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Abstract Hydrological processes are complex non-linear

phenomena. Canonical correlation analysis (CCA) is fre-

quently used in regional frequency analysis (RFA) to

delineate hydrological neighborhoods. Although non-linear

CCA (NL-CCA) is widely used in several fields, it has not

been used in hydrology, particularly in RFA. This paper

presents an overview of techniques used to reproduce non-

linear relationships between two sets of variables. The

approaches considered in this work are based on NL-CCA

using neural networks (CCA-NN), coupled to a log-linear

regression model for flood quantile estimation. In order to

demonstrate the usefulness of these approaches in RFA, a

comparative study between the latter and linear CCA is

performed using three different databases from North

America. Results show that CCA-NN is more robust and

can better reproduce the non-linear relationship structures

between physiographical and hydrological variables. This

reflects the high flexibility of this approach. Results indi-

cate that for all three databases, it is more advantageous to

proceed with the non-linear CCA approach.

Keywords Non-linear canonical correlation analysis �
Neural network � Regional frequency analysis �
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Abbreviations

DHR Delineation of homogeneous regions

RE Regional estimation

CCA & LR CCA associated to a log-linear regression

CCA-NN &

LR

Non-linear CCA based on Neural Network

in DHR step associated to a log-linear

regression in the RE step

CCA-NN &

CLR

Non-linear CCA based on Neural Network

in DHR step associated to a log-linear

regression in the canonical space in the RE

step

1 Introduction and literature review

One of the main objectives of regional frequency analysis

(RFA) is the estimation of extreme event quantiles (e.g.

floods and droughts) at sites where little or no hydrological

data is available. In general, RFA procedures have two

main steps, namely the delineation of homogeneous

regions (DHR) and regional estimation (RE) (e.g. Chebana

and Ouarda 2007, 2008; Ouarda et al. 2008a). For each of

these two steps, a large number of methodologies have

been proposed (Ouarda et al. 2008b). Canonical correlation

analysis (CCA) is one of the most commonly used methods

for DHR where it consists in identifying linear combina-

tions of variables within the same group, for which the

canonical correlation is maximal. Ouarda et al. (2008a)

demonstrated the advantages of CCA by comparing its

performance to other techniques such as the hierarchical

cluster analysis approach. However, note that in Shu and

Ouarda (2007), CCA was used not for the DHR step, but to

form a canonical physiographic space over which an
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artificial neuronal network (ANN) is then employed to

estimate flood quantile.

CCA is an important statistical tool for multivariate data

analysis. However, it presents a drawback in the interpre-

tation of results, which seems to be often difficult. In

addition, this approach is based on a linear foundation and,

hence, is not able to adequately describe non-linear rela-

tionships between variables. Therefore, CCA may not be

suitable for representing hydrological processes in the

DHR step. Two groups of variables are usually considered

in RFA: (i) hydrological variables and (ii) meteorological

and/or physiographical characteristics of the watersheds

(Ouarda 2013). Hydrological processes are relatively

complex because of the variability in the response of

watersheds which does not generally result from a linear

relationship between the hydrological and the physio-

graphical characteristics (e.g. Chen et al. 2008; Xu et al.

2010; Chebana et al. 2014). Hydrological processes and

their inherent non-linearities could not be adequately rep-

resented by linear relationships. One aspect of the non-

linearity is represented by the rainfall-runoff relationship.

Indeed, the variations of meteorological variables and

flows are linked by a non-linear relationship (Riad and

Mania 2004). This non-linear behavior depends strongly on

the physiographic characteristics of the watersheds. For

instance, surface runoff is strongly influenced by the soil

storage capacity and soil infiltration.

A number of statistical tools have been proposed in the

literature to deal with the additional complexity associated

to non-linearity in a variety of fields (e.g. Bolton et al.

2003; Yin 2007). Among the proposed techniques, we can

mention non-linear principal component analysis (NL-

PCA) (Rumelhart et al. 1985; Kramer 1991) and non-linear

CCA (NL-CCA) (Dauxois and Nkiet 1998; Hsieh 2000).

NL-PCA has been applied in various fields such as

chemistry (Kramer 1991), image processing (Botelho et al.

2005) and atmospheric sciences (e.g. Sengupta and Boyle

1995; Monahan 2000). Sengupta and Boyle (1995) applied

NL-PCA to average monthly rainfall data in the United

States. Compared to conventional PCA, results showed that

the non-linear approach is a more effective data reduction

tool. It was also demonstrated that NL-PCA represented

better the variation of variables than ordinary PCA. How-

ever, this method presents some technical drawbacks

(Malthouse 1998).

Although the above constraints of the NL-PCA also

persist for NL-CCA (Hsieh 2000), the latter seems to

provide better results than the CCA. NL-CCA was used in

several fields, such as analysis of voice conversion (e.g.

