulate a set of feasible flood hydrographs that can

be generated in a catchment, using synthetic rainfall events

and the catchment characteristics as input. The main

advantage of this approach is to provide not only the sta-

tistical characterisation of extreme values for the relevant

variable, but also an ensemble of hydrographs that can

force the structure under design, thus allowing for a better

performance characterisation. A distributed event-based

model with a high temporal and spatial resolution is

required to represent correctly the variability of flood

generation processes in the catchment. However, the higher

is the model resolution, the longer is the computation time.

Therefore, the required computation time can prevent the

generation of arbitrarily long series with a good charac-

terisation of the catchment response.

A multivariate distribution can be used for extending the

available flood series, stochastically generating a larger

series that keeps the statistical properties of the original

sample and allows obtaining quantiles for high return

periods. The shortcomings of the traditional multivariate

distributions, such as the need for using the same marginal

distribution for characterising all variables involved in the

analysis, and the assumption of a linear relation between

them, are overcome by using copulas (e.g., Salvadori et al.

2007). The use of copulas in hydrology and specially in

multivariate flood frequency analysis is increasingly

spreading (e.g., De Michele et al. 2005; Zhang and Singh

2006; Song and Singh 2010; Requena et al. 2013; Zhang

et al. 2013). The multivariate distribution of several ran-

dom variables can be obtained via the marginal distribution

of each variable and a copula function, which is a multi-

variate distribution with uniform margins that characterises

the dependence structure between them. The main advan-

tages of the stochastic generation of flood data by a mul-

tivariate distribution based on copulas are twofold: (i) they

only need a flood series as input; and (ii) the computation

time required once the multivariate distribution is fitted is

negligible. The drawback resides in the difficulty of

properly selecting and fitting the multivariate distribution

when the available data length is short. In this case, several

copula families usually pass the goodness-of-fit test and a

larger uncertainty is involved in fitting the parameters,

which leads to larger uncertainties in estimates of the right

tail of both copula and marginal distributions.

Some studies dealt with the idea of considering both

approaches. Candela et al. (2014) applied a bivariate

Archimedean copula-based distribution for characterising

rainfall duration and intensity, in order to generate single

synthetic rainfall events to be used as input in a conceptual

fully distributed rainfall-runoff model based on the curve

number method. The copula approach was then applied to

the peak flow and hydrograph volume series of 5000 events

synthetically generated from such a procedure, to obtain

the flood design hydrograph related to a given joint return

period. Klein et al. (2010) used 10,000 flood hydrographs

generated from a distributed hydro-meteorological model

as initial data for developing a copula-based flood fre-

quency analysis in which dam safety was assessed. Dam

safety was also evaluated by Giustarini et al. (2010), ana-

lysing the water level reached at a given dam by three sets

of synthetic flood hydrographs. The first and second sets
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were obtained by generating peak-volume pairs from an

Archimedean copula-based distribution fitted to observed

data, and to several 1000-length synthetic data generated

from a continuous hydro-meteorological model, respec-

tively. The third set consisted of flood hydrographs gen-

erated directly from the continuous model. Dam-

overtopping results were of the same order of magnitude

for the three sets, although more dangerous events were

obtained by the second set. On the basis of the drawbacks

and advantages regarding the generation of each set, the

notion of combining approaches was highlighted.

A long sample length was arbitrarily generated via

hydro-meteorological modelling in the three aforemen-

tioned studies. The main aim of the present study is to

determine the minimum number of flood hydrographs

needed to be simulated by a hydro-meteorological model,

in order to be used as input for a copula-based distribution.

This is motivated by the need of obtaining a large synthetic

series in short time, as the hydro-meteorological model is

computationally very demanding because of entailing a

high spatial and temporal resolution. The longer simulated

sample improves the fitting of the distribution, as observed

series are usually short and the hydro-meteorological

model simulates the variability in the catchment response.

Then, the flood series can be extended again by stochas-

tically generating an (arbitrarily) long sample by the fitted

copula-based distribution. The proposed mixed approach

addresses the need for extending short observed peak-

volume series, combining the ability to simulate the fea-

sible catchment responses by a distributed rainfall-runoff

model and the computational efficiency offered by statis-

tical models. The hydro-meteorological modelling chain

used in the present study consists of the RainSim stochastic

rainfall generator, and the Real-time Interactive Basin

Simulator (RIBS) hydrological rainfall-runoff model. The

RainSim model is a spatial-temporal stochastic rainfall

generator (Burton et al. 2008), while the RIBS model is an

event-based distributed rainfall-runoff simulator of the

catchment response under rainfall events that are spatially

distributed (Garrote and Bras 1995a, b). The structure of

the present paper is divided into the following sections:

Methodology is presented in Sect. 2, Application consist-

ing of the case study and results is shown in Sect. 3 and

Conclusions are summarised in Sect. 4.

