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Abstract Accurate and precise estimation of return levels

is often a key goal of any extreme value analysis. For

example, in the UK the British Standards Institution (BSI)

incorporate estimates of ‘once-in-50-year wind gust

speeds’—or 50-year return levels—into their design codes

for new structures; similarly, the Dutch Delta Commission

use estimates of the 10,000-year return level for sea-surge

to aid the construction of flood defence systems. In this

paper, we briefly highlight the shortcomings of standard

methods for estimating return levels, including the com-

monly-adopted block maxima and peaks over thresholds

approach, before presenting an estimation framework

which we show can substantially increase the precision of

return level estimates. Our work allows explicit quantifi-

cation of seasonal effects, as well as exploiting recent

developments in the estimation of the extremal index for

handling extremal clustering. From frequentist ideas, we

turn to the Bayesian paradigm as a natural approach for

building complex hierarchical or spatial models for

extremes. Through simulations we show that the return

level posterior mean does not have an exceedance proba-

bility in line with the intended encounter risk; we also

argue that the Bayesian posterior predictive value gives the

most satisfactory representation of a return level for use in

practice, accounting for uncertainty in parameter estima-

tion and future observations. Thus, where feasible, we

propose a Bayesian estimation strategy for optimal return

level inference.

Keywords Bayesian inference � Block maxima �
Extremal index � Extreme value theory � Peaks over

thresholds � Return levels

1 Background

1.1 Practical motivation

The relatively recent increase in frequency, and severity, of

destructive stormy weather in the UK has stirred renewed

interest in the analysis of environmental extremes, practi-

tioners often being motivated by the estimation of the r-

year return level—for example, the sea-surge we might

expect to see over-topped once, on average, every r years.

Structural failure of a sea wall is possible if extreme surges

are observed; estimates of the r-year return level are used

to inform the design of such structures, and so the accuracy

and precision of such estimates are of paramount impor-

tance. Recent work in Fawcett and Walshaw (2007, 2012)

and Eastoe and Tawn (2012) revealed estimation bias for

model parameters, as well as return levels, within a stan-

dard peaks over thresholds (POT) framework, in some

cases resulting in significant under-estimation of return

levels.

Estimation precision is often hampered by a lack of data

on extremes; as Davison and Smith (1990) demonstrate,

confidence intervals for return level estimates can be so

wide that they become practically unusable. Our aim is to

exploit fully any quantifiable information on temporal

dependence and knowledge of seasonal variability to

maximise data usage and estimation precision, whilst

avoiding altogether the aforementioned problems associ-

ated with POT analyses. Working within the Bayesian

framework gives the potential to facilitate these aims still
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further, enabling any extremal analysis to be augmented

through the incorporation of prior information. Estimates

of the posterior predictive return level can also give the

practitioner a single design parameter estimate within

which uncertainty in model estimation and future obser-

vations have been properly acknowledged.

1.2 Statistical modelling

Key results in extreme value theory, discussed in detail in

Coles (2001), Chap. 3, point to the generalised extreme

value (GEV) distribution as a model for block maxima of

independent observations, with distribution function (d.f.)

GðyÞ ¼ exp � 1 þ nðy� lÞ=1ð Þ�1=n
h i

; n 6¼ 0

exp � exp �ðy� lÞ=1ð Þ½ � n ¼ 0;

(
ð1Þ

defined on fy : 1 þ nðy� lÞ=1[ 0g, where �1\l\1,

1[ 0 and �1\n\1 are parameters of location, scale

and shape respectively; the case n ¼ 0 is taken to be the

limit as n ! 0. If block maxima have limiting distribution

as given by (1), then an alternative characterisation of

extremes, in terms of magnitudes of excess over some high

threshold u, leads to the generalised Pareto distribution

(GPD) with d.f.

HðyÞ ¼ 1 � 1 þ ny=rð Þ�1=n; n 6¼ 0

1 � exp �y=r½ � n ¼ 0;

�
ð2Þ

defined on y : y[ 0 and ð1 þ ny=rÞ[ 0f g. The parameters

of the GPD are uniquely determined by those in the GEV:

specifically, the GPD scale r ¼ 1þ nðu� lÞ. Results in

Leadbetter et al. (1983) show that, in the presence of short-

term dependence, distributions (1) and (2) will be powered

by the extremal index h 2 ð0; 1Þ, a key parameter quanti-

fying this dependence1: as h ! 0 we see increasing

dependence in the extremes of the process.

The r-year return level zr can then be obtained by

inversion of GhðzrÞ or HhðzrÞ. For example, in the case of

threshold excesses, on equating to 1 � r�1 this gives

zr ¼
uþ rn�1 k�1

u wr

� ��n�1
h i

n 6¼ 0

u� r log k�1
u wr

� �
n ¼ 0;

(
ð3Þ

where wr ¼ 1 � 1 � ðrnyÞ�1
h i1=h

, ku is the rate of threshold

excess andny is the (average) number of observations per year.

An estimate of zr, say ẑr, is usually obtained by replacingr and

n in Eq. (3) with their maximum likelihood estimates r̂ and n̂.

A typical threshold-based analysis circumvents the estimation

of h by fitting the GPD to a set of independent cluster peak

excesses; a filtering scheme extracts the single largest

observation within a cluster of excesses of u, these clusters

terminating once a run of j consecutive sub-threshold

observations is made. Thus, it is assumed that the extremes

being used are independent, giving h � 1 in (3) and a POT

analysis, as referred to Sect. 1.1.

To date, no general theory for non-stationary extremes

has been established. As Coles (2001), Chap. 6 discusses,

ignoring such non-stationarity can lead to bias in estimates

of model parameters. In practice, pragmatic solutions have

been proposed based on the type of non-stationarity

observed. For example, trend can be incorporated through

linear modelling of the GEV location parameter. More

generally, the extreme value parameters can be written in

the form hðXTbÞ where h is a specified function, b is a

vector of parameters and X is a model vector. Smoothly

varying seasonal model parameters, or a simpler seasonal

piecewise approach, can also be used to account for sea-

sonal variability (see Sect. 2.2, and Coles (2001), Chap. 6

for more examples; more generally, see Jonathan et al.

(2014) for a comprehensive review). In Sect. 3.3 we review

recent developments for modelling dependence between

extremes which occurs spatially.

1.3 Illustrative applications

Figure 1 (left) represents a series of 3-hourly sea-surges

collected at Newlyn, UK (1999–2001 inclusive), and

(right) a section of a series of hourly gust wind speed

maxima collected at Bradfield, a high altitude location in

the UK (1995–2004 inclusive). These plots reveal clear

seasonal variability in the wind climate at Bradfield, as

well as extremal serial correlation in both datasets. Table 1

(‘‘Block maxima’’) shows maximum likelihood estimates

for three return levels when fitting to the set of 10 annual

maximum wind speeds and the set of 36 monthly sea-surge

maxima (we have just 3 years of sea-surge data so were

required to use a block size smaller than the calendar year).

Also shown (‘‘Threshold excesses’’) are the same estimates

based on a POT analysis with j ¼ 10 h and j ¼ 30 h for

the wind speeds and sea-surges respectively [j ¼ 30 to

allow for wave propagation time; see Coles and Tawn

(1991)]. Mean excess plots [see Coles (2001), Chap. 4]

were used to identify suitably high thresholds. To avoid

issues of seasonal variability in the wind speed data,

attention was restricted to extremes in the month of January

wherein the largest wind speeds occur. In both analyses,

the delta method [see, for example, Coles (2001), Chap. 2]

has been used to obtain standard errors for ẑr, although,

owing to the severe asymmetry of the likelihood surface for

return levels, confidence intervals have been obtained after

having profiled the likelihood. The gain in precision by

using a POT approach is obvious in the analysis of wind

speeds. Of course, return level estimates can only be

1 Provided their ‘‘DðunÞ condition’’ holds; informally, this condition

ensures that, for large enough lags, any dependence is sufficiently

negligible so as to have no effect on the limit laws for extremes.
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trusted if we have confidence in the fitted model from

which we are extrapolating. The standard graphical diag-

nostics described in Coles (2001), including probability

plots and quantile plots (not shown here), indicate suitable

fits for both the block maxima and threshold excess anal-

yses summarised in Table 1. In fact, further investigations

revealed suitable fits of the GEV / GPD to block maxima /

threshold excesses, respectively, across a range of block

lengths / cluster termination intervals.

However, Fig. 2 shows the instability of return level

estimates for the sea-surge data across different choices of

block length / cluster termination interval. Most striking

from these plots is the instability of the estimated 95 %

confidence upper bounds: in block maxima analyses this

increases by almost 17 m for ẑ1000 when increasing the

block size from 1 to 2 months; in POT, similar changes are

observed when j increases from 10 observations to 26

observations. When a block maxima analysis and a POT

analysis both indicate suitable fits, we might then appeal to

estimation precision as a reason for adopting the latter.