Zhihua and Zhen 2010), biomedicine (e.g. Campi et al.

2013), medicine (e.g. Wang et al. 2005) and sociology (e.g.

Frie and Janssen 2009). A number of techniques related to

NL-CCA have been proposed in the literature. For

instance, Dauxois and Nkiet (1998) introduced measures of

association between two random variables based on NL-

CCA. Among the most studied non-linear methods asso-

ciated to CCA, we can mention the neural network

approach (NN) (Hsieh 2000), genetic algorithms (GA)

(Kruger et al. 2004) and Kernel based methods (Akaho

2001; Hardoon and Shawe-Taylor 2009). Recently, Nagai

(2013) proposed an optimization approach based on cross

validation to optimize the NL-CCA parameters. In terms of

applications, the non-linear method based on NN was

adopted in a number of studies in meteorology and cli-

matology. For example, Wu and Hsieh (2002) studied the

El Nino Southern oscillation using NL-CCA based on the

NN approach (CCA-NN). They showed the ability of CCA-

NN to detect non-linearity between surface wind stress and

sea surface temperature. Hsieh (2001) also applied CCA-

NN to study the relationship between sea level pressure in

the tropical Pacific and sea surface temperature. Results

revealed the ability of this model to characterize non-lin-

earity between variables, which was not the case with the

conventional CCA.

Other studies in the past were interested by treating non-

linear aspects of categorical variables (qualitative). Gifi

(1990) presented two different techniques and algorithms,

mainly OVERALS and CANALS to deal with such qual-

itative variables. However, the treated variables in RFA are

quantitative and continuous. Therefore, the latter methods

are not applicable in the context of the present study. In

Table 1, all non-linear approaches discussed previously are

summarised including their advantages and drawbacks.

Note that methods designed for quantitative variables are

more flexible than those for categorical ones.

Despite strong evidence concerning the non-linearity of

hydrological processes, NL-CCA approaches have not yet

been considered in hydrology. In RFA, non-linear

approaches can account for possible non-linearities in order

to determine the most representative homogeneous regions

and lead to a better regional estimation. The purpose of the

present paper is to deal with the issue of non-linearity in

RFA by introducing NL-CCA in the DHR strep in order to

improve its performance and representativeness.

The present paper is organized as follows: In the fol-

lowing section, the potential of NL-CCA in the DHR step

is developed. In order to verify and validate the usefulness

of the NL-CCA approach for the modelling of hydrological

processes, a comparative study is carried out in Sect. 3

using three different datasets from North America (Quebec,

Arkansas and Texas). These approaches are used in the

delineation of hydrological neighborhoods where the

obtained results are presented and discussed in Sect. 4. The

conclusions of this work are reported in Sect. 5.

450 Stoch Environ Res Risk Assess (2016) 30:449–462

123



2 Background and methodology

In this section we present a brief description of the use of

CCA in RFA, as well as a description of the NL-CCA

method and its application to RFA.

2.1 Canonical correlation analysis in RFA

CCA is a multivariate analysis method used to identify the

correlations that may exist between two groups of vari-

ables. It has been applied in a number of fields, such as

seasonal climate forecasting (e.g. Barnett and Prein-

sendorfer 1987), management science (e.g. Tishlert and

Lipovetsky 1996), forecasting of accident risk modeling

(e.g. Michael and Raymond 2003), river thermal regime

modeling (e.g. Guillemette et al. 2009), water quality

estimation (e.g. Khalil et al. 2011) and especially flood

frequency estimation (e.g. Ouarda et al. 2001).

As mentioned above, in RFA, variables of interest are

mainly hydrological and physiographical variables. We

denote Y the vector describing hydrological variables, and

X the vector containing meteorological and/or physio-

graphical variables. Considering linear combinations of

variables X1;X2; . . .; Xq and Y1; Y2; . . .; Yr, we obtain a

new canonical space composed by canonical vectors Ui and

Vi such as:

Ui ¼ ai1X1 þ ai2X2 þ � � � þ aiqXq ð1Þ

Vi ¼ bi1Y1 þ bi2Y2 þ � � � birYr ð2Þ

where i ¼ 1; . . .; p with p ¼ min r; qð Þ. The canonical space
is built under constraints of unit variance and maximum

correlation between pairs of canonical variables. Let K be a

p-by-p diagonal matrix composed of canonical correlation

coefficients given by:

ki ¼ corr Ui;Við Þ; i ¼ 1; . . .; p ð3Þ

Once the first pair of canonical variables ðU1; V1Þp is

obtained, other canonical pairs are obtained subject to the

constraint corr Ui;Vj

� �
¼ 0 for i = j. Note that all distinct

hydrological canonical variables (as well as distinct phys-

iographical variables) are also uncorrelated (Ouarda et al.

2001).