2 Methodology

The present study focuses on a bivariate analysis of floods

by using the maximum peak flow (Q) and its associated

hydrograph volume (V). The methodology consists of the

following steps (see Fig. 1 for an overview): (i) simulation

of a set of flood hydrographs by a hydro-meteorological

model calibrated with observed flood series, using syn-

thetic rainfall series from a stochastic rainfall generator; (ii)

sensitivity analysis to identify the minimum data length

needed for keeping the statistical properties of the whole

simulated data series when the marginal distribution and

copula candidates are fitted; (iii) identification of the

bivariate model based on copulas consisted of the marginal

distribution that best fits each univariate variable and the

copula that best represents the dependence structure

between them, as well as the corresponding minimum data

length to be fitted; and (iv) validation of the methodology

by comparing the flood frequency curve (of each marginal

distribution) and the copula level curves of a large sample

simulated by the hydro-meteorological model, with those

of a set of synthetic samples generated with the same size

by the proposed mixed-approach. That is, synthetic sam-

ples generated via the bivariate distribution fitted to sam-

ples from the hydro-meteorological model with the data

length identified in step (iii). Moreover, as an illustration of

the results obtained by the application of the procedure,

joint return period curves estimated by using the large

simulated sample are compared with those obtained by a

given synthetic sample. The proposed methodology allows

reducing the computation time, while maintaining the sta-

tistical properties of the flood series simulated by the

hydro-meteorological model. The methodology is applied

to the Santillana reservoir catchment in the Manzanares

River located in Spain.

2.1 Simulation of flood hydrographs by a hydro-

meteorological model

A set of flood hydrographs is generated by the hydro-me-

teorological modelling chain consisting of the RainSim

rainfall simulator and the RIBS rainfall-runoff model. The

RainSim V3 model is a stochastic rainfall generator based

on the spatial-temporal Neyman-Scott rectangular pulses

(NSRP) model (Cowpertwait 1994, 1995). This model

allows the simulation of continuous series of rainfall of a

number of years for a set of rain gauges in the catchment

and with an arbitrary time step. The model details are

described in Burton et al. (2008). The RIBS model simu-

lates the catchment response to spatially distributed rainfall

events and results in flood events at the catchment dis-

charge point (Garrote and Bras 1995a, b). The RIBS model

consists of two modules. The first is a runoff-generation

module and the second simulates the runoff propagation.

The runoff generation depends on the calibration parameter

f (mm-1) that controls the decrease of saturated hydraulic

conductivity with depth and the soil properties that have to

be defined for each soil class. These properties are the

saturated hydraulic surface conductivities in directions

normal and parallel to the surface, the residual soil
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moisture content, the saturated moisture content and the

index of soil porosity (Cabral et al. 1992). The runoff

propagation depends on the hill-slope and the riverbed

velocities. The latter is proportional to the coefficient Cv

(m s-1) that characterises the relation between riverbed

velocity and discharge at the catchment outlet. Both

velocities are considered uniform throughout the catchment

at any time, and defined by their relationship to the

dimensionless parameter Kv. Event-based models need an

estimate of the initial moisture content in the catchment at

the beginning of the flood event. In the case of the RIBS, it

corresponds to the water table depth that is in long term

equilibrium with a constant recharge rate.

Once a large set of flood hydrographs is simulated, the

associated Q–V series is extracted by identifying the

maximum peak flow and the hydrograph volume (see

Sect. 3.2.1). Such simulated Q–V series is divided into two

samples: the model selection sample with a sample length

nsel, for performing steps (ii) and (iii); and the simulated

validation sample with a sample length nval, for carrying

out step (iv). At this point it is important to verify if, as

expected, the studied variables Q and V are dependent, in

which case the joint analysis (by the marginal distributions

and copula) is needed. This is done by the rank-based non-

parametric Kendall’s tau (s) measure, through which the

independence between variables is rejected if the associ-

ated p-value is less than 0.05 (Genest and Favre 2007).

2.2 Sensitivity analysis: minimum data length

needed

A prior step to the selection of the bivariate distribution of

the Q–V series is the identification of the minimum data

length (n) necessary for both marginal distribution and

copula fits to be robust enough in terms of uncertainty of

estimates. When marginal distributions are considered, the

Fig. 1 Diagram of the steps forming the proposed methodology
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variable chosen for performing the sensitivity analysis is

the univariate quantile (qT) for a given return period value

(T). Note that T is the inverse of (1 - p), where p is the

non-exceedance probability of qT.

In the case of using copulas, the bivariate quantile is a

curve in the Q–V space instead of a single value like in the

univariate case. However, a single-value variable is needed

for conducting the sensitivity analysis. The Kendall’s

return period (Salvadori and De Michele 2004; Salvadori

et al. 2011) could be a suitable variable to be used as a

surrogate of the bivariate quantile, as each bivariate

quantile curve is associated with a given Kendall’s return

period value that depends on the copula. Moreover, the

Kendall’s return period is the joint return period that pro-

vides an analogous definition of quantile to that considered

in the univariate approach (Salvadori and De Michele

2010). Nevertheless, a long computation time is needed for

performing the sensitivity analysis based directly on this

variable. Consequently, as the aim of the proposed method

is to reduce the computation time, the copula parameter (h)
is chosen to conduct the sensitivity analysis on the bivariate

series. It should be noted that h is needed for estimating the

Kendall’s return period. In summary, the minimum

required n is obtained by analysing the univariate quantile

associated with a given T, qT, for marginal distributions,

and the copula parameter, h, for bivariate copulas.

