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Abstract The assessment of aquifer vulnerability to

pollution is crucial for planning a sound management

strategy of groundwater quality protection and farmland

fertilizer use. This study establishes a reliable model for

aquifer vulnerability assessment with an excellent perfor-

mance for predicting groundwater nitrate-N contamination

in the Choushui River alluvial fan, Taiwan based on the

DRASTIC method. To promote the prediction performance

of aquifer vulnerability assessment, discriminant analysis

(DA) was applied to determine the weights of factors in the

DRASTIC model by comparing the model results with the

observed nitrate-N data. Key factors influencing the pres-

ence of groundwater nitrate-N pollution were characterized

for different concentration thresholds. The results of ana-

lysis reveal that the modified DRASTIC model using DA

significantly improves prediction performance for aquifer

vulnerability assessment, and groundwater protection

zones can be determined correctly based on the modified

DRASTIC index. Furthermore, the sensitivity of the factors

in the modified DRASTIC model indicates that the depth to

the groundwater and aquifer media are critical when the

nitrate-N concentration is less than 3 mg/L, while the im-

pact of the vadose zone plays a vital role in controlling

nitrate-N pollution of over 5 mg/L.

Keywords Groundwater � Nitrate-N � Aquifer
vulnerability � DRASTIC � Discriminant analysis

1 Introduction

As a consequence of finite surface water resources,

groundwater is frequently used to supply various water

demands in many agricultural regions in Taiwan. However,

agricultural activities easily contaminate and affect the

quality of groundwater. Polluted groundwater may impact

various types of water utilization, such as for irrigation,

aquaculture, and drinking purposes (Militino et al. 2008;

Jang et al. 2012, 2013a). Nitrate-N (NO3
--N) in ground-

water, which mainly stems from the application of fertilizer

and manure compost to farmlands, is a common pollutant

that typically appears in natural recharging zones (Chen

and Liu 2003; Garcı́a-Dı́az 2011). In Taiwan, nitrate-N

pollution in groundwater has increased markedly during

the past several decades (Chen and Liu 2003; Jang and Liu

2005). A long-term groundwater quality survey revealed

that NO3
--N concentrations in some of the monitoring

wells exceeded the Taiwanese standards for drinking water

quality of 10 mg/L (Agriculture Engineering Research

Center 2009). Moreover, there is much epidemiological

evidence demonstrating that long-term NO3
--N exposure

may result in the occurrence of several diseases, such as

blue baby syndrome, gastric cancer, thyroid disease, and

diabetes (Knobeloch et al. 2000). Yang et al. (1998) also

reported a relationship between gastric cancers and long-

term drinking of low-dose nitrate-polluted water in Taiwan.

In short, the increasing NO3
--N pollution in groundwater

poses a potential threat to human health.

Assessment of aquifer vulnerability is a common ap-

proach requiring analysis of the occurrence of groundwater

& Jui-Sheng Chen

jschen@geo.ncu.edu.tw

1 Department of Leisure and Recreation Management, Kainan

University, Luzhu, Taoyuan 338, Taiwan

2 Graduate Institute of Applied Geology, National Central

University, Jhongli, Taoyuan 320, Taiwan

3 Department of Nursing, Fooyin University, Kaohsiung 831,

Taiwan

123

Stoch Environ Res Risk Assess (2016) 30:175–187

DOI 10.1007/s00477-015-1063-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-015-1063-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00477-015-1063-z&amp;domain=pdf


nitrate-N and the mapping of potential contamination under

uncertainty conditions (Saidi et al. 2011). Three methods

for assessing aquifer vulnerability include (1) an overlay

and index method; (2) a method employing process-based

simulation models; and (3) a statistical method (National

Research Council 1993). The DRASTIC model of aquifer

vulnerability developed by the U.S. EPA (U.S. EPA 1985;