In order to improve quantile estimations in RFA, CCA is

commonly used for the determination of neighborhoods of

target sites. For an ungauged site, the canonical meteoro-

logical-physiological information U0 is usually known but

the hydrological information V0 is not available. The

hydrological mean position of the target site S is given by

KU0. Hence, a 100 (1-a) % confidence level neighbor-

hood is identified by the Mahalanobis distance. It is con-

sidered between the mean position of target site KU0 and

positions of other sites V, such that:

V � KU0ð Þ0 Ip � K2
� ��1

V � KU0ð Þ� v2a;p ð4Þ

where Pðv2p � v2a;pÞ ¼ 1� a and v2p has a Chi squared

distribution with p degrees of freedom. Expression (4) is

used to define an ellipsoid representing the neighborhood

region for the ungauged site associated to KU0 (Ouarda

et al. 2001).The equation of the ellipsoid has the following

form:

V1 � K1U01ð Þ2

a2
þ V2 � K2U02ð Þ2

b2
¼ 1 ð5Þ

where V1 and V2 denote the hydrological canonical vari-

ables, K1 and K2 are the canonical correlation coefficients,

(K1U01, K2U02) are the coordinates of the center of the

ellipsoid and a and b denote respectively the semi-major

axis (or focal) and the semi-minor axis (Ballard 1981).

Expression (5) is the equation of an ellipsoid in an

orthonormal base (two orthogonal unit vectors), where axes

are parallel to the coordinate system axes.

Table 1 Summary of common methods of NL-CCA

Variables Method Advantages Drawbacks

Categorical CANALS Requires only two sets of variables

Allows only a small number of possible values

OVERALS Ability to treat k groups of variables Allows only a small number of possible values

Quantitative CCA-NN Significant computation time

Black box

A fairly complex mathematical structure

CCA-K Flexibility

Low computation time

No local optima

Difficult to interpret

CCA-GA A parsimonious technique

Easier to interpret
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2.2 Nonlinear CCA using a neural network

approach (CCA-NN)

An artificial neuron network ANN is a fairly simple

mathematical model compared to the natural biological

evolution, with a running-inspired design of biological

neurons (Bishop 1995). It consists essentially in several

neurons generally organized in layers. The output of

each neuron results from the weighted sum of inputs,

and transformed by a transfer function. Different transfer

functions can be used (Duch and Jankowski 1999).

ANNs have been widely used in a number of fields, such

as in geology where Li et al. (2014) utilized the back-

propagation (BP) neural network approach to forecast the

geological hazard linked to bank destruction and land-

slides, and in hydrology where Zaier et al. (2010) used

ANNs to model lake ice thickness, and Chen et al.

(2014) used ANNs to model the rainfall-runoff relation-

ship. As previously indicated, ANNs were integrated in

RFA for instance by Ouarda and Shu (2009) and by Aziz

et al. (2014) for the estimation of flood quantiles at

ungauged sites.

In the meteorological field, Hsieh (2000) developed a

NL-CCA version based on ANN (CCA-NN). The CCA-

NN approach consists on establishing non-linear combi-

nations between groups of original variables (X and Y) and

the new canonical variables (U and V) via a transfer

function. Consider the following hidden layer:

h
ðxÞ
k ¼ f W ðxÞxþ bðxÞ

� �

k

� �
; k and n ¼ 1; . . .; l ð6Þ

hðyÞn ¼ f W ðyÞyþ bðyÞ
� �

n

� �
ð7Þ

where W ðxÞ and W ðyÞ are weight matrices, bðxÞ and bðyÞ are
vectors of biased parameters, k and n denote respectively

the indexes of the vector’s elements hðxÞ andhðyÞ and l

denotes the number of hidden neurons. The transfer func-

tion f, the same for x and y, is generally set to the hyper-

bolic tangent function (Hsieh 2000):

f xð Þ ¼ ex � e�x

ex þ e�x
ð8Þ

Multivariate canonical neurons U and V are determined

from a linear combination of respective neurons hðxÞ and

hðyÞ(but from a non-linear combination with respect to x

and y):

U ¼ wðxÞhðxÞ þ b
ðxÞ ð9Þ

V ¼ wðyÞhðyÞ þ b
ðyÞ ð10Þ

Without loss of generality, U and V are assumed to have

zero mean. Thus, we have

b
ðxÞ ¼ � wðxÞhðxÞ

D E
and b

ðyÞ ¼ � wðyÞhðyÞ
D E

ð11Þ

where zh i is the empirical mean of variable z.