The proposed procedure is the following: (i) 1000

bootstrap samples of varying length n = 25, 50,…, 1000

are obtained from the model selection sample of length nsel,

without replacement; (ii) both qT and h are estimated for

the 1000 bootstrap samples associated with each n, con-

sidering the set of candidate marginal distributions and

copulas; (iii) the sample distribution of either qT or h for

each n is displayed in a box plot where the 25th and 75th

percentiles are shown as the borders of the box, hereafter

such a statistical interval is named as confidence interval;

(iv) the minimum length required for each either univariate

distribution function (named as nm) or copula (named as nc)

is determined as the smallest n for which the confidence

interval of the bootstrap samples lies within boundaries

related to the model selection sample. These boundaries are

the sampling confidence interval of the model selection

sample increased by 5 %, assuming that an increase of 5 %

in the uncertainty of estimates at the expense of reducing

the record length is acceptable. In the case of the marginal

distributions, the sampling confidence interval is obtained

by generating 10,000 samples by the distribution function

fitted to the model selection sample, calculating the value

of qT for each sample and obtaining the 25th and 75th

percentiles. Note that in the case of copulas, only 1000

bootstrap samples are generated to avoid a long computa-

tion time for generating such a confidence interval in terms

of the copula parameter h.

As a result, the value of nm for each marginal distribu-

tion (named as nm,Q for Q and nm,V for V) as well as the

value of nc for each copula is obtained. Note that in the

case of two-parameter copulas, nc is identified as the

maximum of the two values obtained by applying the

procedure to each parameter. Also note that nm can be

slightly different for a same distribution function for each

variable, as the sampling uncertainty depends on its dis-

tribution parameters.

2.3 Identification of the bivariate model based

on copulas

The bivariate model for accomplishing the stochastic

generation of large Q–V samples is based on the Sklar’s

Theorem (Sklar 1959), through which the bivariate joint

cumulative distribution of the variables Q and V, H(q, v), is

obtained as:

Hðq; vÞ ¼ CðFQðqÞ;FVðvÞÞ; q; v 2 <; ð1Þ

where FQ(.) is the cumulative marginal distribution of Q, q

is a given value of such a variable (the same holds for V),

and the copula function Cðu1; u2Þ : ½0; 1�2 ! ½0; 1� is a

bivariate joint cumulative distribution with uniform mar-

ginal distributions that can be expressed by using u1 -

= FQ(q) and u2 = FV(v). Thus, the estimate of

H(q, v) requires the identification of the marginal distri-

butions that best represent the univariate Q and V variables,

as well as the copula that best characterises the dependence

structure between them. The minimum sample length for

fitting such a bivariate distribution, nb, is determined as the

maximum of the minimum required lengths for fitting the

marginal distributions, nm,Q and nm,V, and the copula, nc,

i.e., nb = max (nm,Q, nm,V, nc). The procedure for identi-

fying the bivariate distribution begins with the selection of

the copula, since the copula is expected to require a larger

data length than the marginal distributions because of its

bivariate nature. As a result, the marginal distributions and

copula to use for obtaining the bivariate distribution of

Q and V are selected, and nb is identified.

2.3.1 Selection of the copula

The best copula is selected by considering 1000 bootstrap

samples of the corresponding length nc obtained in

Sect. 2.2, for each copula. One-parameter copulas, such as

the Clayton, Frank, Gumbel and Plackett copula, and two-

parameter copulas, such as the BB1 copula (Joe 1997), are

considered as copula candidates in the present study.

The selection of the best copula among the candidates is

not straightforward and different criteria should be con-

sidered (Chowdhary et al. 2011; Requena et al. 2013).

Because of the nature of the present study, the procedure
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for selecting the best copula is based on three criteria, for

which results are drawn in a box plot for each copula: the

fit of the copula to the data, the adequacy of the estimate of

a high Kendall’s return period value that is directly related

to the bivariate quantile estimate, and the results of a model

selection criterion that allows ranking the copulas.

The first criterion, related to the ability of the copula to

characterise the data, is performed under the goodness-of-

fit test based on the Cramér-von Mises statistic (Genest

et al. 2009), Sn:

Sn ¼
Xnc

i¼1

Cn

Ri

nc þ 1
;

Si

nc þ 1

� �
� Ch

Ri

nc þ 1
;

Si

nc þ 1

� �� �2

;

ð2Þ

where (Ri, Si) are the ranks of the (Qi, Vi) pairs of each

bootstrap sample, Ch is the copula fitted to such data esti-

mating the parameter(s) by the maximum pseudo-likeli-

hood method (Genest et al. 1995) and Cn is the empirical

copula:

Cnðu1;u2Þ ¼
1

nc

Xnc

i¼1

1
Ri

ncþ 1
�u1;

Si

ncþ1
�u2

� �
; u1;u2

2 ½0;1�;
ð3Þ

where 1(A) is the indicator function of the set A (that

equals 1 inside A and 0 otherwise). Sn is indeed an error

measure between the values of the empirical copula and

those obtained by the fitted copula. Thus, the smaller is the

(median) Sn value, the better is the copula. The p-value

associated with Sn, estimated by a parametric bootstrap

procedure (Genest and Remillard 2008) where 1000 sim-

ulations are employed in the present study because of

computation time limitations, is also obtained to carry out

the goodness-of-fit test itself. A copula is formally accepted

when its (median) p-value is greater than 0.05. However, as

it happens with other statistical tools, it is expected not to

obtain suitable p-values in case of a large sample size is

considered (see Vandenberghe et al. 2010; Requena et al.

