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Abstract Soil salinization of the reclaimed tidelands is

problematic. Therefore, there is a need to characterize the

spatial variability of soil salinity associated with soil mois-

ture and other soil properties across the reclaimed tidelands.

One approach is the use of easily-acquired ancillary data as

surrogates for the arduous conventional soil sampling. In a

reclaimed coastal tideland in the south of Hangzhou Gulf,

backscattering coefficient (r0) from remotely sensedALOS/

PALSAR radar imagery (HH polarization mode) and

apparent soil electrical conductivity (ECa) from a proxi-

mally sensed EM38 were used to indicate the spatial distri-

bution of soil moisture and salinity, respectively. After that,

response surface methodology (RSM) was employed to

determine an optimal set of 12 soil samples using spatially

referencedr0 andECa data. Spatial distributions of three soil

chemical properties [i.e. soil organic matter (SOM), avail-

able nitrogen (AN), and available potassium (AK)] were

predicted using inverse distance weighted method based on

the 12 samples and were then compared with the predictions

generated using 42 samples obtained from a conventional

grid sampling scheme. It was concluded that combination of

radar imagery and EM induction data can delineate the

spatial variability of two key soil properties (i.e. moisture

and salinity) across the study area. Besides, RSM-based

sampling using radar imagery and EM induction data was

highly effective in characterizing the spatial variability of

SOM, AN and AK, compared with the conventional grid

sampling. This new approach may be used to assist site

specific management in precision agriculture.

Keywords Saline soils � EM38 � Backscattering
coefficient � Electrical conductivity � Response surface

methodology (RSM)

1 Introduction

In the coastal regions of China, shortage of available land

resources occurs due to the continuous population growth

and widely distributed hilly and mountainous landscapes,

e.g., *70.4 % of the lands in Zhejiang Province are low

hills and mountains. However, the highly saline coastal soil

causes adverse effects on the agricultural productivity. In

order to improve the utilization and management of the

reclaimed tidelands, it is first necessity to efficiently and

accurately map the spatial variability of the soil salinity as

well as other soil properties.

In an attempt to improve the efficiency of soil mapping,

ancillary data have been employed to assist conventional

soil mapping using geostatistical interpolation and infer-

ence algorithms, which is called digital soil mapping

(DSM) (McBratney et al. 2003; Arrouays et al. 2014).

Ancillary data include remote and proximal sensing data.

In the case of the former, radar microwave sensing is an

advantageous technique as it can operate in all kinds of
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weather conditions while other remote sensors (e.g. near-

infrared spectroscopy) fail to work. Particularly, L-band

microwaves can penetrate vegetation and soil to some

extent (McColl et al. 2012; Kobayashi et al. 2012) and thus

can be used to determine soil moisture content of the

topsoil (Pellarin et al. 2003; Paloscia et al. 2012). With

regard to the proximal sensors, electromagnetic (EM)

induction meter has been widely used because it measures

the soil apparent conductivity (ECa) to a deeper depth (e.g.

1.5 m for EM38) in a fast and noninvasive way. Over the

past 30 years, EM induction data have been successfully

used to map various soil properties, including salinity

(Douaik et al. 2004; Guo et al. 2015; Li et al. 2015), clay

content (Sudduth et al. 2003; Buchanan et al. 2012; Piikki

et al. 2015) and moisture (Robinson et al. 2012).

In addition to ancillary data, it is crucial to determine

a suitable sampling scheme when conducting a soil sur-

vey. Given the different patterns of soil spatial variabil-

ity, a group of sampling approaches have been proposed,

including simple random sampling (Brus et al. 2011;

Wang et al. 2012; Webster and Lark 2013; Brus 2015),

stratified sampling (Wallenius et al. 2011; Chen et al.

2015), grid sampling (Montanari et al. 2012; Barca et al.

2015; Huang et al. 2015a, b) and variance quad-tree

method (Li et al. 2007; Yao et al. 2012). Response

surface methodology (RSM) (Box and Wilson 1951) is

one of the widely used sampling design methods in

industry field, which spaces the sample locations apart to

minimize the possibility of spatial autocorrelation and

aims at reducing the cost of expensive analysis methods

and their associated numerical noise. It has shown

advantages in a number of optimization applications

(Venter et al. 1996). With the advent of ancillary data in

DSM, RSM or RSM-based software (e.g. ESAP) has

been employed to assist soil sampling design (Amezketa

and de Lersundi 2008; Lobell et al. 2010). It has been

concluded that RSM is highly effective in estimating

model parameters and ensuring unbiased prediction

(Corwin and Lesch 2003; Eigenberg et al. 2008; Shan-

bedi et al. 2015).