A limitation of the CCA-NN is that, once applied to the

original data, it provides only one pair of canonical vari-

ables, i.e. one for the physiographical variables and one for

the hydrological variables. This may lead to ignoring a part

of the information since it is not guaranteed that the first

pair of canonical variables covers a significant part of the

explained variance. To overcome this problem, the notion

of modes was considered (Hsieh 2000). It consists in

applying CCA-NN on the original datasets. The obtained

result, denoted x0, is related to the first mode. For the

second mode, the CCA-NN is applied to the initial data, i.e.

the set x, excluding the first mode. In other words, we

determine the unexplained information in the previous

mode by reapplying the procedure on the new variables:

I2 ¼ x� x0 ð12Þ

Based on Eq. (12) we get:

J2 ¼ y� y0 ð13Þ

where y0 is the result of the first iteration, y is the matrix of

original data.

The same procedure applies for higher order modes by

considering each time the residual of the previous mode as

input. The number of iterations, m, should be at least equal

to the lowest number of variables, p in our case. The final

result consists in summing up the results of all considered

iterations:

xestimated ¼ x0 þ x00 þ � � � þ xm ð14Þ

where xm is the result of the mi th iteration, m� p.

Therefore, the use of several modes may increase the

percentage of the information contained in the resulting

canonical variables.

2.3 Adaptation of CCA-NN to regional frequency

analysis

For more clarity and to avoid confusion, it is important to

note that in the approach proposed by Shu and Ouarda

(2007), a CCA-based ANN model is used for flood quantile

estimation without considering the DHR step and in which

the employed CCA is the linear one. The aim of the linear

CCA in Shu and Ouarda (2007) is to filter the signal from

the original data and apply the ANN model on the

canonical variables. However, in the present work the non

linear version of CCA using ANN (CCA-NN) is introduced

in order to identify homogeneous regions, while a log

linear regression model is used in the RE step.

Several versions of CCA-NN may be considered

depending on the selected cost functions (canonical
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correlation, mean square error MSE, mean absolute error

MAE). Indeed, Cannon (2008) introduced a robust version

of CCA-NN based on the biweight midcorrelation coeffi-

cient as a new measure of correlation instead of the Pearson

correlation. After choosing the cost functions, canonical

variables can be obtained and hence one can determine the

hydrological neighborhood for an ungauged site. In the

non-linear case, the variables V1 and V2 denote the

hydrological canonical variables of the first and second

mode, respectively, and K1 and K2 are the canonical cor-

relation coefficients of the two modes. Identifying the

physiographical coordinates of an ungauged site, U01 and

U02, is performed using relation (9).

Similarly to the neighborhood of the linear case, the

non-linear one can be obtained using the same constraint.

However, the equation of the ellipsoid is different from the

linear case (5), since the axes are not parallel to those of the

coordinate system.

Let Y denote an array of hydrological data and V the

corresponding canonical variable, thus we can write:

Y ¼ h ðVÞ ð15Þ

Therefore by substituting (15) in (13) we obtain:

h2ðV2Þ ¼ h1ðV1Þ � y0 ð16Þ

Note that h, h1 and h2 are known non-linear func-

tions.Hence, the angle h ¼ ðV1;V2Þ is different from p=2.
Since the axes of the ellipsoid are always perpendicular,

the ellipsoid is then rotated through an angle / relative to

the coordinate systemðV1; ZÞ. As illustrated in Fig. 1,

ðV1; Z Þ is an orthonormal basis with Z = sin(h) V2. The

equation of the ellipsoid in the non-linear canonical space

is given by:

P1 � K1U01ð Þ2

a21
þ P2 � K2U02ð Þ2

b21
¼ 1 ð17Þ

where:

P1 ¼ V1 cos/� Z sin/ and P2 ¼ V1 sin/þ Z cos/

ð18Þ

Note that the angle is the same for all sites and with dif-

ferent values of a. It depends only on h: / ¼ f ðhÞ. Equa-
tion (5) related to the linear CCA is a special case of (17)

with a zero angle of rotation / and h ¼ p=2.
Similarly to CCA, the objective of NL-CCA consists in

reducing the dimensions of hydrological and physio-

graphical/meteorological spaces by taking into account the

relationships between the considered variables. However,

the construction of CCA reflects only linear relationships.

The use of NL-CCA is necessary especially in the presence

of non-linear structures. Note that the non-linearity in the

hydrological processes is related to the non-linearity trea-

ted in NL-CCA.

To get a clear view of the correlation structure, it is

essential to locate the source of interactions between

variables. Note that the non-linearity in NL-CCA exists

between the canonical and original variables of the same

set, e.g. between U and physiographic variables. However,

the non-linearity that occurs through the hydrological

process is between hydrological variables Y and physio-

graphical ones X. We show that these two types of non-

linearities are connected. Indeed, in the NL-CCA context,

the canonical variables can be written as:

Ui ¼ f1ðXiÞ and Vi ¼ f2ðYiÞ ð19Þ

where f1 and f2 are non-linear functions (or linear in the

case of CCA) and i ¼ 1; . . .; p. The simplest situation is the

linear case, where more complex relations load to the same

correlation:

Ui � kiVi ð20Þ

The symbol � indicates that both sides are approximately

equal. Using relation (19), we obtain:

Ui � kif2 Yið Þ � hðYiÞ ð21Þ

Substituting Eq. (19) into (21), we get:

hðYiÞ � f1ðXiÞ ð22Þ

which leads to

Yi � kðXiÞ ð23Þ

where k (.) is a general function (if h is invertible k would

be equal to h�1 of1).