2015a). In addition, a formal goodness-of-fit test is not

performed in the copula selection process in some studies

(e.g., Klein et al. 2010). In fact, the p-value is very useful

to test if a sample comes from a given copula. However, in

practice, observed flood series could not follow any of the

existing copulas, due to the natural variability of floods.

Consequently, the copula that best characterises the

observed sample should be found, instead of the true

copula that could represent the observed sample perfectly,

as in some cases it does not exist.

The second criterion is related to the adequacy of the

Kendall’s return period estimated by the copula, for a large

copula value t 2 [0, 1], which is based on the Kendall’s

function KC(t) = P[Ch(u1, u2) B t] (Genest and Rivest

1993). Its theoretical estimate (TK) is expressed as:

TK ¼ 1

1� KCðtÞ
ð4Þ

The Kendall’s function has an analytical expression for

Archimedean copulas (e.g., the Clayton, Frank and Gum-

bel copula), but simulation is required for the rest of

copula families (Salvadori et al. 2011). The issue is that

extreme value copulas (e.g., the Gumbel and Galambos

copula) have associated the same Kendall’s function

(Genest et al. 2006) and therefore the criteria based on the

Kendall’s function is not able to distinguish among them.

The value of the Kendall’s return period is also estimated

and the results of each copula are plotted. In this case, the

best copula is that with the closest (median) theoretical

Kendall’s return period to the empirical Kendall’s return

period ( _TK), estimated by the Kendall’s function associated

with the empirical copula of the whole model selection

sample.

The third criterion is the Akaike Information Criterion

(AIC) (e.g., Zhang and Singh 2006).

AIC ¼ �2
Xnc

i¼1

ln ch
Ri

nc þ 1
;

Si

nc þ 1

� �� �
þ 2k; ð5Þ

where ch(.) is the density function of the fitted copula, and

k is the number of copula parameters. The best copula for

this criterion is that with the smallest (median) AIC value.

The AIC penalises the copulas with more parameters, as it

can be seen through the second term of its formula.

Note that although the median is the value considered to

assess the performance of each criterion, the variability in

the results (i.e., the height of the boxes) should also be

considered in the decision process, as it makes reference to

the uncertainty in the results given by the copula. As a

result of taking into account all the information provided

by these criteria, the best copula is selected and its mini-

mum required sample length, n�c , is identified. As illustra-

tion and in order to provide a visual support of the

behaviour of the copulas, the empirical (i.e., based on Cn)

and theoretical estimate of the Kendall’s function for the

model selection sample is also provided.

2.3.2 Selection of the marginal distributions

If the minimum sample length required for the selected

copula n�c is greater than any of the nm values obtained in

Sect. 2.2, the minimum sample length required by the

bivariate distribution is given by that of the copula, i.e.,

nb ¼ n�c and hence, the selection of the marginal distribu-

tions is done under 1000 bootstrap samples of size nb.

Distributions usually used in hydrology, such as the
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Gumbel (G), generalised extreme value (GEV), generalised

logistic (GLO) and log-normal (LNO) distribution, are the

marginal distributions selected as candidates. Because of

the nature of this study, the best marginal distribution is

identified as that with the smallest distance between the

median quantile estimate obtained by a given marginal

distribution, q̂T (named as q̂QT for Q and q̂VT for V), and the

median quantile estimate obtained by the empirical distri-

bution, _qT , both assessed by using 1000 bootstrap samples

of size nb. Such a distance is expressed as the relative error

(RE) in percentage:

RE ¼ 100
medianðq̂TÞ �medianð _qTÞ

medianð _qTÞ
ð6Þ

As a result, the marginal distribution with the smallest

absolute value of RE is selected for each variable (Q and

V).

Note that in the (more unlikely) case that n�c is less than

some nm, the selection of the marginal distributions is con-

ducted by using 1000 bootstrap samples of the correspond-

ing size nm. Then, as nb ¼ max n�m;Q; n
�
m;V ; n

�
c

� 	
, the

selection process should be repeated for the marginal dis-

tribution or copula for which n�m;Q; n�m;Q or n�c is different

from nb (see Fig. 1 for a diagram of the process). As illus-

tration, the fit of the marginal distributions to the model

selection sample is also provided to visually check how the

marginal distributions behave regarding the whole sample.

2.4 Validation of the methodology

The aim of this section is to check the adequacy of the

proposed methodology by comparing the behaviour of a

large sample obtained directly through the hydro-meteo-

rological model (i.e., the simulated validation sample

introduced in Sect. 2.1), with samples of the same length

(called synthetic validation samples) stochastically gener-

ated by fitting the selected bivariate distribution to smaller

samples of size nb belonging to such a simulated validation

sample. The present section consists of the procedure

needed to generate synthetic samples by the bivariate

copula-based distribution, followed by the validation of the

marginal distributions, the validation of the copula, and an

example of the results provided by the application of the

methodology in comparison to those obtained by only

using the hydro-meteorological model.