RSM was originally developed to facilitate the esti-

mation of soil salinity from apparent soil electrical

conductivity (ECa) survey data (Lesch 2005). However,

the underlying statistical methodology is quite general

and directly applicable to the broader precision farming

sampling. And Fitzgerald et al. (2006) also pointed out

this method could provide the opportunity to input other

types of geo-referenced survey data, such as remotely

sensed imagery. On the other hand, except for a few

cases combining remote sensing and proximal sensing in

DSM (Triantafilis et al. 2009; De Benedetto et al. 2013;

Guo et al. 2013; Priori et al. 2013; Huang et al. 2015a,

b; Rodrigues et al. 2015), these two types of ancillary

data have not been used widely to assist sampling design

and mapping some important soil chemical properties

[e.g. soil organic matter (SOM), available nitrogen (AN)

and available potassium (AK)]. In this manuscript, we

intended to evaluate the ability of RSM to direct ground

sampling by substituting radar imagery for ECe in the

ESAP software, producing predictive maps of soil attri-

butes. Additionally, RSM-based sampling design was

used associated with the ancillary data to map the spatial

variability of three soil chemical properties (i.e. SOM,

AN and AK), which has not been reported before.

2 Materials and methods

2.1 Study area

The study area is located on a 2.25 ha paddy field in a

coastal saline area in the north of Shangyu City and in the

south of the Hangzhou Gulf (Fig. 1a), Zhejiang Province,

China. Over the past 50 years, approximately 17,000 ha of

coastal land has been reclaimed around Shangyu City in

successive programs (Fig. 1b). The soil is derived from

recent marine and fluvial deposits. The reclaimed land has

been mainly used for the production of cotton, cereals (e.g.

wheat and rice) and horticultural crops (e.g. watermelons

and grapes) while some of the land has been used for aqua

culture (e.g. prawns and fish). The study area was

reclaimed in 1996. The climate is subtropical with an

average annual temperature of 16.5 �C, and an average

annual precipitation of 1300 mm.

2.2 Data collection, processing and harmonisation

Remotely sensed radar data were recorded by the

Advanced Land Observing Satellite (ALOS) platform of

Japanese Earth Observing Satellite Program. The ALOS

satellite carries a Phased Array type L-band Synthetic

Aperture Radar (PALSAR) active sensor with L-band

frequency (1270 MHz) to achieve cloud-free and day-and-

night land observation (JAXA EORC), which provides

high resolution (i.e. 12.5 m) imagery data in single-polar-

ized (HH) or dual-polarized mode. The imagery of the

study area was acquired on 21 November 2010. We used

the HH polarization mode data of level 1.5 PALSAR

products, with a pixel spacing of 12.5 m, which are multi-

look, processed on to map coordinates and are easily

integrated with other georeferenced image data. Image

rectification was carried out by ENVI 4.7 (ESRI Inc.,

2012). The PALSAR image was rectified by the control

points chosen from a registered 1:10,000 terrain map from
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Bureau of Surveying and Mapping of Zhejiang Province.

Topographic effects were not considered because the study

area is flat and located in the lowland plains.

The data were subsequently used to calculate the

backscattering coefficient (r0) using the following

equation:

Fig. 1 Location of the study

field with reference to a the

Hangzhou Gulf and b reclaimed

lands over the past 40 years
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r0 ¼ 10� log10 DNð Þ2þ e;

where e is radar calibration coefficient; for ALOS/PAL-

SAR Level 1.5 data, e = -83.0 dB (Shimada et al. 2009)

and DN is the grey value for radar image. During the study

period, the soil was bare and r0 can reflect soil moisture

and was a function of soil salinity.

Proximally sensed data were collected on 21

November 2010. 768 measurements of apparent soil

electrical conductivity (ECa, mS/m) were made at an

approximate 5 m grid (Fig. 2a) with a Geonics EM38

and in the horizontal mode of operation. This mode of

operation provides information about the rootzone (i.e.

0–0.75 m). Georeferencing was provided by a Trimble

Global Positioning System with differential correction

within 2 m.