Aller et al. 1987) is such an overlay and index method, and

has been comprehensively used to evaluate potentials of

groundwater pollution in the United States and other

countries (Aller et al. 1987; Babiker et al. 2005; Baalousha

2006; Assaf and Saadeh 2009; Leone et al. 2009). For

example, Babiker et al. (2005) used the GIS-based

DRASTIC model to evaluate aquifer vulnerability in cen-

tral Japan. Their study indicated that net recharge and

hydraulic conductivity were more effective than the

DRASTIC index for aquifer vulnerability assessment. As-

saf and Saadeh (2009) and Leone et al. (2009) adopted the

DRASTIC model to analyze risks and vulnerability of

agricultural potential nitrogen pollution. Baalousha (2010)

established the DRASTIC vulnerability map to plan a ni-

trate monitoring network in New Zealand. However, many

studies also indicated that the DRASTIC model has the low

prediction performance for assessing aquifer vulnerability

in relation to nitrate-N pollution compared to data of ob-

servation (Baalousha 2006; Panagopoulos et al. 2006;

Antonakos and Lambrakis 2007; Assaf and Saadeh 2009).

Therefore, Antonakos and Lambrakis (2007) developed a

modified DRASTIC method, which determined rating

scales and factor weights of factors using logistic regres-

sion and weights of evidence based on observed nitrate-N

data, in attempt to improve the prediction accuracy of ac-

tual nitrogen pollution in groundwater. Saidi et al. (2011)

modified the effective weights of factors in the DRASTIC

model using sensitivity analysis to determine hazard zones

for agricultural nitrogen pollution. Huan et al. (2012) em-

ployed a modified DRASTIC model to assess the aquifer

vulnerability to nitrate in Jilin City of northeast China. In

order to reduce the subjectivity of the overlay index

method, the model was optimized by rebuilding the index

system, adjusting the rating scale of each index, reassign-

ing the index weights, and comparing grading methods for

groundwater vulnerability to nitrate.

Themultivariate statistical technique is an effective tool for

exploring the relationship among hydrogeological, hydro-

logical, and hydrochemical data, and as a consequence is

frequently adopted as classification approaches. Discriminant

analysis (DA) is one of the classification approaches to fore-

cast optimal categories using hydrogeological, hydrological,

and hydrochemical parameters according to two or more oc-

currence categories. For instance, Lambrakis et al. (2004)

investigated the NO3
- distribution in aquifers using factor,

cluster, and discriminant analyses on hydrogeological,

hydrochemical, and environmental data. Papatheodorou et al.

(2007) adopted DA to examine the evolution of groundwater

using several data samples, and to explore the main hydro-

chemical evolution processes. Huang et al. (2011) usedDA to

determine principal sources for coastal water quality dete-

rioration based on spatiotemporal variations. DA is rather

different to other multivariate statistical techniques because

hydrogeological, hydrological, and hydrochemical charac-

teristics of variables need to be grouped in advance. In this

work polluted and unpolluted groups were determined based

on observed nitrate-N data, and the weights of model factors

were characterized using DA.

This study aims to develop a reliable DRASTIC-based

model of aquifer vulnerability assessment which offers

excellent prediction performance of groundwater nitrate-N

contamination in the Choushui River alluvial fan in Tai-

wan. To enhance the prediction performance for aquifer

vulnerability assessment, DA is applied to determine the

weights of factors in the modified DRASTIC model via the

comparison between the observed nitrate-N data and the

results of the modified DRASTIC model. The critical

factors influencing groundwater nitrate-N pollution are

characterized in terms of low, medium, and high concen-

trations. The research findings offer government adminis-

trators sound guidelines for establishing groundwater

protection zones and fertilizer management strategies,

which should help decrease potential risks to human health

due to drinking nitrate-N-polluted water.

2 Hydrogeology of the study area

The Choushui River alluvial fan is located in the western

Taiwan and enclosed by the Taiwan Strait to the west, the

Wu River to the north, the Dulliu Hill and Baguah Mount

to the east, and the Peikang River to the south (Fig. 1). The

alluvial fan occupies an area of about 2500 km2, and can

be mainly classified into the proximal-fan, mid-fan, and

distal-fan areas. The quaternary unconsolidated sediments

underlying the alluvial fan are abundant in groundwater.

The proximal-fan is the primary zone for natural aquifer

recharging. Agricultural landscapes, such as paddy fields

and dry farmlands, are a common sight in this plain. Ac-

cording to climate statistics between 1998 and 2012, the

average annual precipitation is approximately 1572 mm in

the area.