The generation of synthetic validation samples is con-

ducted by using the bivariate distribution identified in

Sect. 2.3 based on the information provided by the model

selection sample, and small bootstrap samples obtained from

the simulated validation sample. The procedure is described

below: (i) a bootstrap Q–V sample of size nb is obtained

from the simulated validation sample without replacement;

(ii) the selected copula is fitted to the bootstrap sample,

generating a synthetic sample of size nval consisted of

(u1, u2) pairs; (iii) the selected marginal distribution of Q

and V are used for transforming the (u1, u2) pairs into (Q,V)

pairs formed by the components q = FQ
-1(u1) and

v ¼ F�1
V ðu2Þ, where FQ

-1(.) and FV
-1(.) are the inverses of

the marginal distributions of Q and V, respectively. This

synthetic Q–V sample of size nval is called synthetic vali-

dation sample. A new synthetic validation sample is gen-

erated each time the process is performed.

The validation of the marginal distributions is performed

based on the following procedure: (i) the selected marginal

distributions for Q and V are fitted to the whole simulated

validation sample, obtaining their flood frequency curve;

(ii) the selected marginal distributions are also fitted to

each of the 10,000 synthetic validation samples generated

by the procedure described above, obtaining their associ-

ated flood frequency curves; (iii) the confidence interval

(i.e., the statistical interval consisted of the 25th and 75th

percentiles) from the 10,000 synthetic flood frequency

curves is obtained for given T values; and (iv) such a

confidence interval is compared with the flood frequency

curve obtained by the simulated validation sample in the

first step of the present procedure.

An analogous process is carried out for the validation of

the copula: (i) the copula selected is fitted to the whole

simulated validation sample, obtaining the copula proba-

bility level curve for given p-values; (ii) the selected

copula is also fitted to each of the 1000 synthetic validation

samples generated by the procedure described at the

beginning of the present section, obtaining their associated

copula probability level curves formed by the (u1, u2)

points that fulfil C(u1, u2) = p, for given probability values

p. Only 1000 samples instead of 10,000 are used for

avoiding a long computation time when the confidence

intervals are estimated; (iii) For each u1 value, the confi-

dence interval of the u2 values for the 1000 synthetic

probability curves is obtained for each p; and (iv) the

confidence interval associated with each probability value

p is compared with the copula probability level curve

obtained when fitted to the simulated validation sample.

As illustration of the results obtained by applying the

proposed methodology, a given synthetic validation sample

is plotted together with the simulated validation sample,

and the Kendall’s return period curves for both samples are

also estimated and drawn.

3 Application

The case study and the results obtained by the application

of the proposed methodology are shown in the present

section.
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3.1 Case study

The application of the methodology is carried out on the

gauging station of the Santillana reservoir in the Manzanares

River, which belongs to the Tagus River catchment and is

located in the centre of Spain (Fig. 2). The catchment drai-

nage area of the Santillana reservoir gauging station is

325.6 km2. Mean daily outflow discharge and reservoir vol-

ume series are available at this gauging station for the period

1958–2002, from which the series of mean daily inflow dis-

charges was extracted. This case study is chosen due to the

previously available calibration of the hydro-meteorological

model RainSim-RIBS. The rainfall simulator was calibrated

by Flores et al. (2013) and the rainfall-runoff model by

Mediero et al. (2011). The RainSim V3 model was calibrated

through a set of observed daily series recorded at 15 rain-

gauges with varying length between 11 and 118 years, where

the largest series entails the period 1893–2011. As a result, a

9000-year length hourly rainfall series was generated by the

calibrated model at each rain-gauge. The RIBS model was

calibrated in the entire Manzanares River catchment with a

drainage area of 1248 km2, where the Santillana reservoir

catchment is its headwaters. The calibration process is based

on a simultaneous minimisation of four objective functions

(root mean square error, mean absolute error, coefficient of

Nash–Sutcliffe efficiency and time to peak) that account for

different hydrograph characteristics, resulting in a probability

density function for characterising each of the model

parameters subject to calibration. Validation of the proba-

bilistic model was performed via simulations of the calibrated

model for each validation event; assessing the bias of the

results through a variation of the Nash–Sutcliffe efficiency

coefficient, and the accuracy of the results by the inclusion

coefficient.

3.2 Results

3.2.1 Simulation of flood hydrographs by a hydro-

meteorological model

Storm events were then simulated individually from the

9000-year length hourly rainfall series generated in the 15

rain-gauges, as RIBS is an event-based model. Independent

storm events were identified via the exponential methodFig. 2 Location of the case study: catchment of the Santillana

reservoir gauging station

Fig. 3 Validation of the hydro-

meteorological model.

Observed data and empirical

frequency curves of inflow

volume for a one; b two;

c three; and d four consecutive

days
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(Restrepo-Posada and Eagleson 1982), fixing a minimum

dry period between events, in which rainfall is less than a

given threshold (Bonta and Rao 1988). In order to reduce

the number of simulations, a specific subset of five events

was selected from each year, assuming that the event

generating the maximum volume or peak flow hydrograph

in a year is included among them.