Thus non-linear relations described by (19) are equiva-

lent to non-linear relationships between the two groups of

original variables (23). On the other hand, the presence of

M

S

a1
b1 

V1

Z V2

Fig. 1 Geometrical definition of the homogeneous region in the non-

linear canonical space
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non-linearity in hydrological processes, between X and Y,

leads to a non-linearity between canonical variables.

Therefore, it is necessary to use the nonlinear approach in

the context of RFA.

2.4 Regional estimation

Among the various RE methods, the most popular ones are

the index-flood and regression models (Ouarda 2013). In

this paper we focus on the multivariate log-linear regres-

sion model, since it is more appropriate to use with CCA

and with the available datasets. The relationship between

flood quantiles (Y) and the physiographical/meteorological

characteristics (X) is generally described by a power pro-

duct model. With a log-transformation, the following log-

linear model is obtained:

log ðYÞ ¼ b log ðXÞ þ e ð24Þ

where b is a vector of parameters and e represents the error

(see Pandey and Nguyen (1999) for instance).

2.5 Evaluation criteria

To assess the performance of the proposed techniques,

different criteria are used. Each model is evaluated using

the following five indices: the Nash criterion (NASH)

which provides a general evaluation of the quality esti-

mation, the root mean squared error (RMSE) providing

information about the accuracy of the estimator in an

absolute scale, the relative RMSE (RMSEr) which is

related to the relative scale, the mean bias (BIAS) and the

relative mean bias (BIASr) provide a measure of the

magnitude of overestimation or underestimation of a

model. These indices are estimated based on a jackknife

resampling procedure (e.g. Ouarda et al. 2001). It consists

in removing temporarily each site and considering it as an

ungauged one. The regional estimate is thus compared to

the local estimate and the ability of each method is then

evaluated.

The correlation coefficient and the proportion of

explained variance are also used as evaluation criteria in

the present work. The explained variance is deduced from

the correlations between canonical components and initial

variables, (Van Den Wollenberg 1977):

r2E Uið Þ ¼ 1

q

Xq

j¼1

½corr ðUi;XjÞ� 2 ð25Þ

In a similar way, expression (25) is also valid for hydro-

logical variables Yj,j = 1,…,r and canonical variables

Vi,i = 1,…,2.

3 Case study

3.1 Data

The data used in this study covers three regions in North

America, namely the province of Quebec (Canada), and the

states of Arkansas and Texas (USA). The data from

Arkansas and Texas are available in Tasker et al. (1996).

The first region includes 151 hydrometric stations and is

located in the southern part of the province of Quebec,

between 45� and 55� N. The considered physiographical and
meteorological variables are those used previously by Chok-

mani and Ouarda (2004): the mean basin slope (PMBV), the

basin area (BV), the proportion of the basin area covered with

lakes (PLAC), the annual mean total precipitation (PTMA)

and the annual mean degree-days (DJBZ). Hydrological

variables are at-site flood quantiles standardized by basin area

to eliminate the scale effect (specific quantiles), denoted QST

for a return period T. For each site, the most appropriate sta-

tistical distribution has been identified in order to estimate the

quantiles corresponding to different return periods. Two

specific quantiles are selected for this study, namely the

10-year and the 100-year quantiles.

The second case-study concerns data from the state of

Arkansas in the southern United States. Data stems from a

hydrometric network composed of 204 gauging stations

with drainage areas ranging from 0.13 to 6890 km2. The

same data was used by Tasker et al. (1996), namely the

area (A), the slope of the main channel (S), the mean

annual precipitation (P), the mean elevation of the water-

shed (EL), the length of the main stream (L), and estimated

flood quantiles, QST, corresponding to return periods of

T = 2, 5, 10, 25 and 50 years.

The last region covers a hydrometric network of 69

stations in the state of Texas. Basin areas range between 86

and 101,000 km2. The variables used are those indicated in

Tasker et al. (1996) i.e. five physiographic variables (A, S,

P, EL and L) and five flood quantiles which are the same as

those considered in the Arkansas case study.

3.2 Model design

In order to determine the homogeneous region, both CCA

and CCA-NN analysis were carried out in the DHR step

using r = 2 hydrological variables and q = 5 physio-

graphical variables for all case studies (Quebec, Arkansas

and Texas).