However, sensitivity of estimates to the choice of declus-

tering interval j [and to some degree the threshold u itself;

see Scarrott and MacDonald (2012)], as illustrated here,

should be noted.
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Fig. 1 Left-hand-side Newlyn

sea-surge data; right-hand-side

Bradfield wind speed data. Top

time series plots; bottom plots of

time series against series at lag

1, with thresholds. The green

lines represent high thresholds

used for identifying extremes

Table 1 Maximum likelihood

estimates of return levels
ẑ10 ẑ50 ẑ1000

Bradfield wind speeds (knots) Block maxima 94.9 (4.2) 102.5 (9.5) 113.2 (26.0)

(88.8, 123.8) (94.4, 223.7) (98.6, 716.5)

Threshold excesses 93.7 (4.3) 100.6 (6.9) 107.3 (12.2)

(87.5, 115.6) (93.7, 151.3) (98.3, 251.3)

Newlyn sea surges (metres) Block maxima 0.61 (0.05) 0.79 (0.11) 1.06 (0.28)

(0.53, 0.76) (0.66, 1.24) (0.80, 2.83)

Threshold excesses 0.87 (0.11) 0.92 (0.12) 0.97 (0.20)

(0.77, 1.57) (0.80, 2.09) (0.82, 3.38)

In the block maxima analyses, blocks of 1 year / 1 month were used for the wind speed / sea-surges, giving

n ¼ 10 / n ¼ 36 extremes; in the analyses of threshold excesses, cluster peaks were identified using

ðu ¼ 59:8knots;j ¼ 10 hÞ / ðu ¼ 0:3 m; j ¼ 30 hÞ for the wind speed / sea-surges, giving n ¼ 33 / n ¼ 39.

Standard errors are shown in parentheses, with 95 % confidence intervals in italics
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1.4 Structure of this paper

The rest of this paper will be structured as follows. In

Sect. 2 we investigate methods for increasing the precision

of return level estimates by considering approaches for

pressing all extremes into use. In particular, we consider

threshold-based alternatives to POT via explicit modelling

or quantification of extremal dependence, as well as using

information on extremes from all seasons. Some of our

recommendations here are supported with simulations. In

Sect. 3 we then consider the Bayesian framework for return

level inference. Again, the aim is to maximise data usage

by properly accounting for dependence and seasonal vari-

ation. We also demonstrate the natural extension to pre-

diction here, and present the results of a simulation study

suggesting the superiority of the posterior predictive return

level over a standard posterior summary.

2 Increasing the precision of estimated return
levels

In this section we review some methods that have been

proposed for increasing the precision of estimated return

levels by exploiting, rather than removing (as in a POT

analysis), any structure in the data owing to temporal

dependence. In the case of the wind speed data, we also

consider making use of extremes across all seasons—rather

than simply the season within which the largest extremes

are observed.

2.1 Serial correlation

2.1.1 Markov chain models

The POT approach for excesses over some high threshold

u, as demonstrated in Sect. 1.3, has become standard

practice in many areas of application. However, some

authors (e.g. Smith et al. 1997; Fawcett and Walshaw

2006a) have explored the possibility of explicitly mod-

elling within-cluster behaviour—an interesting exercise in

its own right, in terms of the clustering characteristics of

environmental series—but an approach which can allow

the inclusion of all threshold excesses in the analysis. For

example, based on the evidence given by plots such as

those in the bottom row of Fig. 1, or perhaps inspection of

the partial autocorrelation function, we might assume that

our series X1;X2; . . . forms a stationary first-order Markov

chain, the stochastic properties of which being completely

determined by the joint distribution of consecutive pairs.

Given a model f ðxi; xiþ1;wÞ with parameter vector w, it

follows that the likelihood for w is:

Fig. 2 Maximum likelihood

estimates (points) with

associated 95 % profile log-

likelihood confidence intervals

(lines) for the 10-, 50- and

1000-year return levels for the

Newlyn sea-surges. Top row

results from an analysis of block

maxima with block length s;

bottom row results from a POT

analysis with declustering

interval j
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LðwÞ ¼
Yn�1

i¼1

f ðxi; xiþ1;wÞ=
Yn�1

i¼2

f ðxi;wÞ: ð4Þ

To model threshold excesses, the denominator in Eq. (4) is

replaced by the corresponding univariate densities based on

a limiting model for extremes, any marginal non-station-

arity being handled via modelling of the parameters within

this model (as discussed in Sect. 1.2). Bivariate extreme

value theory is invoked for contributions to the numerator,

of which we give a brief summary now for threshold

excesses.

Suppose ðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞ are independent

realisations of a random vector (X, Y) with joint distribu-

tion function F. For suitably high ux and uy, the marginals

for X � ux and Y � uy both (approximately) take the form

given by (2), with respective parameter sets ðrx; nxÞ and

ðry; nyÞ, and with associated rates of threshold excess kux
and kuy , respectively. Applying

~X ¼ � log 1 � kux 1 þ nx
X � ux

rx

� �� ��1=nx
( ) !�1

to X (and similarly for Y), the variable ð ~X; ~YÞ has distri-

bution function ~F whose margins are approximately stan-

dard Fréchet for X[ ux and Y [ uy (see Coles 2001, Chap.

8). It can be shown (Pickands 1981) that the joint distri-

bution function G(x, y) for a bivariate extreme value

distribution with standard Fréchet margins has the

representation

Gðx; yÞ ¼ exp
	
� Vðx; yÞ



; x; y[ 0; where ð5Þ

Vðx; yÞ ¼ 2

Z 1

0

max
�
q=x; ð1 � qÞ=y

�
dWðqÞ; ð6Þ

and W is a distribution function on [0, 1] satisfying

Z 1

0

qdWðqÞ ¼ 1

2
: ð7Þ

A popular choice of parametric families for G is the logistic

family, with Vðx; yÞ ¼ ðx�1=a þ y�1=aÞa; here, indepen-

dence and complete dependence are achieved when a ¼ 1

and a ! 0 respectively. See the appendix of Fawcett and

Walshaw (2012) for other choices for G. In a serial context,

we would replace x / y with xi / xiþ1 respectively. Then

contributions to the numerator in (4) can be obtained by

differentiation of (5) with respect to both xi and xiþ1 if

ðxi; xiþ1Þ[ u, with appropriate censoring if one of either xi
or xiþ1 lies sub-threshold. If ðxi; xiþ1Þ� u then the contri-

bution to the numerator in Eq. (4) is given by the distri-

bution function evaluated at the threshold. The marginal

transformation to standard Fréchet and maximisation of the

Markov chain likelihood can be performed in a single

sweep, resulting in (4) being the full likelihood for both

marginal and dependence parameters. Return levels can

then be estimated on substitution of the estimated marginal

parameters into Eq. (3); an estimate of the extremal index

can be obtained from the estimated dependence parame-

ter(s) from the bivariate extreme value model used—via

simulation [as in Smith (1992) or Fawcett (2005)], or via a

polynomial approximation for h (Fawcett and Walshaw

2012).

Parametric modelling of the dependence structure

requires an appropriate choice of model, as well as a

suitable choice of model order d. Coles and Tawn (1991)

demonstrate some diagnostic procedures for assessing the

suitability of a first-order dependence structure (d ¼ 1)

relative to higher-order dependencies, but interpretation of

‘simplex plots’, for example, can be subjective. For d[ 1

evaluation of the likelihood also becomes computationally

expensive very quickly. Comparison of non-nested

dependence models can require ad hoc checks of model

goodness-of-fit, the interpretation of which can be subjec-

tive (e.g. Smith et al. 1997). More crucially, perhaps, is the

assumption of asymptotic dependence when using (5). Of

course, standard time series models with sub-asymptotic

dependence (e.g. an AR(1) model) could be used instead,

but graphical tools to assess the nature of the dependence

(e.g. the �v dependence measure; Coles et al. 1999) can be

difficult to interpret.

2.1.2 A non-parametric approach, with simulation study

Over the years there have been many publications on

estimating the extremal index—for example, Leadbetter

and Rootzén (1988); Smith (1992); Smith and Weissman

(1994); Ancona-Navarrete and Tawn (2000); Ferro and

Segers (2003); Süveges (2007); Fawcett and Walshaw

(2008), Fawcett and Walshaw (2012). Most work has

focused on exploration of within cluster behaviour and the

the clustering characteristics of extremes. However, our

aim within the remit of this paper would be to use the

extremal index to aid, and improve, return level estimation:

to increase precision by using information on all extremes,

whilst at the same time avoiding altogether the issue of

cluster identification necessary in POT analyses. In fact,

this is explored in Fawcett and Walshaw (2012), and

simulations here reveal some promising results when

specific estimators for h are considered.