Geological and hydrogeological drilling analyses were

conducted from 1992 to 1998 to evaluate the subsurface

characteristics of the alluvial fan. A network of 77 hy-

drogeological investigation stations and 185 monitoring

wells drilled to aquifers of various depths was simultane-

ously established. The results of the hydrogeological ana-

lysis to a depth of approximately 300 m divided the fan
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deposits in the distal-fan and mid-fan areas into four

marine deposits and four terrestrial deposits (Taiwan

Central Geological Survey (CGS) 1999). Terrestrial de-

posits ranging from medium sand to gravel with high

permeability are considered to be aquifers, whereas marine

deposits ranging from clay to fine sand with low perme-

ability are regarded as aquitards (Liu et al. 2006) (Fig. 2).

The proximal-fan formation is an unconfined aquifer.

Aquitards are primarily located in the distal-fan and mid-

fan areas. The four aquifers from top to bottom are named

‘‘aquifer 1’’, ‘‘aquifer 2’’, ‘‘aquifer 3’’, and ‘‘aquifer 4’’.

The depths of aquifers 1, 2, 3, and 4 vary from 19–66 m,

47–148 m, 122–243 m, and 200–317 m, respectively.

3 DRASTIC model

The DRASTIC model of aquifer vulnerability considers

seven hydrological and hydrogeological factors that influ-

ence and dominate the unsaturated and saturated ground-

water flow, and pollutant transport processes into, via, and

out of a region (U.S. EPA 1985; Aller et al. 1987). The

seven factors of the DRASTIC model are the depth to

groundwater (D), net recharge (R), aquifer media (A), soil

media (S), topography (T), impact of the vadose zone (I),

and hydraulic conductivity (C). The DRASTIC model

adopts an index derived from ratings and weights assigned

to the seven factors. The several levels of each factor are

measured and rated with scores from 1 to 10 (i.e., the

ratings), and the seven factors are assigned weights ranging

from 1 to 5 according to the significance to pollution.

Table 1 lists the weights of the factors used in the tradi-

tional DRASTIC model. The DRASTIC index is quantified

by using a linear combination of the products of ratings and

weights for the seven factors, and is expressed as follows.

DRASTIC index ¼ DwDr þ RwRr þ AwAr þ SwSr þ TwTr
þ IwIr þ CwCr

ð1Þ

where the subscripts w and r of the factors refer to the

corresponding weights and ratings, respectively.

4 Data preparation of the DRASTIC model

The seven factors in the DRASTIC model are related to

several types of data. Table 2 reports data types and

sources used in this study. This work used data on the
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Fig. 1 Choushui River alluvial fan in western Taiwan

Fig. 2 Hydrogeological profile A–B marked in the Fig. 1

Table 1 DRASTIC model factors and their weights proposed by

Aller et al. (1987)

Factors Weights

Depth to groundwater 5

Net recharge 4

Aquifer media 3

Soil media 5

Topography 3

Impact of vadose zone 4

Hydraulic conductivity 2
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average monthly groundwater levels between 1999 and

2005 recorded by the Taiwan Water Resources Agency

(WRA) (2012). The depth to groundwater was obtained by

subtracting the average monthly groundwater level from

the top elevation in each well. Because the DRASTIC

model highlights the groundwater movement and pollution

processes from the ground to the uppermost saturated

groundwater, only 46 data for the groundwater levels lo-

cated in aquifer 1 were considered to acquire the depth to

groundwater (shown in Fig. 1). The data on average rain-

fall and evapotranspiration between 1999 and 2005 ob-

served by the Taiwan WRA (2012) and Taiwan Central

Weather Bureau (CWB) (2012), respectively, were adopted

to calculate the net recharge. The net recharge at each

rainfall station was determined according to the following

formula (Babiker et al. 2005):