To build a model able to provide flood quantile esti-

mation using the neighborhood approach, the CCA and

CCA-NN approaches are coupled to a log-linear regression

454 Stoch Environ Res Risk Assess (2016) 30:449–462
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(24) in the RE step (denoted CCA & LR and CCA-NN &

LR respectively). For comparison purposes, two regression

models are considered in the non-linear case, according to

the explanatory input variables, either directly using the

initial data (X) or using the physiographical canonical

variables (U1, U2). The latter is denoted CCA-NN & CLR

and has the advantage of considering only the useful

information with a smaller number of variables.

To compare the obtained results with different approa-

ches presented in Chebana and Ouarda (2008), we discuss

essentially results related to Quebec. Results associated to

the other two regions will be presented briefly. Actually,

several versions of CCA-NN with different cost functions

were treated (Correlation coefficient/Mean absolute error

COR/MAE, biweight midcorrelation coefficient/Mean

absolute error BICOR/MAE and biweight midcorrelation

coefficient/Mean square error BICOR/MSE). In the section

below, only the results associated to BICOR/MSE are

presented and discussed since this version provides the

lowest evaluation criteria values. This finding is in con-

cordance with the conclusion presented by Cannon (2008).

In addition, it should be noted that the choice of the transfer

function is an important step in ANN modeling, as it can

significantly affect the results. In the hydrological litera-

ture, the sigmoid and the hyperbolic tangent functions are

most commonly used as nonlinear transfer functions

(Dawson and Wilby 2001; Yonaba et al. 2010). In this

regard, several transfer functions belonging to the sigmoid

function class were tested (the arctangent, the hyperbolic

tangent and the sigmoid), and the hyperbolic tangent

function yielded the best results. Hence, this transfer

function (8) is employed for all case studies in the neurons

of the hidden layers. The outputs of this model are

canonical variables when the model is designed to forward

mapping, and original variables in the case of inverse

mapping. In the current application, three NNs were con-

sidered where the first ensures the forward mapping, while

the second and the third are relative to the inverse mapping.

After extracting the first CCA-NN mode, the extraction

of second mode is carried out by taking the residual as

input, i.e., the original data minus the first CCA-NN mode,

as in (12). Hence, we obtain the canonical variables in the

non-linear space. Based on the Mahalanobis distance (4),

the hydrological neighborhood of each ungauged site is

determined.

4 Results

In this section, we present the results of the regional flood

estimation procedure where the CCA-NN approach is

considered for the DHR step. First, preliminary results are

presented in order to study the relationships between vari-

ables. Figure 2 presents scatter plots of flood quantiles and

physiographical/meteorological variables for Quebec. The

examination of the scatter plots shows different forms of

relationships between variables. We note, for instance, the

existence of non-linear relations. The most notable ones are

those between the variable basin area (BV) and the rest of

the variables. Table 2 presents the correlation coefficients
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between the hydrological and the physiographical vari-

ables. Despite the existence of a relatively strong positive

correlation between flood quantiles and PLAC on one hand,

and negative linear correlation between quantiles and

PTMA on the other hand, we can observe from Fig. 2 that

these structures are rather non-linear. Further correlation

measures are also evaluated between these variables. Fig-

ure 3 shows the correlation coefficients obtained by other

correlation measures with respect to the Pearson correla-

tion. This empirical comparison shows differences between

measures, expressed by values higher or lower than those

based on Pearson correlation. These behaviors indicate the

existence of other dependence structures that are more

complex than linearity.

By carrying out a linear CCA, the canonical correlation

coefficients (3) are k1 ¼ 0:81 and k2 ¼ 0:27. In Chebana

and Ouarda (2008), representations of data in the canonical

spaces (not presented here to avoid repetition) show that

the relationship between the first two canonical variables

U1 ;V1ð Þ can be considered to be linear, unlike variables

U2 ;V2ð Þ where linearity is relatively low.

In the following, results related to the CCA-NN are

presented and discussed. Figure 4 presents the scatterplot

of the study sites in the non-linear canonical spaces:

physiographical U1 ;U2ð Þ and hydrological V1 ;V2ð Þ. It is
also convenient to present data in the spaces (U1, V1) and

(U2, V2) to get prior information about the estimation error

(Chebana and Ouarda 2008). This is illustrated in Fig. 5 for

the non-linear case. A nearly linear relationship is observed

between the two canonical variables (U1, V1). This is not

the case for the couple (U2, V2). However, the CCA-NN

scatterplot seems to be more linear than the scatterplot of

the data set in the linear space (U2, V2) presented in

Chebana and Ouarda (2008). This may be explained by the

fact that the canonical correlation coefficients obtained

from CCA-NN (k1 ¼ 0:90 and k2 ¼ 0:36 using (3) and

(20)) are higher than their counter parts deduced from

CCA.