Appendix 1 summarises some common methods of

extremal index estimation. Fawcett and Walshaw (2012)

show that quantifying the degree of extremal dependence

through the intervals estimator of Ferro and Segers (2003),

and incorporating this estimate of h in the estimation of

return levels via Eq. (3), can more than double the esti-

mation precision of return levels relative to estimates

obtained from a standard POT analysis. However, Fawcett
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and Walshaw (2012) fail to assess the suitability of the

other intervals estimators given in Appendix 1. We now

present some results of a simulation study to assess the

performance of various extremal index estimators and their

ability to aid return level estimation; an extension of that in

Fawcett and Walshaw (2012) but now including all of the

estimators summarised in the Appendix. We also allow for

processes other than those which assume asymptotic

dependence. These estimators assume stationarity, and so

any seasonal variability, for example, needs to be dealt

with prior to estimation.

We simulate 1000 chains, each of length 10, 000, from

several processes and with a range of serial correlations.

Specifically, we simulate first-order extreme value Markov

chains, as discussed in Sect. 2.1.1, using the (symmetric)

logistic / negative logistic models, as well as the (asym-

metric) bilogistic model; we simulate max-autoregressive

processes, defined by

Xi ¼ max
	
ð1 � hÞXi�1; hZi



; i ¼ 1; 2; . . .;

where X0 and Zi are standard Fréchet distributed (see Sect.

2.1.1); we also simulate Gaussian AR(1) processes, defined

by

Xi ¼ wXi�1 þ ei; i ¼ 1; 2; . . .;

where e1; e2; . . . are IID Normal Nð0; 1 � w2Þ random

variables with X0 being standard Normal. Smith (1992)

discusses how the extremal index for first order extreme

value Markov chains can be obtained via simulation;

however, Fawcett and Walshaw (2012) exploit the deter-

ministic relationship between h and the parameter(s) in the

bivariate extreme value model used to obtain simple

polynomial forms here. The AR(1) process exhibits serial

dependence but limiting extremal independence, and so

here h ¼ 1.

After marginal transformation of our chains to

GPDðr ¼ 1; nÞ, maximum likelihood is used to fit the GPD

to excesses above a threshold u, set at the 95 % marginal

quantile. Due to the threshold stability property of the GPD

(see Coles (2001), Chap. 4), these excesses will be gener-

alised Pareto with scale r� ¼ nuþ 1 and shape n, and so at

each replication j ¼ 1; . . .; 1000 we will obtain ðk̂u; r̂�; n̂ÞðjÞ,
k̂u being the observed rate of threshold excess. Using the

methods in Appendix 1, at each replication jwe also estimate

the extremal index, giving ĥðjÞ; with the estimated marginal

parameters, an estimate of the r-year return level ẑ
ðjÞ
r can then

be obtained via Eq. (3) (we use ny ¼ 365:25 � ð24=3Þ ¼
2922 in keeping the Newlyn sea-surge data). At each repli-

cation, the GPD is also fitted to the set of cluster peak

excesses, extracted using runs declustering with various

values of j—in doing so, we can compare the standard POT

approach, wherein h � 1, to the method which makes use of

all threshold excesses.

Tables 2 and 3 summarise results from the simulation

study for extremal index estimators and return level esti-

mates, respectively, for n ¼ �0:4 and certain levels of

extremal dependence (other values for n, and other levels of

extremal dependence, were also used—with similar findings

obtained). Table 2 shows that for all simulated processes,

there is a larger discrepancy between the sampling distri-

bution mean and the true value for h when using the cluster

size methods than when using any of the intervals or maxima

methods, and that the cluster size methods themselves are

highly sensitive to the choice of cluster separation interval j.

The cluster size estimators also consistently have a higher

root mean squared error (RMSE) than all the other estimators

(although not shown here, similar findings were obtained for

the blocks estimator of h). Although the maxima methods

require the determination of a suitable block size s, using

s ¼
ffiffiffi
n

p
seems to have produced reasonable estimates for the

extreme value Markov chain and the max AR process.

However, for these two processes the Ferro and Segers

(2003) estimator and the K-gaps estimator of Süveges and

Davison (2010) are superior when considering their esti-

mated bias and RMSE; for both processes, the mean of the

sampling distribution using theK-gaps estimator is closest to

the true value for h and the RMSE is smallest—although

optimal values for the tuning parameter K have been used,

following investigations in Süveges and Davison (2010), and

this might be difficult to do in practice. There appears to be

much larger bias in estimates of the extremal index for the

AR(1) process than for the other two processes studied.

However, as discussed in Ancona-Navarrete and Tawn

(2000), the cluster size and intervals estimators are actually

estimating hðuÞ rather than h, a threshold-based extremal

index provided by a ‘penultimate’ expression for h. In fact,

Ancona-Navarrete and Tawn (2000) find that, for a marginal

95 % threshold (as used here), hðuÞ � 0:711 for an AR(1)

process (hðuÞ � h for the other two processes used here). For

a comparison of the performance of these estimators in the

Bayesian framework, see Fawcett (2005).

Table 3 shows that return level estimates are less biased

when using all threshold excesses, relative to a standard

POT approach, regardless of the extremal index estimator

used to quantify extremal dependence—and increasingly

so as the return period gets larger. For all but the 10-year

return level, the RMSE is larger in the standard POT

approach. For analyses using all threshold excesses, results

are shown for the main contenders in terms of extremal

index estimation (from Table 2), and there is little to dis-

tinguish between them—although return level estimates

obtained using the K-gaps estimator have smaller bias and
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RMSE for all return periods considered. However, given

the need to choose an appropriate block size s for the

maxima methods, and the tuning parameter K in the K-gaps

method—both of which could be difficult to do in prac-

tice—we recommend using the intervals method of Ferro

and Segers (2003) which provides a completely automatic

solution to extremal index estimation. The results shown in

Table 3 are for an extreme value Markov chain, but similar

findings were also observed for the other two processes

studied, and for different levels of extremal dependence.

2.2 Seasonal variability

The wind speed data observed at Bradfield exhibit clear

seasonal variability, with the strongest gusts being

observed in the winter months—particularly January

(hence the restriction to the month of January in the anal-

ysis of Sect. 1.3). Experience suggests that, in the UK at

least, assuming the calendar month as our seasonal unit

satisfactorily reflects the changing nature of the wind cli-

mate, whilst resulting in approximate homogeneity within

seasons. A modelling approach that identifies all gusts

which are large given the time of year as extreme has the

potential to increase estimation precision, relative to an

approach using only data from a single season. Walshaw

(1994) justifies using wind speed extremes from summer

months in the UK: he points out that the same mechanism

(an alternating sequence of anticyclones and depressions)

is responsible for large wind speeds throughout the year—it

is just the severity of these systems which gives rise to

variations month-by-month. Such an argument supports the

use of a seasonal piecewise approach for handling such

variation, whereby a different model is fitted to extremes in

each month. In the context of threshold models, we could

follow the analysis of January wind speeds demonstrated in

Sect. 1, but repeat the entire estimation procedure for

extremes in all other months. Then, assuming indepen-

dence between months, the monthly-varying GPD param-

eter estimates can be recombined when obtaining return

level estimates by solving the following equation for

x ¼ zr:

Y12

m¼1

HmðxÞnmhm ¼ 1 � r�1; ð8Þ

where Hm is the GPD distribution function in month m with

parameter set ðkum ; rm; nmÞ, and hm / nm are the extremal

index / number of observations in month m.

This monthly-varying GPD approach can be adapted to

suit seasonal units of any size (depending on the data being

analysed), although other methods for handling seasonal

variability have been proposed, including the use of Fourier

forms to allow the model parameters to vary continuously

through time (as demonstrated in Coles 2001). However,

most of these methods are computationally burdensome

relative to the seasonal piecewise approach and, as Wal-

shaw (1991) illustrates, can add little to return level

inference in terms of accuracy and precision. Fawcett and

Walshaw (2006b) also investigate the use of a conditional

autoregressive structure to allow dependence between wind

speed extremes in neighbouring months at Bradfield; again,

they find no improvement in return level estimation by

doing so. Work in Fawcett (2005) suggests significant

differences in the GPD scale and shape for wind speed

extremes in different months at Bradfield; often, to reduce

over-fitting and where it is deemed appropriate to do so, a

constant shape parameter is assumed.