Consequently, 45,000 synthetic flood events were gen-

erated through the calibrated RIBS rainfall-runoff model,

accounting for random initial moisture content states among

a representative set of 13 initial states in the catchment, in

order to generate an ensemble of hydrographs that covers the

range of totally dry to completely saturated soils. Each year,

the hydrograph with the maximum peak flow was selected

and its volume calculated, obtaining 9000 years of synthetic

Q–V series. In order to validate the model in terms of the

flood frequency curve, the observed and simulated fre-

quency curves for 1-, 2-, 3- and 4-days accumulated inflow

volumes were calculated and compared (Fig. 3). Validation

was conducted by using inflow volumes for different dura-

tions, as information about the instantaneous peak flow of

observed inflow hydrographs is not available at this site. It

should be noted that the 1-day inflow volume series is used

to validate the peak flow of observed inflow hydrographs, as

it is characterised by the mean daily discharge. Results show

that the model represents suitably the flood frequency

curves. Therefore, the hydro-meteorological model can be

used for extending the observed series to enable an accurate

flood frequency analysis by selecting and fitting the bivariate

Fig. 4 Scatter plot of the (Q,V) pairs of the samples generated

through the hydro-meteorological model divided into the model

selection sample and the simulated validation sample

Fig. 5 Sensitivity analysis for identifying the minimum sample length required for the marginal distributions. The box plot of the quantiles

estimated from the bootstrap samples of length n is plotted along the x-axis, where the points represent the outliers

Stoch Environ Res Risk Assess (2016) 30:1363–1378 1371

123



copula-based distribution via the Q–V series extracted from

the flood hydrographs simulated by the calibrated hydro-

meteorological model, instead of via the short-length

observed flood data.

As a result, the 9000 synthetic Q–V pairs obtained

through the hydro-meteorological model, entailing a 1-h

temporal and 100-m spatial resolution, were used. The

computation time needed for its generation was approxi-

mately 20 days with a computer with a processor Intel

Core i7-870 2.93 GHz with four cores. Such a (simulated)

Q–V sample was divided into the model selection sample

with nsel = 2000 (Q,V) pairs and the simulated validation

sample with nval = 7000 (Q,V) pairs. Their scatter plots are

shown in Fig. 4. The Kendall’s s of both samples is 0.7

with a suitable p-value less than 0.05, indicating a positive

dependence relation between variables.

3.2.2 Sensitivity analysis: minimum data length needed

The sensitivity analyses to identify the minimum sample

length required for obtaining robust quantile estimates by

each marginal distribution, in terms of the uncertainty of

the quantile estimate by using the whole univariate either Q

or V series, are shown in Fig. 5. The 100-year quantile was

selected in this study (named as q̂100) as a trade-off

between a high enough quantile and a quantile not entailing

a large uncertainty. Following the procedure explained in

Sect. 2.2, the box plots of the quantiles obtained from the

bootstrap samples (from the model selection sample) of

each length n are plotted along the x-axis. The boundaries

associated with the confidence interval for the model

selection sample are added as two horizontal lines. The

minimum data length, nm, for which the confidence interval

(i.e., the borders of the box) is inside such boundaries, i.e.,

nm,Q and nm,V, are marked by a dotted line in Fig. 5 for

each marginal distribution. As expected, the nm required in

the case of the two-parameter G distribution is less than

that needed for the three-parameter (GEV, GLO and LNO)

distributions. Moreover, the quantile related to Q requires

the same or a similar data length than that related to V for

each marginal distribution, with the exception of the GLO

distribution for which the difference is larger (due to the

randomness of the process and the data step considered).

The results of the sensitivity analyses of the copula

parameter estimate are shown in Fig. 6. In this case, the

objective of the analysis is to identify the minimum record

length, nc, required for assuming that the parameter esti-

mated for each copula is robust enough in reference to

Fig. 6 Sensitivity analysis for identifying the minimum sample length required for each copula. The box plot of the copula parameter(s) es-

timated from the bootstrap samples of length n is plotted along the x-axis, where the points represent the outliers
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uncertainty of the parameter estimate via the whole

bivariate Q–V series. Analogously to the univariate case,

the required nc, identified as the minimum data length for

which the confidence interval is less than the boundaries

associated with the confidence interval of the copula

parameter for the model selection sample (i.e., the two

horizontal lines), is marked in Fig. 6 for each copula. Note

that for the BB1 copula nc = 525, which is the maximum

of the two values obtained by applying the procedure to

each copula parameter. As expected, the nc needed for the

Fig. 7 Copula selection process based on 1000 bootstrap samples

with a sample length nc for each copula. Box plots for each copula

show a the assessment of the fit to the data via Sn; b the results of the

formal goodness-of-fit test by the p-value of Sn; c the adequacy of the

Kendall’s return period TK(0.99) in reference to the empirical Kendall’s

return period _TKð0:99Þ; and d the evaluation of the AIC for ranking

copulas. The points in the box plots represent the outliers

Fig. 8 Comparison among the

empirical estimate of the

Kendall’s function (for t copula

values) and the theoretical

estimate, regarding the model

selection sample, obtained by

a the Clayton, Frank and

Gumbel copula; and b the

Galambos, Plackett and BB1

copula. Results are divided into

two figures for clarity
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two-parameter copula BB1 is greater than that needed for

the rest of the one-parameter (Clayton, Frank, Gumbel,

Galambos and Plackett) copulas. Although in general and

as expected, the minimum record length for a copula is

greater than that needed for a marginal distribution, the

value associated with the Gumbel copula is less than those

associated with some marginal distributions.

3.2.3 Identification of the bivariate model based

on copulas

The identification of the bivariate distribution of Q and V,

requiring the selection of the marginal distributions and the

copula, is conducted by the procedure detailed in Sect. 2.3.