Table 2 Correlation between

hydrological and

physiographical variables-

Quebec

QS100 QS10

BV -0.43 -0.46

PMBV 0.45 0.47

PLAC -0.63 -0.67

PTMA 0.61 0.68

DJBZ -0.59 -0.60

Fig. 3 Empirical comparison between the Pearson correlation and

other measures of correlation (the Kendall tau, the Spearman Rho and

the biweight midcorrelation)—Quebec
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Fig. 4 Data set in the non-

linear canonical spaces:

a physiographical and

b hydrological—Quebec
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The explained variance (25), for the two first com-

ponents, is respectively 51.16 and 97.36 % (vs 56.92 and

99 % in the linear CCA). Therefore, the canonical

variables deduced from the linear CCA explain slightly

better the variance of variables than those corresponding

to CCA-NN. This may be due to the linearity induced by

the correlation coefficient in the expression of the

explained variance. However this does not affect the

results significantly since the selection of canonical

variables is based essentially on the canonical correlation

coefficients.

In the following we study the difference between the

linear and non-linear approaches in identifying the hydro-

logical neighborhood. The neighborhoods of selected sta-

tions are presented for both CCA and CCA-NN approaches

in Fig. 6. We observe a remarkable difference between the

two approaches. Indeed, using the CCA, the neighborhood

of each site is an ellipsoid with a zero angle of rotation. The

non-linear method identified a rotated ellipsoid with a

rotation angle / * 21�. Unlike CCA, the orientation of the
CCA-NN ellipsoid tends to follow the shape of the data

dispersion. For instance, the non-linear neighborhood of

station 030340 (n = 45) identified 31 neighboring stations

while the linear one identified a classical neighborhood

with 39 stations, for the same value of a, aCCA�NN ¼ 0:2.

This means that the CCA-NN requires a smaller number of

stations to reach the same RMSE as CCA. The optimal

value of a corresponds to the minimum RMSEr. Figure 7

presents the variation of RMSEr for different values of a
using CCA-NN. It can be seen that the optimal value aCCA-
NN is 0.2. Note that for high values of a, the performance

criteria tends to infinity.

To assess the magnitude of obtained results and their

impact on RFA, we proceed to the RE step. Table 3 illus-

trates the jackknife results for all considered approaches

through the criteria cited above. It can be seen that theNASH

of the linear and non-linear models are substantially equal

and sufficiently high to present acceptable results. For

instance, for a return period of 100 years, the NASH of CCA

is equal to 0.70 while it is equal to 0.71 for the non-linear

case. Results indicate also that the RMSE of CCA-NN&LR

and CCA & LR are almost equal whereas the RMSEr of the

estimates computed by the CCA-NN & LR model are con-

siderably lower than the linear model. By comparing the

results with those obtained with the iterative procedure in

Chebana andOuarda (2008) andWazneh et al. (2013) for the

same data set, it can be seen that the proposed model, CCA-

NN & LR, leads to best results among all models in terms of

RMSEr. Indeed, while the linear approaches resulted in an

RMSEr value of about 38 % for the quantile QS10 and 44 %

for the quantile QS100, the CCA-NN&LRRMSEr values are

around 34 % for the quantile QS10 and 41 % for the quantile

QS100. It is also observed that the CCA-NN & LR results in

both spaces, canonical and original, are very similar and are

significantly better than the other models, i.e. the linear

approach and the iterative procedure.

For all considered models, the BIAS is very close to

zero with a slight improvement with the CCA-NN & LR

approach. According to the BIASr criterion, the CCA-NN

& CLR leads to the best results. However, in comparison

with results reported in Wazneh et al. (2013), the BIASr of

the proposed models is higher (for values of QS100 and

QS10 BIASr values are about -6 and -7 % respectively

using the CCA-NN & LR, versus around -2 and -3 %
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Fig. 5 Data set in the non-

linear canonical spaces: a (U1,

V1) and b (U2,V2)—Quebec
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with the iterative procedure). This may be explained by the

choice of the ANN parameters in the CCA-NN method. In

fact, different parameters must be fixed from the beginning

to guarantee optimum solution, such as penalty parameters

which are chosen in such a way to avoid over-fitting.

Optimization of these parameters is performed based on the

RMSEr criterion. Consequently the model loses in terms of

BIASr but this latter remains in the same order of magni-

tude as the linear approaches.

Figure 8 presents the estimation error for flood quantiles

QS100, and QS10 using both the CCA & LR and the CCA-

NN & LR models. One can observe that, overall, the CCA-

NN & LR leads to smaller estimation errors than the linear

model, CCA & LR. Particularly, the improvement for some

sites is significant. For instance, for site 66 which has a

particular location in both linear and non-linear canonical

spaces, the estimation error goes from -4.13 using CCA &

LR to -2.3 using CCA-NN & LR.