2.3 Other forms of non-stationarity

As discussed so far, both our sea-surge and wind speed

extremes are serially dependent, with the wind speed data

also exhibiting seasonal variability. Across the time-frames

studied, neither seem to display any temporal trend,

Table 2 Sampling distribution means, and root mean squared errors

(RMSE), for various estimators of the extremal index h, and for three

different types of process

Process Estimation method Mean RMSE

EVMC

ða ¼ 0:5Þ
h ¼ 0:328

Runs j ¼ 10 0.280 0.054

j ¼ 30 0.197 0.132

Intervals Ferro and Segers 0.340 0.012

Süveges: MLE 0.411 0.088

Süveges: IWLS 0.353 0.060

K-gaps 0.324 0.004

Maxima

s ¼
ffiffiffi
n

p
ð Þ

Gomes 0.344 0.049

Northrop 0.353 0.042

Max AR

h ¼ 0:5

Runs j ¼ 10 0.454 0.072

j ¼ 30 0.402 0.140

Intervals Ferro and Segers 0.501 0.056

Süveges: MLE 0.513 0.068

Süveges: IWLS 0.508 0.062

K-gaps 0.501 0.009

Maxima

s ¼
ffiffiffi
n

p
ð Þ

Gomes 0.518 0.075

Northrop 0.507 0.070

AR(1)

ð/ ¼ 0:5Þ
h ¼ 1

Runs j ¼ 10 0.503 0.498

j ¼ 30 0.234 0.766

Intervals Ferro and Segers 0.745 0.260

Süveges: MLE 0.764 0.237

Süveges: IWLS 0.782 0.241

K-gaps 0.781 0.219

Maxima

s ¼
ffiffiffi
n

p
ð Þ

Gomes 0.849 0.170

Northrop 0.814 0.194
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although in many environmental series this departure from

stationarity is an issue. A simple approach here could be to

allow a linear / non-linear dependence of the extremal

model parameter(s) on a time index. As discussed in

Sect. 1.2, a dependence on other covariates can be incor-

porated in a similar fashion. Generally, pragmatic approa-

ches have been developed to deal with the specific form of

non-stationarity observed. For example, Chavez-Demoulin

and Davison (2005) use smooth non-stationary general

additive models for extremes, in which spline smoothers

are incorporated into the GPD; Fawcett (2005) and Eastoe

(2009) demonstrate a data pre-processing approach for

dealing with seasonality and trend; Atyeo and Walshaw

(2012) account for spatial dependence and temporal trend

in a region-based hierarchical model for UK rainfall

extremes; Jonathan and Ewans (2011) account for depen-

dence between marginal extremes of significant wave

height and wave direction / season; Coles and Walshaw

(1994) propose a directional model for extreme wind

speeds in the UK. For a more comprehensive review, see

Jonathan et al. (2014).

2.4 Application to sea-surge and wind speed

extremes

We now demonstrate the methods outlined in Sects. 2.1

and 2.2 by application to the Newlyn sea-surges and

Bradfield wind speeds. We assume stationarity in the sea-

surge data, but deal with seasonal variability in the wind

speed extremes observed at Bradfield by adopting the

seasonal piecewise approach as discussed in Sect. 2.2.

Considering the Markov chain model approach outlined

in Sect. 2.1.1, Fawcett and Walshaw (2006a) provide a

detailed investigation of the suitability of a first-order

extreme value Markov assumption for the monthly-varying

wind extremes. Plots of the v and �v dependence measures

(see, for example, Coles 2001, Chap. 8) suggest asymptotic

dependence, providing some justification for using models

from bivariate / multivariate extreme value theory for the

temporal evolution of the process. Using a likelihood ratio

test reveals that the bilogistic model, allowing for asym-

metry in the dependence structure, gives no significant

improvement over the simpler (symmetric) logistic model

(see Sect. 2.1.1) when assuming first-order dependence

only; although further graphical diagnostics suggest a

second-order dependence assumption might be more suit-

able, Fawcett and Walshaw (2006a) reveal that inferences

for return levels barely change when the likelihood in (4) is

extended to allow for longer-range dependencies. The

estimated value of the logistic dependence parameter in

each month m, am, can then be used to find the corre-

sponding estimate of the extremal index hm via the cubic

approximation derived in Fawcett and Walshaw (2012):

h � 0:013 � 0:092aþ 1:833a2 � 0:756a3: ð9Þ

Table 3 Estimated bias and root mean squared error (RMSE) of return level estimates ẑr for three return periods

Simulated process: EVMC (a ¼ 0:5) Estimated bias RMSE

POT, using j ¼ 10 r ¼ 10 –0.040 0.060

r ¼ 50 –0.054 0.072

r ¼ 1000 –0.078 0.079

All excesses, using various

methods for estimating

the extremal index

Intervals (Ferro and Segers) r ¼ 10 –0.032 0.049

r ¼ 50 –0.031 0.061

r ¼ 1000 –0.041 0.070

Intervals (Süveges: IWLS) r ¼ 10 –0.032 0.060

r ¼ 50 –0.043 0.060

r ¼ 1000 –0.041 0.071

Intervals (K-gaps) r ¼ 10 –0.020 0.041

r ¼ 50 –0.031 0.052

r ¼ 1000 –0.032 0.059

Maxima (Gomes) r ¼ 10 –0.031 0.049

r ¼ 50 –0.032 0.062

r ¼ 1000 –0.043 0.073

Maxima (Northrop) r ¼ 10 –0.032 0.054

r ¼ 50 –0.032 0.060

r ¼ 1000 –0.042 0.070

Results are shown for (i) a standard POT approach to estimation, and (ii) the approach using all threshold excesses, accounting for extremal

dependence through various methods of extremal index estimation. Here, the simulated chain was first-order extreme value Markov, with logistic

dependence structure and a ¼ 0:5
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Then, with the monthly-varying marginal GPD parameter

estimates, these monthly-varying estimates of the extremal

index can be used to estimate return levels on solution of

Eq. (8) for x ¼ zr. Estimates of the 10-, 50- and 1000-year

return levels, with associated standard errors, are shown in

Table 4. Standard errors for ĥm (not shown here) have been

obtained via the delta method, as have the standard errors

for the estimated return levels; we have assumed that all

covariances between dependence and marginal parameters

are zero. Exactly the same procedure has been used to fit an

appropriate Markov chain model to the Newlyn sea-surge

extremes, but without the added complexity of seasonally-

varying marginal and dependence parameters. Although a

first-order dependence structure once again seemed ade-

quate, the bilogistic model showed significant improve-

ment over the logistic model for the sea-surge extremes;

the polynomial approximation of the extremal index,

derived in Fawcett and Walshaw (2012) as a function of the

dependence parameters in the bilogistic model, was used to

estimate the extremal index. Once again return level esti-

mates, with standard errors in parentheses, are shown in

Table 4.

Also shown in Table 4 are estimated return levels from

analyses in which no parametric form for the dependence

structure has been assumed; Ferro and Segers’ intervals

estimator, and the IWLS estimator of Süveges, have been

used to estimate the extremal index, being our recom-

mendations from the simulation study of Sect. 2.1.2 (note

that both assume stationarity, which has been accounted for

here in the wind speeds analysis). A block bootstrap pro-

cedure has been used to obtain the standard errors for these

estimates [see Fawcett and Walshaw (2012) for full

details]. For information, and for comparison with the

methods making use of all threshold excesses, we have also

reported return level estimates obtained under a standard

POT analysis. For the sea-surge data, these are exactly the

estimates given earlier in Table 1; for the Bradfield data,

the POT estimates shown in Table 4 are those obtained

from a seasonal piecewise approach for dealing with

monthly variations in extreme wind speeds. Here, we have

made use of reclustered excess plots (Walshaw 1994) to

simultaneously identify monthly varying thresholds and

cluster separation intervals ðum; jmÞ;m ¼ 1; . . .; 12.

The advantage of making use of all threshold excesses is

obvious when we compare the standard errors of the esti-

mated return levels, these being considerably smaller than

those obtained from the POT analyses. In fact, we would

advise the use of the non-parametric approach in practice,

as this does not require the exploratory analyses of the

dependence structure that the Markov chain models

require. Although the standard errors shown in Table 4 are

useful for highlighting the gain in precision when using all

threshold excesses, as discussed throughout Sect. 2 we

would probably rather not use these standard errors to

construct symmetric confidence intervals. Instead, we rec-

ommend using a block bootstrap procedure, as outlined

fully in Fawcett and Walshaw (2012), Sect. 4.3. Doing so,

we construct B bootstrap replications of our process,

yielding a collection of estimates fzð1Þr ; . . .; z
ðBÞ
r g, from

which we can obtain bias-corrected, accelerated (BCa)

confidence intervals as proposed in Efron (1987). Fawcett

and Walshaw (2012) show that such intervals give esti-

mated coverage probabilities closer to the intended cov-

erages than do the simpler percentile intervals.

Implementing such a bootstrap scheme for the Bradfield

wind speeds and Newlyn sea-surges gives confidence

intervals for return levels that are appreciably narrower

than those shown in Table 1; for example, the 95 % profile-

likelihood confidence interval for the 50-year sea-surge at

Newlyn, obtained via the standard POT approach with

j ¼ 30 h, is (0.80, 2.09) m (see Table 1); the correspond-

ing 95 % BCa interval, using all threshold excesses and

Ferro and Segers’ intervals estimator for h, is (0.71, 1.02)

m. Similar comparisons are made when using Süveges’

IWLS estimator for h using all threshold excesses. For

more details, see Fawcett and Walshaw (2012).