First, the results obtained for the copula selection process are

shown in Fig. 7. The assessment of the fit of each copula to

the data is displayed in Fig. 7a, via the box plot of the Sn
values obtained by Eq. 2, considering the corresponding

bootstrap sample of length nc obtained previously. As a

result, the Clayton copula was identified as the worst copula

in terms of fitting to the data, as both the median value of the

Sn and its variability represented by the height of the box are

the largest. The values obtained for the rest of the copulas are

smaller and similar to each other, obtaining the best results

for the Frank and BB1 copula. Consequently, the Clayton

copula is discarded, as it is not able to represent the depen-

dence between the observed Q–V pairs.

The box plots of the p-values associated with the Sn
values are displayed in Fig. 7b. As expected, because of the

use of large sample lengths (see Sect. 2.3.1 for more

details), poor results were obtained by the goodness-of-fit-

test. Only some p-values greater than 0.05, where such a

threshold is indicated as a horizontal line, were obtained as

outliers for the Frank, Gumbel, Galambos and BB1 copula.

The results for a smaller sample length (nc = 50), which is

in the range of the common observed data lengths recorded

Fig. 9 Selection of the marginal distributions (for Q and V) based on

1000 bootstrap samples from the model selection sample. Box plots

show the variability of the univariate quantile estimated for

T = 100 years, q̂100, plotting its median value to be compared with

its median empirical quantile estimate, _q100, for bootstrap samples

with a sample length equal to nm. Points in the box plots represent the

outliers

Table 1 Relative error (RE) of the (median) quantile estimated for

1000 bootstrap samples of length nb = 525

Marginal distribution RE (%) for nb = 525

Q V

G -5.9 -9.0

GEV 21.4 3.2

GLO 3.2 7.1

LNO -2.6 1.0
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in practice (see Sect. 1), are also plotted in the upper right

corner of Fig. 7b for illustration purposes. As expected,

more suitable p-values were obtained. All copulas except

the Clayton copula pass the goodness-of-fit test in this case.

Consequently, the p-value is not used for identifying the

suitable copulas in this study.

The adequacy of the Kendall’s return period estimate for

a high copula value t = 0.99, TK(0.99) (Eq. 4), is analysed in

Fig. 7c. The box plot of TK(0.99) for each copula is dis-

played together with the empirical value associated with

the whole model selection sample as it was indicated in

Sect. 2.3.1, _TKð0:99Þ ¼ 200 years, which is plotted as a

horizontal line. It can be seen that besides the already

discarded Clayton copula in terms of Sn results, the Frank

and Plackett copula show a large overestimate of the

empirical value (in decreasing order). The Clayton and

Frank copula also show a larger variability. Closer esti-

mates to the empirical value, involving underestimate,

were obtained by the Gumbel, Galambos and BB1 copula.

For the first two copulas TK(0.99) = 150 years, while for the

BB1 copula TK(0.99) = 192 years, being the last the best

estimate. Note that an underestimate of the return period

entails being on the safety side. As a result, the Frank and

Plackett copulas are also discarded.

The results obtained by the AIC (Eq. 5) are shown in

Fig. 7d. As it can be seen, the sample length affects the

results, obtaining better values those copulas considering

larger lengths. As a consequence, AIC results were

obtained by using the same sample length for all copulas

(not shown), resulting the BB1 copula the best copula in all

cases. Hence, considering all the information provided by

the copula selection process, the BB1 copula was chosen as

the best copula for characterising the Q–V series, requiring

a minimum sample length n�c ¼ 525. A visual support of

the behaviour of the copulas regarding the model selection

sample (with nsel = 2000), by the comparison of the

Fig. 10 a Fit of the marginal

distributions of Q and V to the

model selection sample;

b Comparison between the flood

frequency curve fitted to the

simulated validation sample

generated through the hydro-

meteorological model, and the

confidence interval obtained by

the synthetic validation samples

generated by the bivariate

distribution

Table 2 Confidence interval

(in percentage) of the flood

frequency curves obtained via

10,000 synthetic validation

samples, for T = 10, 25, 100

and 500 years

Variable Marginal distribution Confidence interval range (%) for T

10 25 100 500

Q GEV ±1.8 ±2.5 (-3.8, ?3.9) (-5.5, ?6.0)

V LNO ±2 ±2.7 ±3.7 (-4.9, ?5.0)
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theoretical Kendall’s function of each copula and the

empirical estimate, is plotted as an example in Fig. 8. It can

be seen that the BB1 copula (Fig. 8b) involves the best fit.

As n�c is greater than any nm (see Fig. 5), nb ¼ n�c ¼ 525

and hence, the selection of the marginal distributions is

conducted under 1000 bootstrap samples of such a length,

estimating the (median) quantile q̂100 for each marginal

distribution, as well as the (median) empirical quantile

_q100. The distances between both quantiles are plotted in

Fig. 9, and the RE values obtained via Eq. 6 are shown in

Table 1. It was found that the best marginal distributions

are the GEV for Q and the LNO for V, as they entail the

minimum absolute value of RE in each case. The fit of the

marginal distributions to the model selection sample is

plotted in Fig. 10a as an illustration of the behaviour of the

marginal distributions. It can be seen that the fit of the GEV

distribution is the closest to the peak flow data, Q, and the

fit of the LNO distribution is the closest to the volume data,

V. In summary, the bivariate distribution selected to rep-

resent the Q–V series consists of the BB1 copula, the GEV

distribution for Q and the LNO distribution for V, with a

sample length of nb = 525.