In the following, selected results related to Arkansas and

Texas are presented. Without loss of generality, we will

Fig. 6 DHR results shown for

stations 030340, 030420 and

02717 using: a CCA and

b CCA-NN approaches, n = 45,

49 and 150 respectively—

Quebec
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Fig. 7 RMSEr variation as a function of the a parameter for

hydrological variables QS10 and QS100—Quebec
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Table 3 Jackknife validation

results-Quebec
Variables CCA-NN & CLR CCA-NN & LR CCA and LR

NASH QS100 0.672 0.710 0.700

QS10 0.728 0.793 0.790

RMSE (m3/s.km2) QS100 0.114 0.107 0.109

QS10 0.066 0.058 0.057

RMSEr (%) QS100 42.250 41.400 51.030

QS10 35.696 33.903 44.870

BIAS (m3/s.km2) QS100 0.014 0.010 0.017

QS10 0.006 0.002 0.005

BIASr (%) QS100 -7.953 -7.747 -8.390

QS10 -6.114 -6.026 -7.880

Best results are shown in bold character
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and CCA-NN & LR models—

Quebec
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focus on specific quantiles corresponding to return periods

of 10 and 50 years.

Table 4 presents canonical correlation coefficients as

well as percentages of explained variance for these two

regions resulting from linear and non-linear CCA. Results

indicate that, similarly to the region of Quebec, the

canonical correlation coefficients are more important using

a CCA-NN than using a CCA. This means that the non-

linear components capture more information than the linear

ones. However, as it was the case for Quebec case study,

the explained variance of CCA is slightly higher than that

of CCA-NN.

Table 5 summarises the results of the jackknife proce-

dure using linear and non-linear analysis for these two

regions. These results confirm the superiority of the non-

linear approach. Indeed, when proceeding with CCA-NN &

CLR applied to data of Arkansas, this model improves the

RMSEr of QS10 by about 2 % over the linear model CCA-

LR and about 10 % for QS50. Similarly, results for the

Texas region indicate that non-linear models perform better

than CCA. The improvement of the RMSEr is even more

important for Texas than for the Arkansas case study, with

a significant improvement of BIASr.

5 Conclusions

This study has focused on the use of CCA-NN & LR methods

in the context of RFA. The CCA approach has been suc-

cessfully used for the delineation of homogeneous regions in

RFA. However, this approach is not capable of representing

the possible non-linear relationships between the variables of

interest. To overcome the CCA limitations, several non-linear

methods have been developed and used in other fields. CCA-

Table 4 Correlation

coefficients and percentage of

explained variance for CCA &

LR and CCA-NN & LR relative

to Arkansas and Texas

Arkansas Texas

CCA-NN & LR CCA & LR CCA-NN & LR CCA & LR

Correlations

(U1,V1) 0.96 0.93 0.90 0.90

(U2,V2) 0.45 0.37 0.61 0.50

Explained variance (%)

U1 39.96 46.09 40.93 42.19

V1 79.97 65.11 61.29 62.99

Table 5 Jackknife validation results

Variables Region

Arkansas (USA) Texas (USA)

CCA-NN & CLR CCA-NN & LR CCA & LR CCA-NN & CLR CCA-NN & LR CCA & LR

NASH

QS50 0.733 0.748 0.735 0.552 0.389 0.136

QS10 0.732 0.761 0.755 0.577 0.499 0.351

RMSE (m3/s.km2)

QS50 2.923 2.839 2.913 0.255 0.298 0.355

QS10 1.685 1.592 1.610 0.119 0.129 0.147

RMSEr (%)

QS50 55.104 59.308 61.360 39.309 50.757 54.887

QS10 46.786 47.083 47.705 35.599 42.114 44.759

BIAS (m3/s.km2)

QS50 0.790 0.610 0.627 0.017 0.005 0.008

QS10 0.464 0.336 0.337 0.000 0.002 0.008

BIASr (%)

QS50 1.557 -3.759 -5.762 -5.168 -11.225 -4.119

QS10 3.390 -1.371 -3.046 -5.841 -6.261 -7.567

Best results are shown in bold character
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NN and CCA-K are among the most prominent and most

commonly used non-linear CCA methods.

In the current work, CCA-NN is presented and adapted

to the RFA context. The method is also applied to three

different regions to study its robustness in dealing with the

nonlinearity of hydrological processes. In order to assess

the performance of this method, its results are compared to

those of linear CCA. Results show that CCA-NN can be

adopted to represent the non-linear behavior of hydrolog-

ical process and provide a more accurate and flexible

delineation of homogeneous neighborhoods leading to a

better regional estimation. However, this method has a

number of drawbacks similarly to other ANN-based

approaches, such as the identification of optimum param-

eters and the selection of the transfer function. This latter

requires the non-linear relationship to be empirical, i.e.,

dependent on the data, whereas in the current work and

previous works, the hyperbolic tangent function was

considered.
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