Table 4 Estimates of the 10-, 50- and 1000-year return levels for the wind speeds at Bradfield and the sea-surges at Newlyn

Serial dependence ẑ10 ẑ50 ẑ1000

Bradfield wind speeds (knots) None Cluster peaks 96.56 (13.53) 102.54 (22.78) 107.14 (43.05)

Markov chain Logistic 88.46 (5.52) 96.07 (9.97) 107.64 (22.44)

Non-parametric Ferro and Segers 88.89 (6.15) 92.88 (8.87) 105.00 (19.75)

Süveges: IWLS 88.63 (6.50) 93.12 (8.93) 106.48 (21.18)

Newlyn sea surges (metres) None Cluster peaks 0.87 (0.11) 0.92 (0.14) 0.97 (0.20)

Markov chain Bilogistic 0.81 (0.07) 0.90 (0.11) 1.03 (0.18)

Non-parametric Ferro and Segers 0.78 (0.06) 0.87 (0.09) 1.02 (0.16)

Süveges: IWLS 0.78 (0.07) 0.89 (0.10) 1.03 (0.19)

Results from a standard POT analysis are shown, along with estimates from various approaches making use of all threshold excesses: accounting

for dependence parametrically, using a Markov chain model, and using two non-parametric estimators for the extremal index
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3 Bayesian inference for extremes

The primary aim of this paper is to find an optimal

approach for estimating return levels. To this end, we have

considered methods for increasing the accuracy and pre-

cision of our estimates. Working within the Bayesian

framework lends further potential here. As we will

demonstrate in Sect. 3.2, complex model structures can

easily be estimated via Markov chain Monte Carlo

(MCMC); specifically, we allow the sharing of information

between sites and across seasons to increase the precision

of our return level estimates. The natural extension to the

posterior predictive distribution might also be useful for

practitioners, the predictive return level giving a single

point estimate incorporating uncertainty in parameter

estimation and randomness in future observations.

Although not fully realised in this paper, there is also the

potential to increase estimation precision still further

through the inclusion of expert-informed prior

distributions.

The Bayesian paradigm was quite late to be adopted by

statisticians working on extreme value theory and methods.

For some general background, Coles (2001), Chap. 9

devotes a section to this topic, while Stephenson and Tawn

(2004) review the literature in a paper which focuses on

accounting for the three extremal types. Coles and Powell

(1996) carry out a comprehensive review of the literature

up to that date, and analyse wind data from a number of

locations in the USA by constructing a prior for the GEV

parameters based on estimates obtained at other locations.

Among the other significant contributions, Coles and Tawn

(1996) use expert knowledge to construct a multivariate

prior for the GEV parameters, and Smith and Walshaw

(2003) extend this idea to bivariate distributions for

extreme rainfall at pairs of locations within a region. Smith

(1999) considers predictive inference under the Bayesian

and frequentist paradigms, and Smith and Goodman (2000)

and Bottolo et al. (2003) construct Bayesian hierarchical

models for extreme values in insurance problems. Fawcett

and Walshaw (2006b) model extreme wind speeds in a

region of the UK using a Bayesian hierarchical model.

Fawcett and Walshaw (2006a) consider Bayesian inference

for Markov chain models (also for extreme wind speeds)

using a simulation framework similar to that used by Smith

et al. (1997) to obtain estimates of the extremal index.

More recently, Sang and Gelfand (2009), Sang and Gelfand

(2010) and Davison et al. (2012) demonstrate the use of

Bayesian hierarchical models for environmental data which

allow for spatial structure in the extremes.

In the absence of any prior specification for the

parameters in an extremal model (e.g. the GEV or the

GPD; see Sect. 1.2), it is possible to perform an analysis

within the Bayesian framework through the use of objec-

tive priors (sometimes referred to as, quite misleadingly,

‘uninformative’, ‘non-informative’ or ‘default’ priors).

This might also be a preferred approach if the complexity

of the model makes inferences difficult or more cumber-

some within a standard frequentist setting. Indeed, we

discuss this in the context of the GPD (log) scale and shape

parameters, and the logistic dependence parameter, in

Sect. 3.1.1, where simple, independent, diffuse priors are

suggested. However, a more thoughtful development of

objective priors for extreme value models is given in

Beirlant et al. (2004), wherein maximal data information

(MDI) priors and Jeffreys’ priors for the GPD are consid-

ered; similarly, Eugenia Castellanos and Cabras (2007)

investigate the use of a Jeffreys prior for the GPD. Ho

(2010) and Cabras (2013) develop probability matching

priors for the GPD, and Northrop and Attalides (2014)

investigate posterior propriety for Jeffreys’, MDI and uni-

form priors for the GEV and GPD.

3.1 Example: wind speed extremes at Bradfield

3.1.1 Prior specification

In keeping with the spirit of this paper, we aim to make use

of information on all threshold exceedances to maximise

the precision of our return level estimates. Consider the

likelihood in Eq. (4), with parameter vector w ¼
ðgm; nm; amÞ for wind speed excesses over um in month m,

m ¼ 1; . . .; 12, where

gm ¼ logðrm � nmumÞ

and nm are the GPD (log) scale and shape, respectively, and

am is the logistic dependence parameter for the first-order

evolution of the process. As outlined in Sect. 2.2, the

nature of the wind climate in the UK justifies the seasonal

piecewise approach used. In the Bayesian context, the re-

parametrisation of the GPD scale to ðrm � nmumÞ gives a

parameter which is threshold-independent, allowing the

specification of an objective prior for the scale at all

threshold levels; working with the natural logarithm of this

re-parametrised scale retains the positivity of this param-

eter in the MCMC sampling scheme. In the absence of any

expert prior information, then, we could specify the fol-

lowing independent, diffuse priors for the elements of w:

gm 	Nð0; 104Þ; nm 	Nð0; 102Þ; am 	Uð0; 1Þ; ð10Þ

m ¼ 1; 2; . . .; 12. We might expect such distributions to

reflect our prior uncertainty about the marginal / depen-

dence parameters and, in accord with the findings of Coles

and Tawn (2005), we find that inferences barely change

under order of magnitude changes to the variance
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specifications in (10). However, an investigation into the

dependence structure of wind speed extremes at a location

close to Bradfield (see Fawcett 2005) suggests a logistic

dependence parameter of around am � 1=3 for all m. Thus,

we consider independent Beta(10, 19) priors for am, the

variability of which we believe adequately reflects our

knowledge about the dependence of consecutive wind

speed extremes at Bradfield, including any uncertainty

about differences in the dependence structure of extremes

between the two locations. Similarly, from information

gathered at this nearby location, we can specify the fol-

lowing bivariate Normal prior distributions for ðgm; nmÞ at

Bradfield:

ðgm; nmÞ	N2 lm;Rmð Þ; m ¼ 1; . . .; 12:

The components of lm are chosen to closely match our

beliefs about what are the most likely values of ðgm; nmÞ
based on our study of monthly wind speeds at the nearby

location. We specify values for covðgm; nmÞ according to

our beliefs regarding the covariances between these

parameters at the nearby location, scaled (albeit rather

crudely) to reflect our uncertainty about differences

between monthly wind speed extremes at the two locations.

3.1.2 Bayesian sampling

After setting initial values for the elements in w (we use the

prior means), a simple Metropolis step2 is used to generate

successive draws from the posterior distribution, giving

ðg½j�m ; n½j�m ; a
½j�
m Þ at each iteration j, j ¼ 1; . . .; 50; 000; in the

sampler. Specifically, within each Metropolis step, a ran-

dom walk procedure is used to generate candidate values

for each of the parameters, the variances of the innovations

being tuned to maximise the efficiency of the algorithm

(achieving an overall acceptance probability of around

23 %; see Roberts et al. 1997, for a discussion of desirable

acceptance probabilities). Such MCMC sampling schemes

can be easily implemented using the evdbayes package in

R (Stepheson and Ribatet 2014), including tuning of the

acceptance probabilities and convergence diagnostics.

The bilogistic model, with dependence parameters

ðam; bmÞ, or indeed any of the standard models for extremal

dependence, can be used in place of the logistic model. In

the frequentist analysis of Sect. 2.3, a likelihood ratio test

revealed that the bilogistic model, allowing for asymmetry

in the dependence structure, gives no significant improve-

ment over the simpler logistic model; in the Bayesian

analysis, regardless of our choice of suitable (but inde-

pendent) priors for am and bm, the 95 % credible intervals

for ðam � bmÞ, m ¼ 1; . . .; 12, covered zero—suggesting

agreement with the frequentist analysis (the bilogistic

model reduces to the symmetric logistic model when

am ¼ bm). Other posterior predictive checks, such as those

demonstrated in Fawcett and Walshaw (2006a), can be

used to assess model suitability.