Net recharge ¼ Rainfall�evapotranspirationð Þ
� recharge ratio ð2Þ

Ten rainfall stations and two evapotranspiration stations

were situated in the study area (Fig. 1). To simplify the

evapotranspiration calculation, the spatial variability of

evapotranspiration data was not considered. The average of

the two evapotranspiration data readings was adopted in

Eq. (2). Moreover, the net recharges for various land use

types were estimated with the reference to the recharge

ratios proposed by Chow et al. (1988) and shown in

Table 3. Furthermore, the borehole data on soil textures

published by the Taiwan CGS (2012) were used to analyze

the factors of aquifer media, soil media, and impact of the

vadose zone. Before analyzing the borehole data, the av-

erage monthly groundwater level was utilized to determine

unsaturated zones and saturated aquifers in each borehole

(Jang et al. 2013b). The factor of soil media related to the

texture of the soil from the ground surface to the 1 m

depth. The factor of the impact of the vadose zone repre-

sented the soil texture from the 1 m depth to the uppermost

saturated aquifer. The factor of the aquifer media denoted

the soil texture within the saturated aquifer. Analysis of the

three factors obtained from borehole data required prior

knowledge of groundwater levels and location of the un-

saturated zones and saturated aquifers; therefore, only 46

borehole data were used in this study (Fig. 1). Although the

geological and hydrogeological conditions in this study

area frequently present a complicated pattern of several

overlapping soil layers, dominant soil textures were se-

lected to represent the three factors. The slope for the to-

pography factor was estimated from the elevation obtained

using the digital terrain model (DTM). Forty-six data on

hydraulic conductivity in aquifer 1, published by the Tai-

wan CGS (1999), were used in this work (Fig. 1). Addi-

tionally, the average observed nitrate-N concentrations

between 1999 and 2003 documented by the Taiwan Sugar

Company (TSC) (1999, 2000, 2001, 2002, 2003) were used

to determine the polluted and unpolluted groups in this

study area according to different concentration thresholds.

The observed nitrate-N concentrations at 46 monitoring

wells ranged from 0 to 12.7 mg/L. This study individually

used the nitrate-N thresholds of 0.5, 3, and 5 mg/L to

establish groundwater protection zones. Polluted and un-

polluted groups in the modified DRASTIC model were

determined based on each nitrate-N threshold. Observed

nitrate-N data exceeding or equaling the threshold be-

longed to the polluted group, while those less than the

threshold were regarded as the unpolluted group. Nitrate-N

concentrations exceeding 0.5, 3, and 5 mg/L were found

for 14, 11, and 7 wells (Fig. 1), respectively.

Table 2 Information and sources of data used in this study

Data names Data sources Date Data number Factors involved

Groundwater levels Taiwan WRA (2012) 1999–2005 46 D

Soil textures Taiwan CGS (2012) – 46 A, S, and I

Rainfall Taiwan WRA (2012) 1999–2005 10 R

Evapotranspiration Taiwan CWB (2012) 1999–2005 2 R

Hydraulic conductivity Taiwan CGS (1999) – 46 C

Elevation DTM (raster data, 40 m by 40 m)a – – T

Nitrate-N concentrations TSC (1999, 2000, 2001, 2002, 2003) 1999–2003 46 –

a Data surveyed by the Aerial Survey Office, Taiwan Forestry Bureau

Table 3 The recharge ratios of various land use types

Land use types Recharge ratio

Developed area

Road/building roof 0.10

Park/lawn 0.55

Undeveloped

Cultivated land 0.60

Pasture/range 0.65

Forest/woodlands 0.70

Modified from Chow et al. (1988)
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5 Discriminant analysis

Discriminant analysis (DA) is a multivariate statistical ap-

proach that is extensively used to characterize several pa-

rameters into mutually exclusive and exhaustive categories

according to independent variables (Wiggine et al. 1999).

DA has two functions—classification and prediction. DA is

used to partition cases into the values of a categorical de-

pendent variable. If DA is effective, the classification of

correct and incorrect estimates gives rise to a high percentage

of correct ratios. A discriminant function is a latent variable

established by using a linear combination of independent

variables. Linear combinations of independent variables

using DA discriminate among the categories and minimize

misclassification. In DA, a discriminant function is estab-

lished for the known category g and is expressed as

f ðgÞ ¼ k þ
Xn

j¼1

wjpj ð3Þ

where k is the constant; n represents the number of pa-

rameters; and wj denotes the weight assigned to a pa-

rameter pj by DA (Sharma 1996). DA is based on prior

knowledge of separated samples by various categories in

advance. Classification using DA objectively characterizes

the relationship between the main parameters via the linear

combinations of the hit ratio which is defined as the ratio of

the correctly classified number to the total number. A

larger hit ratio stands for a more excellent classification.

This study classified monitoring wells into two groups—

pollution and no pollution—in advance based on observed

nitrate-N data. DA was employed to establish the dis-

crimination model with all factors of the DRASTIC model.