The remotely sensed radar imagery and proximally

sensed EM data were harmonized by extracting r0 data

according to the respective longitude and latitude of the

768 ECa locations. This was done using the nearest-

neighbor algorithm available in ARCGIS 9.3 (ESRI Inc.

2012).

Fig. 2 Spatial distributions of

a EM38 survey locations and

soil sampling locations,

b sampling locations generated

by response surface

methodology (RSM) with

reference to the EM38 survey

locations
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2.3 Soil sampling and laboratory analysis

Figure 2a shows the locations of the 42 soil samples col-

lected at approximately 20 m grid spacing. Additionally,

another 12 samples were determined using RSM (Fig. 2b).

Details of the RSM-based sampling methods can be found

in the next sub-section. All the samples were collected for

the topsoil (i.e. 0–0.20 m) and then air-dried and sieved

through a 2 mm-aperture sieve before analysis. Sample

analysis was conducted according to the procedures

described in Bao (2007). In brief, SOM was determined

colorimetrically after H2SO4-dichromate oxidation at

150 �C. AN was measured by alkaline hydrolysis diffusion

method. AK was measured by NH4OAC extraction method

and analyzed using a flame photometer.

2.4 Directed sampling by response surface

methodology (RSM)

In this study, an RSM-based software, ESAP (Lesch and

Rhoades 2006) was used to select 12 sampling locations

(Fig. 2b). The principle and applications of this method

have been thoroughly described by Lesch et al. (2000),

Lesch (2005) and Fitzgerald et al. (2006). In brief, RSM

assumes that a linear relationship exists between the spatial

ancillary dataset (e.g., ECa data) and the target dataset

(e.g., soil salinity data).

Figure 3 shows the flowchart of the whole approach

(Lesch 2005). In the first step, the acquired data (ECa and

r0) matrix (X) was transformed into a standardized (i.e.

standardize each score to have 0 mean and unit variance)

matrix X0 by principal components (PC) analysis with

unusual readings (i.e. outliers) removed based on their

standard deviation (SD). This was an iterative process that

ended until no outliers had SD values more than 4 SD. In

the next step, the traditional rotatable central composite

response design (CCRSD) was imposed onto the trans-

formed and decorrelated data for the third step to identify

the initial candidate sites. Finally, the optimized sample

sites were determined from the initial candidate sites using

an iterative algorithm which maximized the covariance

structure of the minimum separation distance between

adjacent site locations. In terms of this step, optimization

criterion (OptCri) value was employed to evaluate how

uniform (i.e. evenly spread across the field) the selected

sampling plan spreads. More specifically, for a sample of

size n, the program calculated the approximate maximum

possible separation distance (SDp) that a uniformly spaced

sampling pattern might achieve. It then calculated the

achieved average separation distance for the current design

(SDa) and computed the OptCri score as SDp/SDa. In

general, the uniform sampling plan has an OptCri value of

1.30 or less while highly non-uniform sampling plan or an

unacceptable design typically has a value of 1.75 or more

(Lesch et al. 2000).

3 Results and discussion

3.1 Spatial variability of soil moisture inverted

from radar images

Figure 4a shows the distribution of r0 extracted from

ALOS/PALSAR radar imagery. Statistics analysis suggests

that r0 ranges from -10.80 to 0.75 dB with the mean of

-7.44 dB. It can be seen from Fig. 4a that several clusters

in the middle of the study area have extremely small r0

values (i.e. r0\-10 dB). However, in the north margin

of the field, relatively large r0 values occur (i.e.

r0[ 0.75 dB). Intermediate r0 values can be found

between the small clusters and the northern margin of the

field.

In terms of the relationship between soil moisture and

r0, previous studies have suggested that a simple regres-

sion model can be used to invert soil surface moisture using

r0 extracted from ALOS/PALSAR and measured soil

volumetric water content (Pellarin et al. 2003). For bare

soil, one of the main properties soil roughness can be

treated as a constant. Using the positive linear regression

model (Sonobe and Tani 2009), we inverted soil moistureFig. 3 Flowchart of response surface methodology (RSM)
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(y) using the equation y = (r0 ? 19.78)/0.22 assuming

soil roughness is homogenous across the study area. The

distribution of soil moisture is shown in Fig. 4b. It is

consistent with the distribution of r0. Where r0 has a large

value (e.g. in the northern margin), soil moisture is high

(e.g.[70 %) and where r0 is low (e.g. in the central field),

soil moisture is low (e.g.\20 %).