At each iteration j in the MCMC algorithm, the current

posterior draw for the logistic dependence parameter a½j�m is

used to obtain a posterior draw for the extremal index via

the cubic approximation in Eq. (9), giving h½j�m . Then, a

corresponding draw from the posterior for various return

levels z
½j�
r can be obtained on solution of Eq. (8) for x ¼ z

½j�
r ,

after substitution of rm, nm and hm with ðeg
½j�
m þ n½j�mumÞ, n

½j�
m

and h½j�m , respectively; kum is fixed at the observed proportion

of exceedances of um in each month m. The MCMC sample

paths (not shown here) showed rapid convergence to their

apparent stationary distributions, with good mixing prop-

erties (more formal convergence monitoring diagnostics

are available—see, for example, Brooks and Gelman

1998). After removal of the burn-in period (the first 2000

MCMC draws), we are left with S ¼ 48; 000 posterior

draws on which to make inferences. Table 5 (‘‘Standard

analysis’’) shows posterior summaries for the 10-, 50- and

1000-year return levels for wind speeds at Bradfield after

the removal of the burn-in period. Relative to using the

uninformative priors in (10) (results not shown), we

observe smaller posterior standard deviations; notice also

that these posterior standard deviations are smaller than the

estimated standard errors obtained in the frequentist anal-

ysis of Sect. 2.3 (see Table 4). Credible intervals in the

Bayesian context (see Table 5) are also more readily

available, obtained by direct reference to the posterior

draws for zr.

3.1.3 Predictive inference

Suppose we assume the same marginal and dependence

structure for future extremes Y of our monthly wind speed

processes at Bradfield. Allowing for uncertainty in

parameter estimation and future observations, we can write

Pr Y � yjxf g ¼
Z

W
Pr
	
Y � yjw



pðwjxÞdw ð11Þ

for the predictive distribution of our wind speed extremes,

where x represents past observations. Solving

Pr Y � zr;predjx
	 


¼ 1 � r�1 ð12Þ

for zr;pred therefore gives an estimate of the r-year return

level that incorporates uncertainty due to model estimation.

Although (11) is analytically intractable, it can be

approximated since we have estimated the posterior

distribution using MCMC. Regarding our sample

2 Details of MCMC techniques are now extensively published (Smith

and Roberts 1993), for example and so are omitted here.
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wð1Þ; . . .;wðSÞ as realisations from the stationary distribution

pðwjxÞ, we have

Pr Y � zr;predjx
	 


� 1

S

XS
j¼1

Pr Y � zr;predjw½j�
n o

; ð13Þ

which we can set equal to 1 � r�1 and solve for zr;pred
using a numerical solver. These values are shown in

Table 5 for r ¼ 10, 50 and 1000. Figure 3 compares pre-

dictive and estimative return levels across a range of values

of r, showing that, for very long-range return periods, even

designing a structure to the upper end-point of the Bayesian

95 % credible interval might result in under-protection,

relative to estimates obtained in the predictive analysis.

3.1.4 Non-parametric approaches for serial dependence

In the earlier frequentist analyses, we advocated the use of

non-parametric estimators (e.g. Ferro and Segers’ intervals

estimator) for the extremal index rather than a Markov

chain model as used in this section. In the absence of a

likelihood for the extremal index, such non-parametric

methods are difficult to implement within a Bayesian

sampling scheme. Ferro and Segers (2003) do propose a

maximum likelihood estimator for the extremal index

based on their inter-arrival times methodology. However,

the model, based on a mixture distribution, one component

of which is an exponential distribution with rate h, assigns

all of the inter-exceedance times to the exponential com-

ponent as n ! 1 (where n is the length of the process), a

feature illustrated when using the associated likelihood as

an ingredient in Bayesian inference for h in Fawcett

(2005): the effect of using this likelihood is a posterior

distribution for h that converges to a point mass at 1,

regardless of the strength of serial correlation present.

Süveges (2007) also suggests a likelihood for h (the

corresponding maximum likelihood estimator is demon-

strated in the simulation study of Sect. 2.1.2 of this paper);

however, Table 2 reveals substantial bias when the

underlying process is an extreme value Markov chain. The

K-gaps estimator of Süveges and Davison (2010) is like-

lihood-based, and as we show in the simulation study of

Sect. 2.1.2 it performs well when K is chosen optimally.

Indeed, since the first-order extreme value Markov chain

assumption, with logistic dependence, seems reasonable for

our monthly wind speeds data, this could have been tried

here; however, more generally it might be difficult to

choose a value for K which lends optimal performance to

this estimator of the extremal index. Fawcett and Walshaw

(2008) demonstrate the use of a GEV likelihood which

incorporates h, proposed by Ancona-Navarrete and Tawn

(2000), as an ingredient for Bayesian inference for h,

although this approach is sensitive to the block size s that

must be chosen. The semi-parametric estimator of North-

rop (2012) is also based on a likelihood and so is an

additional possibility in this context, although once again a

tuning parameter (again the block size s) must be chosen

carefully. Thus, for Bayesian inference, we recommend

using a suitable parametric form for the dependence

structure in the extremes, as demonstrate in Sects. 3.1.1,

3.1.2, and 3.1.3.

3.2 Spatial considerations

In Sect. 3.1 we demonstrated the advantages of a Bayesian

approach to return level inference through a basic application

to the wind speed data at Bradfield. Even a rather crude

attempt to incorporate prior knowledge into the analysis

resulted in estimates of posterior variability that were sub-

stantially smaller than the asymptotic standard errors in the

corresponding frequentist analysis. Prediction is also han-

dled neatly within the Bayesian framework, as illustrated in

Sect. 3.1.3—estimates of predictive return levels are

potentially appealing to practitioners, as they account for

uncertainty due to model estimation and uncertainty in future

observations. Another advantage of working within the

Bayesian framework is the relative ease with which we can

build more complex, and potentially realistic, model struc-

tures, as we now demonstrate. In the following application,

return level estimation precision is increased still further.

Fawcett and Walshaw (2006b) develop a hierarchical

model for extreme wind speeds observed at 12 locations in

central / eastern England (Bradfield, as used throughout

this paper, being one of these sites). In an attempt to share

information across sites and seasons, they specify the fol-

lowing model structure for GPD scale and shape parame-

ters, and the logistic dependence parameter, as used

throughout Sect. 3.1:

gm;s ¼cðmÞg þ eðsÞg ;

nm;s ¼cðmÞn þ eðsÞn and

as ¼eðsÞa ;

where, generically, c and e represent seasonal and site

effects respectively, m ¼ 1; . . .; 12 being an indicator of

season (month), and s ¼ 1; . . .; 12 being an indicator of

site. All random effects for gm;s and nm;s were taken to be

normally and independently distributed; the means and

variances of the random effects distributions were given

distributions that were thought to reasonably reflect prior

ignorance about the seasonal and site effects, whilst

retaining conjugacy wherever possible to simplify the

MCMC sampling scheme. The logistic dependence

parameter a was allowed to vary by site only (an a priori

assumption justified by the nature of the wind climate
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across seasons within the UK; the analysis in Sect. 3.1 also

revealed similarity in am across all months m), but a

U(0, 1) prior was used for eðsÞa to reflect prior ignorance

about the dependence structure for wind speed extremes for

each site as a whole (of course, more informative priors, as

specified in Sect. 3.1.1 for the Bradfield wind speeds, could

have been used). Where conjugacy facilitated specification

of full conditional distributions, Gibbs sampling was used

(i.e. to obtain draws from the posterior distributions of the

parameters in the random effects distributions); a Metro-

polis step, as discussed in Sect. 3.1.2, was used elsewhere.

See Appendix 2 for more details, including the full con-

ditional distributions used in the Gibbs sampler.

Posterior summaries of return levels, at Bradfield, are

shown in Table 5 (‘‘Hierarchical model’’). The effect of

sharing information on extremes at other sites can be seen

in the reduction of posterior variability relative to the

standard Bayesian analysis (which uses information at

Bradfield only, although information from a neighbouring

site is used to aid prior specification).

Although Fawcett and Walshaw (2006b) demonstrate

the ease with which more complex hierarchical models can

be fitted within the Bayesian framework, they do not

account for any spatial structure; that is, in the model

hierarchy outlined above, sites are exchangeable, an over-

simplification which can be addressed by adopting a

parametric form to govern the spatial dependence between

extremes observed at multiple sites within a region. To this

end, Davison et al. (2012) consider using Gaussian pro-

cesses (after suitable marginal transformations), with

standard correlation functions from the geostatistics liter-

ature [e.g. Diggle and Ribeiro 2007] to represent the decay

in dependence between extremes at a pair of sites with

distance. Within the Bayesian context, they also consider

latent variable models for rainfall extremes observed at a

network of sites across a region in Switzerland, using the

co-ordinates of these sites as covariates to allow interpo-

lation of extremes at locations for which no rainfall mea-

surements were made. On a completely continuous scale,

this allows the production of ‘heat maps’, wherein esti-

mated return levels can be displayed smoothly for all points

within a region simultaneously. Davison et al. (2012) also

consider max-stable models for spatial dependence, making

use of the multivariate extension of Eq. (5) and the various

models for extremal dependence discussed. Currently,

spatial models are a hot topic of research in the field of

extremes, the implementation of which might be accessible

to practitioners through the development of R packages

such as CompRandFld (Padoan and Bevilacqua 2013).