SPSS (SPSS Inc. 1998) was used to execute DA. Addi-

tionally, the area under the curve (AUC) of the receiver

operating characteristic (ROC) was adopted to quantify the

classification results (Swets 1995). The correct classifica-

tion ratio, which is defined as a ratio of the true positive

and true negative to the total number (i.e., (a ? d)/N in

Table 4), was also used to gauge the prediction accuracy.

6 Ratings of factors and index in the traditional
DRASTIC model

This work determined ratings of the factors D, R, T, and

C according to the standards of the U.S. EPA (1985) and

Aller et al. (1987). Meanwhile, because the factors A, S,

and I are categorical variables, and the hydrogeological

settings in the U.S. are considerably different from those in

the alluvial fan in Taiwan, this study used eight categories

of soil textiles proposed by the Taiwan CGS (1999)—

coarse gravel (cG), gravel (G), fine gravel (fG), coarse sand

(cS), medium sand (mS), fine sand (fS), mud (M), and clay

(C)—to gauge ratings of the factors. Table 5 lists the rat-

ings of the factors in the DRASTIC model. Figure 3 shows

the box-and-whisker plots of the ratings of each factor for

Table 4 Prediction

classifications obtained from

ROC (Swets 1995)

Predicted values True values

Positive Negative Number

Positive True positive (a) False positive (b) a ? b

Negative False negative (c) True negative (d) c ? d

Number a ? c b ? d a ? b ? c ? d = N

The positive is the unpolluted event, while the negative is the polluted event

Table 5 Ratings of factors used

in the DRASTIC model
Ratings Da (m) Ra (cm/yr) Ab Sb Ta (%) Ib Ca (m/day)

1 [30 0–5 C, M C, M [18 C, M \4

2 22.5–30 – – 4–12

3 15–22.5 5–10 12–18 –

4 – – fS fS – fS 12–28

5 9.0–15 – mS mS 6–12 mS –

6 – 10–17 – 28–40

7 4.5–9.0 – cS cS – cS –

8 – 17–25 – 40–80

9 1.5–4.5 [25 2–6 –

10 0–1.5 – cG, G, fG cG, G, fG 0–2 cG, G, fG [80

a The ratings proposed by Aller et al. (1987)
b cG coarse gravel, G gravel, fG fine gravel, cS coarse sand, mS medium sand, fS fine sand, M mud, C clay
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observed nitrate-N. The analyzed results account for the

high ratings of factors R, A, S, and I having the wide dis-

tributions of observed nitrate-N concentrations. Mean-

while, the low ratings of factors D and T possess the broad

distributions of observed nitrate-N concentrations. The

distributions of observed nitrate-N concentrations are wide

for the high and low ratings of factor C, while the medium

ratings of factor C possess low observed nitrate-N con-

centrations. Figure 4 maps the spatial distributions of the

ratings of the factors. The ratings of factors R, A, S, I, and

C are high in the proximal-fan and eastern regions. High

factor D ratings are mainly distributed in the mid-fan and

distal-fan zones, while factor T has low ratings in the

plains, but high in the eastern foothills.

The traditional DRASTIC index was calculated with

Eq. (1) using the aforementioned ratings and weights of the

factors. Moreover, the kriging method of the SURFER

software was used for spatial interpolation of the ratings of

each factor based on well data. A 65 9 85 grid was dis-

cretized with a spacing of 1000 m. Figure 5 displays the

spatial distributions of the traditional DRASTIC index

ranging between 61 and 215. The high DRASTIC indexes

([145), which denote high contamination potentials of

nitrate-N, are present primarily in the proximal-fan and

southeastern and central mid-fan regions.

7 Modified DRASTIC model using DA
to determine weights of factors

It has been pointed out in several studies that the index of

the traditional DRASTIC model is poorly correlated with

the observed nitrate-N concentrations (Baalousha 2006;

Antonakos and Lambrakis 2007; Assaf and Saadeh 2009).

In this study, the correlation coefficient between them was

0.15. To enhance the prediction performance of aquifer

vulnerability assessment, this work adopted DA to deter-

mine the weights of the factors in the DRASTIC model

based on the observed nitrate-N concentrations. Nitrate-N

concentration thresholds of 0.5, 3, and 5 mg/L were used to

characterize low, medium, and high levels of pollution,

respectively. Polluted and unpolluted groups were catego-

rized for each aforementioned concentration threshold.