3.2 Spatial variability of soil salinity determined

by EM38

Statistic analysis of the 768 ECa measurements shows that

ECa has a mean of 114.02 mS/m with skewness of

-0.7824 and kurtosis of -0.7641. Semivariance simula-

tion of ECa resulted in an optimal exponential model

(Fig. 5a) with a determination coefficient of 0.990. The

model has a nugget (C0) of 630, sill (C ? C0) of 5128 and

range (A) of 247.80 m. The relatively large nugget for ECa

data is most likely due to uneven distribution of soil

salinity caused by ridge and furrow irrigation.

Ordinary kriging of ECawith the exponential model using

ARCGIS 9.3 (ESRI Inc., 2012) was conducted to illustrate

the spatial distribution of soil salinity (Fig. 5b). Kriged ECa

map shows an obvious spatial variation across the field, with

large values ECa (i.e.[150 mS/m) in the right half of the

field and small values (i.e.\125 mS/m) in the left. Very

small ECa values (i.e.\100 mS/m) are identified in the

margins of thewhole study area. The distribution of ECamay

result from the local topography and/or the drainage ditches

near the field, long-term farming practice (e.g. ridge building

in the surroundings, irrigation and drainage for the rice).

Interestingly, the distribution of ECa shows somewhat sim-

ilarity with the distribution of soil moisture (Fig. 4b), espe-

cially for the extreme values located in the centre and the

northern margin.

3.3 RSM analysis of ECa and backscattering

coefficient

Based on the spatial distribution of soil moisture and

salinity delineated by radar imagery and EM38,

Fig. 4 a Backscattering coefficient (r0) derived from radar remotely

sensed imagery, and b spatial distribution of soil moisture inversed by

r0

Fig. 5 a Semivariogram of ECa with fitted exponential model, and

b spatial distribution of ECa produced by ordinary kriging
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respectively, RSM was used to determine an optimal set of

soil sampling locations. In the first step of the RSM pro-

cedure, 8 outliners with SD more than 4 SD were removed

(see Table 1). Figure 6 shows the initial candidate sites

determined by CCRSD. By applying CCRSD, ECa and r0

data which implied a second-order central composite

sampling design was highly effective in minimizing the

overall number of calibration sample sites. In the third step,

two ‘‘candidate’’ survey sites were selected for each

specific design level solely based on their statistical dis-

tance from the design level coordinates. Finally, a set of 12

sample sites were determined with the OptCri value of 0.85

and shown in Fig. 2b. Table 2 summarized CCRSD and

optimized design levels of the 12 sampling locations. The

optimization criterion of 0.85 indicates excellent unifor-

mity for the sampling design. Besides, it is worth noting

that 7 samples of the selected 12 points are located in the

margins of the study area, where sharp changes of r0

(Fig. 4a) and ECa (Fig. 5b) occur. It suggests that RSM-

based sampling is highly depending on the characteristics

of input dataset.

Without a priori information about the spatial variability

of various soil properties, random or regular interval

sampling should be applied to evaluate soil quality

(Halvorson et al. 1997). In this study, the rapid, low-cost

and easy-to-obtain ancillary data (i.e. radar imagery and

EM38 data) provide a priori spatial information about soil

moisture and salinity which are crucial to the soil quality in

the coastal regions.

3.4 Characterizing soil spatial variation using RSM

sampling strategy

Using RSM sampling strategy, the selected 12 soil sam-

plings were used for characterizing the spatial variations of

SOM, AN and AK in the study area. Meanwhile, the

42 grid soil samplings (Fig. 2a) were used as reference.

Table 3 shows some basic statistics analysis of SOM,

AN and AK for the 42 grid soil samples and the 12 RSM-

based samples. The mean values of topsoil SOM are almost

the same (15.12 g/kg), and mean values of soil AN (50.42

and 50.61 mg/kg) and AK (120.21 and 126.87 mg/kg) are

quite similar. Pearson correlation coefficients between soil

properties and ancillary data (i.e. ECa and r0) are also

shown in Table 3. It is worth noting that similar correlation

coefficients are identified for the two sampling strategies.

For both sampling plans, ECa is significantly correlated

with SOM and AN (P\ 0.01).