3.3 Predictive inference: simulation study

Throughout this section we have demonstrated the natural

extension of Bayesian inference to prediction. In particular,

we have discussed the potential appeal of the predictive

return level to practitioners; inference on this quantity

provides a design parameter estimate with uncertainty in

parameter estimation and future observations ‘built in’. We

now compare the sampling properties of zr;pred to those of

two commonly-used point estimates from the posterior

distribution of zr through a simulation study. Following the

Bayesian analyses of wind speed extremes at Bradfield

Table 5 Posterior means

(standard deviations) and 95 %

credible intervals in

parentheses, for the 10-, 50- and

1000-year return levels from

Bayesian analyses of the

Bradfield wind speed extremes

z10 z50 z1000

Standard analysis 96.21 (2.38) 103.14 (4.51) 113.55 (12.16)

(91.69, 102.80) (96.61, 115.92) (104.57, 149.31)

100.71 111.96 144.94

Hierarchical model 96.89 (0.98) 103.46 (1.33) 128.13 (2.69)

(94.96, 98.85) (94.11, 116.06) (117.62, 140.31)

104.39 113.09 147.34

Shown in italics are estimates of the corresponding predictive return levels. Units in knots
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Fig. 3 Predictive return level curve (bold line) for Bradfield. Also

shown, for comparison, are posterior means for some standard return

levels with their 95 % credibility bands
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detailed in this section, we simulate large ‘master’ datasets

from the seasonal piecewise model (see Sect. 3.1) and the

hierarchical model (see Sect. 3.2). Specifically, we use

ð�rm; �nm; �amÞ, the posterior means of the GPD parameters

and logistic dependence parameter in the seasonal piece-

wise model, to simulate 10,000 wind speed extremes in

each month m, m ¼ 1; . . .; 12; for the hierarchical model,

we use ð�rm;s; �nm;s; �asÞ for each month m and site s,

m; s ¼ 1; . . .; 12. Simulating 10,000 extremes in each

month gives around 30 times as many simulated extremes

as we have actual observed extremes at Bradfield. Large

MCMC runs are then applied to these master datasets to

obtain estimates of predictive return levels at Bradfield,

these estimates being treated as the true values of zr;pred.

Specifically, Eq. (13) is solved for zr;pred using, for

example, w½j� ¼ rm; nm; hmð Þ½j� in the seasonal piecewise

model, where hm is obtained from the posterior draw for am
via Eq. (9) and j ¼ 1; . . .; 107 after the removal of burn-in.

Similarly, the means of the posterior draws for zr from

these large MCMC runs, obtained by solving Eq. (8) for

x ¼ z
½j�
r using w½j�, j ¼ 1; . . .; 107, are taken to be the true

posterior means for zr, which we label as zr;mean. We also

obtain zr;upper, the 97.5 % empirical quantile of z
½j�
r ; j ¼

1; . . .; 107 (i.e. the upper endpoint of the 95 % credible

interval for zr, often used as a design parameter in

practice).

We simulate N years of wind speed extremes from each

of the seasonal piecewise and hierarchical models, using

ð�rm; �nm; �amÞ and ð�rm;s; �nm;s; �asÞ respectively and with the

same number of simulated extremes as were observed at

Bradfield (and the other sites in the hierarchical model).

We then find Pr;pred, Pr;mean and Pr;upper— the proportion

of years in which the maximum simulated extreme exceeds

zr;pred, zr;mean and zr;upper (respectively). This exercise is

repeated L times in order to assess the variability in our

estimates of these proportions. We use N ¼ 10; 000 and

L ¼ 1000. We also repeat the entire simulation procedure

for other strengths of extremal dependence, and for other

dependence models. For example, for the Bradfield wind

speed extremes most �am were around 0.3; we also consider

�am ¼ 0:5 and �am ¼ 0:75. We also consider the case of

asymptotic independence through AR(1) processes with

varying strengths of serial correlation, as well as other

marginal shape parameters �nm to assess the performance of

each return level estimate for different tail behaviours.

Table 6 summarises one arm of the simulation study,

showing sampling properties for the different exceedance

proportions for the seasonal piecewise model using

ð�rm; �nm; �amÞ from the original fits to the Bradfield wind

speed extremes as discussed in Sect. 3.1. Although not

shown here, similar findings were obtained for different �am

and �nm, and for simulations based on the hierarchical

model (although, owing to the sharing of information

across different sites and seasons, sampling variability was

substantially reduced here); results using AR(1) processes

for the dependence structure bore similar findings. The

table shows results for r ¼ 10, 50 and 200 years, although

results for other return periods were also examined. We

make several observations:

• zr;mean consistently leads to significant over-estimates

of r�1 (i.e. the sampling distribution means for Pr;mean

are higher than the intended exceedance probabilities

r�1, and the 95 % confidence interval lower bounds

from these distributions always exceed r�1). This sug-

gests that using the posterior mean could result in

substantial under-protection.

• The predictive return levels zr;pred consistently lead to

significant under-estimates of the intended exceedance

probabilities. However, this is to be expected: these

quantities have taken into account any variability in the

estimates of marginal and dependence parameters, as

well as uncertainty in future observations. Thus, we

would expect zr;pred [ zr;mean, leading to exceedance

probabilities which are possibly smaller than r�1. In

practice, this could lead to over-protection. However,

this might be on a par with the common practice of

designing to the upper-endpoint of the 95 % confidence

interval for zr (see next point), but with uncertainty in

future observations also included.

• In all cases, there appears to be no significant difference

in the exceedance proportions resulting from zr;pred and

zr;upper, although the sampling distribution means are,

in most cases, smaller for zr;pred; see previous point.

Table 6 Sampling distribution summaries for Pr;mean, Pr;upper and

Pr;pred using L ¼ 1000 repeated simulations of N ¼ 10; 000 years of

threshold exceedances from the seasonal piecewise model obtained

from fits to the Bradfield wind speed data

Sampling distribution

Mean SD 95 % CI

r�1 ¼ 10% P10;mean % 18.256 0.566 (17.126, 19.282)

P10;upper% 5.916 0.902 (4.223, 7.455)

P10;pred % 6.395 0.328 (5.815, 6.981)

r�1 ¼ 2% P50;mean % 3.386 0.258 (2.959, 3.911)

P50;upper % 0.240 0.172 (0.000, 0.578)

P50;pred % 0.239 0.069 (0.110, 0.371)

r�1 ¼ 0:5% P200;mean% 0.806 0.126 (0.570, 1.031)

P200;upper% 0.004 0.015 (0.000, 0.025)

P200;pred % 0.003 0.008 (0.000, 0.020)
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Our simulations show that none of the return level esti-

mators achieve their stated exceedance probabilities of r�1.

Although this should be expected of zr;upper and zr;pred, the

fact that zr;mean gives consistently over-estimated values

for these exceedance probabilities indicates that this pos-

terior summary might be inadequate in any practical

application. As expected, zr;upper and zr;pred give consis-

tently smaller estimates of these exceedance probabilities.

However, as a single number summary, both at least have

uncertainty in parameter estimation built in, zr;pred also

allowing for randomness in future observations.

4 Conclusions and recommendations

We have presented a summary of the current state of play

with regard to the methodology for return level estimation,

and here we provide some conclusions and some recom-

mendations for practitioners. Clearly block maxima meth-

ods are wasteful of data, and if return level estimation is the

priority, they should only be considered as a serious option

if block maxima are the only data available, or if other

aspects of the model being implemented make it so com-

plex that the extra structure involved with imposing

threshold selection of extremes is considered a step too far.

As an example, Atyeo and Walshaw (2012) take this view.

Generally threshold methods should be preferred, as

they are less wasteful of data. However, given this, a key

recommendation is that the traditional POT approach is

discarded. In addition to being wasteful of data, the sub-

asymptotic theory of this approach indicates that estimates

of parameters are biased (Eastoe and Tawn 2012) backing

up empirical findings by Fawcett and Walshaw (2007). The

recommended alternative is to use all exceedances, through

careful estimation of the extremal index. On the basis of

this work we recommend using one of the non-parametric

intervals estimators proposed by Ferro and Segers (2003)

or Süveges (2007). Our recommendation for assessing the

uncertainty associated with return levels is to produce

confidence intervals using a block bootstrap procedure, as

described fully in Fawcett and Walshaw (2012). Alterna-

tively, if one wishes to take a more theoretical approach

than that based on estimation of the extremal index, then

the sub-asymptotic behaviour of cluster peaks is derived in

terms of a combination of terms based on the marginal and

dependence behaviour of all exceedances respectively,

giving rise to an appropriate model (Eastoe and Tawn

2012).