The discriminant functions for nitrate-N concentration

levels of 0.5, 3, and 5 mg/L are as follows.

Function1 ¼ �2:73� 0:17Dþ 0:15Rþ 0:18Aþ 0:09S

þ 0:13T þ 0:07I þ 0:04C ð4Þ

Function 2 ¼ �1:40� 0:10Dþ 0:11Rþ 0:4A� 0:09S

� 0:02T þ 0:05I þ 0:01C ð5Þ

Function 3 ¼ �0:17� 0:07Dþ 0:12Rþ 0:03Aþ 0:06S

� 0:13T þ 0:28I � 0:02C ð6Þ

The analyzed results indicate that factors R, A, and

I positively contribute to the DRASTIC index, whereas

factor D is negatively correlated with the DRASTIC index

for the three thresholds. Chen and Liu (2003) documented

that because a thick gravel layer is present in the proximal-

fan of the Choushui River alluvial fan, nitrate-N can quickly

move downward to deep aquifers (more than 200 m). Thus,

the depth to groundwater is negatively correlated with the

nitrate-N concentrations in this study. The positive or

negative contributions of factors S, T, and C to the DRAS-

TIC index vary with various thresholds. Antonakos and

Lambrakis (2007) also presented a negative weight for

factor I in the modified DRASTIC model using logistic re-

gression for the nitrate concentration level exceeding

50 mg/L. Additionally, the DRASTIC index was newly

obtained from the discriminant functions and the ratings of

the factors. The ratings of the factors in the modified

DRASTIC model were the same as those in the traditional

one. A cut-off value of the DRASTIC index was calculated

from the averages of the polluted and unpolluted groups.

ThemodifiedDRASTICmodelusingDAtoadjustweights of

the factors obtains correct classification ratios of polluted and

unpolluted groups ranging from 81 to 87 %, while the AUC

ranges from0.91 to 0.95 for three thresholds. This is indicative of

its high prediction performance for aquifer vulnerability assess-

ment. For the traditional DRASTIC model, the correct classifi-

cation ratios of polluted and unpolluted groups only range

between 49 and 67 %, and the AUC is 0.62. The above results

illustrate that the prediction performance of the modified

DRASTICmodel is superior to that of the traditional DRASTIC

model. Figure 6 shows the modified DRASTIC indexes for

concentration thresholds of 0.5, 3, and 5 mg/L, respectively.

Recommended groundwater protection zones were delineated

according to cut-off values reported in Table 6. Figure 7 maps

the determinedprotection zones obtainedwith the traditional and

modifiedDRASTICmodels.Thedeterminedprotectionzones in

the modified DRASTIC model are smaller than those in the

traditionalDRASTICmodel, indicating that the protection zones

delineated by the modified DRASTIC model are more accurate

than those determined by the traditional DRASTIC model. A

management scheme for farmland fertilizer utilization can be

effectively implemented in the groundwater protection zones

determined by the modified DRASTIC model.

8 Sensitivity of the Factors

This study attempted to characterize the sensitivity of the

factors in the aforementioned discriminant functions, and

examine key factors influencing groundwater nitrate-N

pollution in the Choushui River alluvial fan. The average

values of each factor for polluted and unpolluted groups
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Fig. 3 Box-and-whiskers plots of the ratings of the factors against observed nitrate-N

Stoch Environ Res Risk Assess (2016) 30:175–187 181

123



Fig. 4 Spatial distributions of the ratings of the factors a D, b R, c A, d S, e T, f I, and g C
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were individually calculated, and served as inputs into

Eqs. (4), (5), and (6) for different nitrate-N thresholds. The

absolute difference of each factor between the polluted and

unpolluted groups was used to evaluate the sensitivity of

factors in the discriminant functions.

Table 7 lists the absolute difference of each factor be-

tween the polluted and unpolluted groups for the nitrate-N

threshold of 0.5 mg/L. The results of the analysis reveal

that terms 0.18A and -0.17D in discriminant function 1

greatly impacts the aquifer vulnerability assessment.