Fig. 6 Central composite response surface design CCRSD overlaid

onto transformed ECa (PC1) and r0 (PC2) by principal components

(PC) analysis

Table 2 Summary results from the RSM sampling design

Site # CCRSD design levels Optimized design levels

ECa (mS/m) r0 (dB) ECa (mS/m) r0 (dB)

101 0.64 0 0.72 -0.12

303 1.49 1.49 1.29 0.86

767 -1.49 -1.49 -1.42 -1.34

57 1.49 -1.49 1.51 -1.27

474 -1.49 1.49 -1.62 1.42

288 2.13 0 2.21 -0.15

753 -2.13 0 -2.44 -0.58

313 0 2.13 -0.21 1.54

670 0 -2.13 -0.07 -1.99

636 -0.64 0 -0.71 0.09

647 Support site 0.16 0.24

452 Support site -0.22 0.01

Table 1 Eight outliers removed ([4 SD) based on the standard

deviations (SD) from the mean

Site # Longitude (m) Latitude (m) ECa (mS/m) r0 (dB)

179 286,558.7672 3,340,469.019 111.30 -1.46

185 286,550.7585 3,340,470.284 104.70 -1.49

186 286,551.365 3,340,468.424 146.10 -1.49

371 286,514.9294 3,340,470.241 127.40 -1.72

448 286,485.2441 3,340,468.853 9.70 0.75

449 286,500.2821 3,340,470.399 9.90 -0.08

539 286,478.5933 3,340,468.913 4.60 -0.20

540 286,473.4582 3,340,468.219 21.70 -0.20
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Statistical differences between mean values of soil

properties at each sampling design are evaluated by stu-

dent’s t test with Tukey–Kramer means comparisons

(Table 4). The values listed are the actual absolute differ-

ences in the means minus the least significant difference

(i.e. abs-LSD). Two datasets with negative values are not

significantly different. This suggests the RSM-based sam-

pling can acquire similar spatial information of soil prop-

erties (i.e. SOM, AN and AK) compared with the high

density grid sampling plan.

In order to further understand the prediction efficiency

of two sampling plans, we compare the predicted soil

properties using digital soil mapping. Figure 7 shows the

spatial distribution of SOM, AN and AK by inverse dis-

tance weighted method using ARCGIS 9.3 (ESRI Inc.,

2012) based on the grid sampling (left) and the RSM

sampling (right). It is clear that the maps present quite

similar patterns of ‘high’ and ‘low’ values for each soil

property between two sampling strategies. Strong correla-

tions are found between the raster maps interpolated from

the RSM-based sampling and the grid soil sampling, with

spatial coefficients of 0.83, 0.87 and 0.76 for SOM, AN,

and AK, respectively.

One of the aims of precision agriculture is to determine

spatial variability of soil for precise fertilization. Herein,

the prediction precision and bias were calculated in

ARCGIS 9.3 (ESRI Inc., 2012) using the cross-validation

tool (see Table 5). In terms of prediction precision, grid

sampling produced a slightly larger RMSE for SOM

(1.87 g/kg) and AN (7.33 mg/kg) compared with RSM-

based sampling (1.33 g/kg and 6.46 mg/kg), respectively.

However, the prediction precision of AK was slightly

smaller for grid sampling (43.66 mg/kg) than RSM-based

sampling (47.83 mg/kg). In terms of prediction bias, grid

sampling performs better than RSM-based sampling for the

three soil properties.

In geostatistical terms, nugget value (C0) indicates

spatial heterogeneity induced by random factor, such as

experimental error. Sill variance (C ? C0) comprises any

nugget variance and the spatially correlated variance (C).

The finite distance at which some variograms reach their

sill is the range (a), i.e. the range of spatial dependence.

The parameters of the semivariograms for the soil variables

can be also found in Table 5. Compared with grid-based

sampling, smaller C0 (0.001, 0.10 and 19.00 for SOM, AN

and AK, respectively) and range (109.29, 109.12 and 50.06

for SOM, AN and AK, respectively) values for RSM

indicate the spatial heterogeneity of these soil maps pro-

duced by RSM is weaker. In addition, the soils maps

produced by RSM still show autocorrelation given the C0

to C values are relatively small (0.006, 0.002 and 0.026, for

SOM, AN and AK, respectively). Given these results, we

consider the RSM-based method as an acceptable method

given the smaller sampling size.