3.2.4 Validation of the methodology

The methodology is then validated according to Sect. 2.4.

Synthetic validation samples (of size nval = 7000) are

generated by fitting the selected bivariate distribution to

bootstrap samples of the identified length (nb = 525),

obtained without replacement from the simulated valida-

tion sample. Regarding the marginal distributions, the flood

frequency curve of the simulated validation sample is

drawn together with the confidence interval related to the

flood frequency curves of 10,000 synthetic validation

samples (Fig. 10b). The flood frequency curve is tightly

fitted by the confidence interval for small T values. The

range slightly increases for larger values of T, as the

uncertainty is larger. The simulated data remain inside the

synthetic confidence interval in the case of V, and only two

data points are outside in the case of Q, as the three largest

peaks show similar values. The confidence interval in

percentage is shown in Table 2 for several T values. The

confidence intervals associated with the copula level curves

of 1000 synthetic validation samples are almost equal to

the corresponding curves obtained via the simulated vali-

dation sample (not shown).

As an example of the results obtained by the application of

the methodology, the simulated validation sample is plotted

together with a given synthetic validation sample in Fig. 11.

The Kendall’s return period curves estimated by the bivariate

distributionfitted to each sample are also displayed (estimated

parameters shown in Table 3). It can be seen that both scatter

plots are visually similar and that the results regarding the

Kendall’s return period curves are comparable. TheKendall’s

return period curves are practically identical for small Ken-

dall’s return period values, while as expected, such a differ-

ence becomes slightly larger the larger the return period value

is, because of the increasing uncertainty.

4 Conclusions

In the present paper a bivariate procedure to extend flood series

due to the need of achieving more appropriate flood frequency

analyses is addressed, determining the minimum number of

flood hydrographs required to be simulated by a hydro-

Fig. 11 Comparison between the Kendall’s return period curves

estimated by the simulated validation sample generated through the

hydro-meteorological model, and by a given synthetic sample

generated by the bivariate distribution

Table 3 Parameters of the fitted bivariate distribution (marginal distributions and copula) for the simulated validation sample, and a given

bootstrap sample of size nb = 525 that belongs to the simulated validation sample, whereby the synthetic validation sample is generated

Validation sample GEV distribution for Q LNO distribution for V BB1 copula

Location Scale Shape Location Scale Shape ĥ1 ĥ2

Simulated 55.939 23.011 -0.065 8.788 4.441 -0.497 1.132 2.035

Synthetic 55.662 21.771 -0.095 8.836 4.401 -0.551 1.178 1.933
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meteorological model to be used as input for obtaining an

extended flood series by a bivariate model based on copulas.

A previously calibrated distributed hydro-meteorological

model is used for simulating a series of flood hydrographs,

with the aim of extending the observed peak-volume series by

a bivariate distribution consisting of two marginal distribu-

tions and a copula. The minimum data length needed to be

simulated by the hydro-meteorological model is defined

through a sensitivity analysis in order to obtain robust esti-

mates from both marginal distributions and copula. The

marginal distribution and copula selection process is per-

formed, where the copula selection process is carried out by

taking into account the fit of the copula to the data, the ade-

quacy of high joint return period estimates (using the Ken-

dall’s return period), and the results of a model selection

criterion. As a result, the selected bivariate distribution fitted

to a small sample simulated by the hydro-meteorological

model is used for generating arbitrarily large synthetic sam-

ples. The adequacy of the procedure is checked by comparing

the flood frequency curve (of each marginal distribution) and

the copula level curves fitted to a large sample simulated by

the hydro-meteorological model, with the corresponding

confidence intervals obtained from a large amount of syn-

thetic samples generated by the bivariate distribution.

The proposed methodology was applied to the Santillana

reservoir gauging station in the Manzanares River located

in Spain. It was found that a minimum data length of 525

flood hydrographs should be simulated through the hydro-

meteorological model in order to accomplish a robust fit by

a bivariate distribution based on the two-parameter BB1

copula, which was chosen as the best copula by the copula

selection process. In this regard, it is suggested considering

the BB1 copula as potential candidate for characterising

peak-volume series in other catchments. As expected, a

smaller data length (in the order of 200 data) should be

required in the case of a one-parameter copula was selec-

ted. The generalised extreme value distribution for the peak

flow and the log-normal distribution for the hydrograph

volume were found to be the best marginal distributions for

a record length of 525 years. As a result, large synthetic

samples were stochastically generated by fitting the

bivariate distribution to a random set of 525-length samples

simulated by the hydro-meteorological model. The com-

parable performance of such synthetic samples in relation

to a sample of the same length simulated by the hydro-

meteorological model supported the use of the proposed

methodology. The procedure provides an extended sample

composed of 525 data from the simulation through a hydro-

meteorological model and a much larger synthetic sample

stochastically generated by fitting the bivariate distribution.

The proposed procedure allows cutting down the com-

putation time required for generating a large sample of

peak-volume pairs, in comparison to the time needed by a

hydro-meteorological modelling chain (specifically, from a

month scale to few days for the sample length generated for

the case study), allowing the generation of a peak-volume

sample as long as desired to enable more suitable flood risk

assessment studies.
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