Table 8 documents the absolute difference of each factor

between the polluted and unpolluted groups for the nitrate-

N threshold of 3 mg/L. Term 0.4A in discriminant function

2 has significant influences on the aquifer vulnerability

assessment, while the term -0.1D is second. Table 9 re-

ports the absolute difference for each factor between the

polluted and unpolluted groups for the nitrate-N threshold

of 5 mg/L. Term 0.28I in discriminant function 3 is the

most critical factor, dominating the aquifer vulnerability

assessment. Accordingly, factors D and A are the key

factors impacting the nitrate-N pollution level of less than

3 mg/L (medium and low thresholds), whereas factor

I plays the crucial role in controlling nitrate-N pollution of

over 5 mg/L (high threshold).

Compared with previous studies related to the DRASTIC

models, Babiker et al. (2005) documented that the factor of

net recharge is the most important for assessing aquifer

vulnerability, Antonakos and Lambrakis (2007) stated that

the depth to groundwater, aquifer media, topography, impact

of the vadose zone media, and land use are significantly

correlated to groundwater nitrate-N pollution, and Saidi

et al. (2011) considered that hydraulic conductivity and to-

pography play important roles in assessing aquifer vul-

nerability. However, our study results differ from their ones,

revealing that the causes of groundwater nitrate-N pollution

depend on regional hydrological and hydrogeological

characteristics. Additionally, previous modified DRASTIC

studies using statistical methods, such as Panagopoulos et al.

(2006), Antonakos and Lambrakis (2007), and Chen et al.

(2013), adopted a single nitrate-N threshold to discuss the

relationship between the groundwater pollution and several

environmental factors. This work used three nitrate-N

thresholds to characterize various levels of pollution and the

major factors. Our research findings obtained from the

multi-threshold analysis of nitrate-N pollution can give

government administrators excellent insights in differenti-

ating management schemes for farmland fertilizer use. For

example, in a determined groundwater protection zone,

farmland fertilizer use should be more rigorous in the re-

gions with highly permeable vadose zones than in those with

deep groundwater and highly permeable aquifer media.

9 Conclusions

This study modified the weights of the factors in the

DRASTIC model using DA and determined the DRASTIC

index in the Choushui River alluvial fan. According to the

Fig. 5 Spatial distributions of

the index in the traditional

DRASTIC model
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Fig. 6 Spatial distributions of

the index in the modified

DRASTIC model for the

a 0.5 mg/L, b 3 mg/L and

c 5 mg/L
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Table 6 Correct classification ratios of polluted and unpolluted groups for three thresholds

Thresholds

(mg/L)

Correct classification ratios

of polluted groupsa (%)

Correct classification ratios

of unpolluted groupsb (%)

Total correct classification

ratiosc (%)

AUC Cut-off

values

For the modified DRASTIC model using DA to adjust weights of factors

0.5 87 86 86 0.95 0.25

3 82 87 86 0.92 0.55

5 86 81 82 0.91 0.53

For the traditional DRASTIC model

0.5 57 53 56 0.62 125

3 60 67 64 0.62 128

5 57 49 50 0.62 124

a Correct classification ratiosThe discriminant functions for of polluted groups: d/(b ? d) in Table 4
b Correct classification ratios of unpolluted groups: a/(a ? c) in Table 4
c Total correct classification ratios: (a ? d)/N in Table 4

Fig. 7 Polluted and unpolluted regions determined according to the DRASTIC indexes. a cutting value = 125 in the traditional DRASTIC

model, and cutting value = b 0.25, c 0.55, and d 0.53 in the modified DRASTIC model for nitrate-N of 0.5, 3, and 5 mg/L, respectively
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research findings, the prediction performance of ground-

water nitrate-N pollution in the modified DRASTIC model

can be significantly improved compared to that of the tra-

ditional DRASTIC model. To avoid great exposure risks

which will affect public health, the high index of the

modified DRASTIC model can be used to determine

groundwater protection zones where farmland fertilizer

utilization should be substantially reduced. Additionally, it

is found that the depth to groundwater and aquifer media

has a substantial impact on the nitrate-N pollution of

medium to low concentrations (0.5–3 mg/L), while the

impact of the vadose zone remarkably influence nitrate-N

pollution in high concentrations (exceeding 5 mg/L). The

multi-threshold analysis result is useful for differentiating

the management schemes in the determined groundwater

protection zones. This research suggests that farmland

fertilizer use should be strictly limited in the regions with

highly permeable vadose zones.
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