Table 3 Descriptive statistics

of soil organic matter (SOM,

g/kg), available nitrogen (AN,

mg/kg), and available potassium

(AK, mg/kg) for 42 grid

samplings and 12 RSM-

generated samplings, and

Pearson correlation coefficients

between soil properties and ECa

and backscattering coefficient

(r0)

Basic statistics 42 grid samplings 12 RSM-generated samplings

SOM (g/kg) AN (mg/kg) AK (mg/kg) SOM (g/kg) AN (mg/kg) AK (mg/kg)

Mean 15.12 50.42 120.21 15.12 50.61 126.87

Median 14.70 48.50 110.00 14.83 48.40 115.32

Min 10.6 30.40 73.00 13.41 39.67 92.41

Max 21.8 73.30 335.00 18.28 66.63 265.48

SD 2.18 9.24 43.67 1.46 7.34 46.44

Skewness 0.569 0.32 3.15 0.960 0.87 2.77

Kurtosis 1.038 -0.10 13.89 0.301 0.73 8.59

Pearson correlation coefficients between soil properties and ECa and r0

ECa -0.66** -0.73** -0.07 -0.60** -0.69** -0.33

r0 0.29 0.34* 0.13 0.28 0.29 0.47

* Significant differences in level of 005; ** Significant differences in level of 001

Table 4 Comparisons for the mean using the Tukey–Kramer HSD test for soil organic matter (SOM, g/kg), available nitrogen (AN, mg/kg), and

potassium (AK, mg/kg) based on 42 grid samplings and 12 RSM-based samplings

SOM AN AK

Mean Grid RSM Mean Grid RSM Mean Grid RSM

Grid 15.12 -0.09 -0.13 50.42 -3.88 -5.63 120.21 -19.39 -22.42

RSM 15.12 -0.16 50.61 -7.27 126.87 -36.27
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4 Conclusions

In a reclaimed coastal tideland field near the Hangzhou

Gulf, spatial variability of soil properties was studied using

response surface methodology (RSM) sampling, with

remotely sensed radar imagery and proximally sensed

EM38 data. Radar imagery and EM38 data have been used

to indicate the spatial distribution of topsoil moisture and

salinity. Based on the correlations between the soil

properties and ancillary data, RSM was employed to

determine an optimal set of 12 soil samples, which were

further used to delineate the spatial distribution of SOM,

AN and AK using inverse distance weighted interpolated

method. The maps produced by RSM-based sampling

achieved similar results to the prediction generated by a

conventional grid sampling using 42 samples.

Soil moisture and salinity are two key factors that affect

the soil quality and crop choice in the reclaimed land and it

Fig. 7 Inverse distance weighted interpolated map of a soil organic matter (SOM), b available nitrogen (AN), and c available potassium (AK)

based on 42 grid samplings (left) and 12 RSM-generated samplings (right)
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is of great importance to characterize their spatial vari-

ability. As the acquisition of remotely sensed optical image

is often hampered by heavy cloud cover and adverse

weather in subtropical coastal zones of China, the use of

radar imagery will become promising to monitor soil

moisture. In combination of EM38 survey, soil salinity

information can be added to the database rapidly and cost-

effectively and used to study the relationship between soil

moisture and salinity of the reclaimed saline tidelands.

RSM-based soil sampling has shown improved effi-

ciency compared with conventional grid sampling, which

are commonly used to minimize the estimation variance of

linear statistical models in the non-spatial setting and can

produce continuously variable maps of the ground factor of

interest. On the other hand, this approach lends itself nat-

urally to the analysis of proximal sensor data. Indeed, many

types of ground- airborne- and satellite-based remotely

sensed data are often collected specifically because one

expects them to correlate strongly with some property of

interest (e.g. soil type, soil salinity, etc.) (Lesch et al.

1995a, b, 2000; Lesch 2005). In this study, RSM-based soil

sampling improved efficiency compared with grid sam-

pling, firstly using a combination of remote sensed radar

imagery and proximally sensed EM38 data. In the field

application, financial budget and target resolution should

be taken into consideration when determining the number

of samples. However, it was noticed that RSM tended to be

‘‘attracted’’ to some points with more extreme values, such

as bare soil (skips and missing plants) as well as field

edges. Johnson et al. (2005) also reported this tendency of

RSM to choose extreme ECa values. In view of this, the

process of determination of the optimized sampling points

needs to be improved and optimized as some of the sam-

pling sites are located close to the field margins, which

often increases uncertainty. Besides, it is worth under-

standing if RSM-based sampling can be applied to a large

scale for natural resources management.
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