The recommendations thus far are aimed at those

wishing to take a frequentist approach to inference. How-

ever the authors would favour a Bayesian approach, and

would recommend this to practitioners wherever their

philosophical approach to inference, and their willingness

to get involved with the computational issues, permit!

Inference is bound to be improved by the incorporation of

useful prior information, and this is almost always avail-

able in one form or another. This could be through genuine

elicitation of expert beliefs, but more commonly the

Bayesian approach allows for the incorporation of infor-

mation from other studies, or from other locations being

considered in the same study, thereby providing a very

natural route to sharing information and thereby improving

estimation precision. Thus the Bayesian approach is a

natural way to consider spatial or hierarchical models for

extremal behaviour at multiple sites (of course, such

models could be estimated in the frequentist setting;

however, we believe MCMC techniques within the Baye-

sian framework provide a much more convenient route to

inference here). Estimation uncertainty is now naturally

represented in the posterior distributions of all quantities of

interest, including return levels, and this information is

easily extracted from any sampling scheme used for

inference. Finally, there has been a long-standing clash

between frequentist statisticians and many practitioners in

the interpretation of return levels. In our experience,

practitioners often take the view that a return level esti-

mate, in itself a statement about probabilities, should not

then need to be accompanied by an estimate of uncertainty

as to its value. The Bayesian approach, unlike that of the

frequentists, is fully supportive of this view. The posterior

predictive value for a return level does exactly what is

required by such practitioners, in that all uncertainty about

parameter estimation (and randomness in future observa-

tions) has been integrated out in the provision of this pre-

diction, which is then correctly interpreted as a probability

statement which does not (and should not) be accompanied

by an assessment of uncertainty. Of course uncertainty

about the model itself is always present, but both fre-

quentist and Bayesian perspectives are always conditioning

on the fitted model being correct when presenting results,

while acknowledging that this is inevitably an approxi-

mation to the truth.

Although this paper is part review / survey in nature, so

vast is the literature on return level estimation—both in

Statistics journals and journals of a more applied nature—

that the review element of this article is not exhaustive.

Indeed, readers need look no further than the SERRA

journal itself to find many articles relating to the problem

of return level estimation in various environmental appli-

cations. For example, papers by Shiau (2003), Xu et al.

(2010), Galiatsatou and Prinos (2011), Vanem (2011) and

Van der Vyver (2015) all tackle the issue of return level or

return period estimation in a variety of contexts, most of

which use methods similar to those presented in Sect. 1.

Serinaldi (2015) also provides a very interesting SERRA

Stoch Environ Res Risk Assess (2016) 30:463–480 477

123



communiqué on return period estimation, relevant to the

work in this paper. However it is our belief that, given the

compelling case for the use of Bayesian methods presented

here and elsewhere, it is surprising that such methods have

not yet become commonplace in practice.

To sum up then, we recommend using a method which

makes use of all threshold exceedances wherever possible,

and we believe that a Bayesian approach is preferable

where this is feasible. Of course all models need to have a

sensible (often pragmatic) approach to seasonal variation

built in, and all of the modelling approaches we have

described are amenable to being extended to incorporate

covariate effects, including temporal trends, in the

parameter values and hence the return levels. We believe

the methods we propose for handling temporal dependence

allow all threshold excesses to be pressed into use in a

fairly simple way. Further, working within the Bayesian

framework allows the estimation of the predictive return

level—a quantity which lends itself to easy communication

with practitioners having, as it does, all sources of uncer-

tainty built-in. The methods we outline are robust and

versatile, and could be easily applied to most environ-

mental variables.
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Appendix 1: extremal index estimators

Cluster size estimators

• THE RUNS ESTIMATOR: ĥ ¼ ðmean cluster sizeÞ�1
, using

cluster termination interval j to identify clusters (see

Sect. 1.2).

• THE BLOCKS ESTIMATOR: As for the runs estimator, but

where blocks of length s are considered clusters if there

is at least one threshold exceedance within the block.

Maxima methods

• GOMES’ ESTIMATOR: Obtain ðl̂h; 1̂h; n̂hÞ for the GEV

applied to block maxima fMsg with block length s.

Find also ðl̂; 1̂; n̂Þ from block maxima f �Msg, obtained

from an independent series after randomisation of the

original series. Then

ĥ ¼ð1̂=1̂hÞ�1=~n; where

~n ¼ð1̂� 1̂hÞ=ðl̂� l̂hÞ ðGomes 1993Þ:

• NORTHROP’S ESTIMATOR:

ĥ ¼ �1=logV;

with logV ¼
Pn

i¼1 logVi=n, Vi being a random sample

from a Betaðh; 1Þ distribution (Northrop 2012).

Intervals estimators

• FERRO AND SEGERS’ ESTIMATOR:

ĥ¼ min 1;
XJ�1

i¼1

ðTi� aÞ2
�
ðJ� 1Þ

XJ�1

i¼1

ðTi� bÞðTi� cÞ
( )

;

where Ti ¼ Siþ1 � Si, i ¼ 1; . . .; J � 1 are the times

between J threshold exceedances; a ¼ b ¼ c ¼ 0 if

maxðTiÞ� 2; otherwise, a ¼ b ¼ 1; c ¼ 2 (Ferro and

Segers 2003).

• SÜVEGES’ MLE: Maximum likelihood estimator based

on an extension of the work in Ferro and Segers (2003).

The likelihood for Ui ¼ Ti � 1, i ¼ 1; . . .; J � 1, is

maximised to obtain a closed-form expression for ĥ
(Süveges 2007).

• SÜVEGES’ IWLS: Iterative weighted least squares esti-

mator based on the normalised gaps between clusters

(Süveges 2007).

• K-GAPS ESTIMATOR: An extension of Süveges’ MLE,

shown to have reduced bias and RMSE (given an

optimal choice of tuning parameter K) (Süveges and

Davison 2010).

Appendix 2: Bayesian sampling in the hierarchical
model

For the hierarchical model outlined in Sect. 3.2, we have

gm;s ¼ cðmÞg þ eðsÞg ;

nm;s ¼ cðmÞn þ eðsÞn and

as ¼ eðsÞa

for the GPD (log) scale and shape, and the logistic

dependence parameters (respectively). All random effects

for gm;s and nm;s are assumed to be normally distributed:

cg 	Nð0; s�1
g Þ and

cðmÞn 	Nð0; s�1
n Þ; m ¼ 1; . . .; 12;

for seasonal effects, and

eðsÞg 	Nðag; f�1
g Þ and

eðsÞn 	Nðan; f�1
n Þ; s ¼ 1; . . .; 12;

for site effects. We choose the mean of the normal distri-

bution of the seasonal effects to be fixed at zero to avoid
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over-parameterisation and problems of identifiability;

however, we could equally have fixed the mean for the

distribution of site effects to achieve this. Since the logistic

dependence parameter a must lie between 0 and 1, we draw

the site effect for a from a uniform distribution, and so

eðsÞa 	Uð0; 1Þ:

The final layer of the model is to specify prior distributions

for the random effect distribution parameters. Here, we

have chosen largely non-informative priors, adopting

conjugacy wherever possible to simplify computations.

Thus,

ag 	N bg; cg
� �

; an 	N bn; cnð Þ;
sg 	Gaðdg; egÞ; sn 	Gaðdn; enÞ; and

fg 	Gaðfg; ggÞ; fn 	Gaðfn; gnÞ;

with a suitable specification of hyper-parameters. The

MCMC algorithm employed is Metropolis within Gibbs,

i.e. we update each component singly using a Gibbs sam-

pler where the conjugacy allows straightforward sampling

from the full conditionals, and a Metropolis step elsewhere.

The full conditionals for the Gibbs sampling are:

a�j. . .	N
b�c� þ f�

P
eðsÞ
�

c� þ nsf�
; c� þ nsf�

� �
;

f�j. . .	Ga f� þ
ns

2
; g� þ

1

2

X
ðeðsÞ

�
� a�Þ2

� �

and

s�j. . .	Ga d� þ
nm

2
; e� þ

1

2

X
ðcðmÞ

�
Þ2

� �
;

where nm¼number of months¼12 and ns = number of

sites = 12, and here the notation f�, for example, is used

generically to denote either fg or fn. The complexity of the

likelihood derived from the GPD means that conjugacy is

unattainable for the random effect parameters, and a

Metropolis step is used to update each of these.

In the absence of expert prior knowledge, prior param-

eters were chosen to give a highly non-informative

specification:

b� ¼ 0; c� ¼ 10�6; d� ¼ e� ¼ f� ¼ g� ¼ 10�2:
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