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Abstract A growing number of studies on streamflow

projection in the context of global climate change have

been widely reported in past years. However, current

knowledge on the role of different hydrological models to

estimate future climate impact on flood in the Tibet Plateau

is still limited so far. In this work, a group of hydrological

models in conjunction with statistical downscaling outputs

(SDSM and ANN) from the HadCM3 GCM model are used

to evaluate the impacts of climate change on floods in the

21st century over the headwater catchment of Yellow

River, the Tibet Plateau. The influence of different hy-

drological models on flood projection and quantile esti-

mation are addressed. The results show that: (1) three

hydrological models generate acceptable results of flood

magnitude and frequency at Tangnaihai station during the

past 50 years; (2) quite similar projections for future floods

are obtained by means of different hydrological models,

decreasing flood magnitude corresponding to the 2-, 5-, 10-

and 50-year return periods is found under most scenarios in

the 21st century. Meanwhile, flood frequency is likely to

reduce in response to climate change; (3) the uncertainty in

projected flood quantile by three different hydrological

models increases with recurrence interval in term of rela-

tive length of confidence interval (RL). Besides, RL for

flood quantile in future climate scenarios is likely to be-

come larger than the baseline period. The results are

valuable to improve our current knowledge of climate

impact research in the alpine regions.

Keywords Climate change � Floods � Uncertainty
estimation � Multiple hydrological models

1 Introduction

Influenced by increasing concentration of greenhouse gases

since pre-industrial time and the subsequent global warm-

ing, hydrological cycle has changed significantly (Milly

et al. 2005). Meehl (2007) found that the precipitation in-

tensity is generally projected to increase, particularly at

middle and high latitudes. Extreme hydrological events

(e.g. floods, debris flows, and droughts) are likely to in-

crease in frequency, duration and magnitude in climate

sensitive regions (Milly et al. 2005; Sivakumar 2011).

Therefore, studies on extreme hydrological events in re-

sponse to global climate change have grown fast in recent

years (Baguis et al. 2010).

Till far, there are a number of literatures addressing

future flood or drought in the context of global climate

change. For instance, Dankers and Feyen (2008) evaluated

the impacts of climate change on future flood hazards in

Europe by means of multiple regional climate models

(RCMs). It was found that obvious inconsistence in the

magnitude of Q100 (flood corresponding to the 100-year

return period) exists among the hydrological simulations

for different climate experiments. This motivated a multi-

ple-model means to reduce possible uncertainty in
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subsequent climate impact assessment. Subsequently, the

knowledge about climate impact on future flood in Europe

is further enriched by Rutger and Luc (2009), Rojas et al.

(2012) and Kay and Crooks (2014). Ngongondo et al.

(2013) analyzed climate change impact on flood in the

southern Africa by using outputs from three GCMs to force

the hydrological model WASMOD-D. Immerzeel et al.

(2010) studied climate change impact on the Asian water

towers (i.e. Indus, Ganges, Brahmaputra, Yangtze, and

Yellow rivers) using a revised snowmelt runoff model and

climate scenarios from five GCMs. Xu et al. (2011) pro-

jected intra-annual change in flood discharge based on

SWAT hydrological model and multiple GCM models in

Yellow River basin. Similar study by Yang et al. (2014)

was also conducted in the headwater catchment of Yellow

River. These studies show flood indicators are generally

derived from annual maximum streamflow series (AMAX),

streamflow percentiles and peak over threshold series

(POT). Flood corresponding to T-year return level based on

AMAX is a more common indicator in flood projection

studies. In some studies, POT series are also used to denote

the flood frequency, i.e. changes in the number of floods

occurring each year.

Notwithstanding a series of similar scientific efforts

have been committed worldwide (Piao et al. 2010), mod-

elling studies on floods in response to climate change are

still highly challenging for hydrologists due to substantial

uncertainty inherently existing in GCMs, downscaling

methods and hydrological models in reproducing climate

and floods. Furthermore, runoff processes in the Tibet

Plateau generally differ from those in the humid zones

(Wilbly and Harris 2006): runoff recharge source is com-

posed of precipitation, snow- and glacial-melt collectively.

Floods in the Tibet Plateau are strongly affected by pre-

cipitation and temperature, and therefore are more sensitive

to climate change than in the humid regions. Hence, flood

modelling in response to climate change in such regions is

more complex and challenging to science community.

Meanwhile, previous investigations were mainly focused

on the uncertainty induced by GCMs, RCMs and the

greenhouse gas scenario in assessing climate change im-

pacts (e.g. Dankers and Feyen 2008; Rojas et al. 2012).

Since hydrological models have been widely used to gen-

erate future streamflow scenarios in climate impact study,

uncertainties introduced by a wide range of hydrological

models should be sufficiently addressed.

The Tibet Plateau is located in a high elevation and cold

area, where hydrological and ecological processes are

highly sensitive to climate change (Houghton 2001).

Therefore, growing studies on climate change and impact

research in this region have been reported. So far, most of

the studies focus on analyzing change in local climate

variables (e.g. Wang and Yang 2012), mean annual and

monthly streamflow (e.g. Xu et al. 2009; Liu et al. 2011;

Tang et al. 2008; Zhang et al. 2012, 2013a, b) during

historical or future period. Only few studies (Yang et al.

2014; Xu et al. 2011) on future flood could be found.

Moreover, the difference in projected flood between dif-

ferent hydrological models has not been well studied in

both above studies, resulting in limited knowledge on the

role of different hydrological models to estimate future

climate impact on flood. Therefore, this study strives to

address the potential impact of climate change on flood

magnitude (based on AMAX) and on flood frequency

(based on POT series) in the headwater catchment of

Yellow River (belonging to the Tibet Plateau) using a

range of hydrological models. Toward this end, the article

aims to: (1) testify different skills for various hydrological

models in reproducing floods; (2) evaluate and compare the

changes in magnitude and frequency of future high-flow

series generated by diversified hydrological models under

the condition of climate change; (3) quantify the uncer-

tainty in flood quantile estimation by different hydrological

models in future climate scenarios. The results are ex-

pected to contribute in improving our knowledge on

simulation and projection of hydrological extremes in re-

sponse to climate change in the elevated and cold moun-

tainous regions. This is beneficial for policymakers and

stakeholders in local water hazard mitigation management.

2 Study area and data set

2.1 Study area

The source region of the Yellow River refers to the

catchment between 96�–101�300E and 33�450–37�050N,
with a contributing area of 121,000 km2 upstream at

Tangnaihai station (Fig. 1). It belongs to the Tibet Plateau

(YRCC (Yellow River Conservancy Commission) 2002).

The region is dominated by a semi-humid monsoon cli-

mate. Annual average air temperature ranges from ap-

proximately -4 to 2 �C (Xu et al. 2009). The annual

average precipitation is about 450 mm. Meanwhile, pre-

cipitation in the flood season (from July to October) ex-

ceeds 70 % of the total annual precipitation. Runoff

processes are dominated by snow melt and precipitation.

The mean elevation of the basin is about 4000 m above

sea level. Frozen areas at the high altitude are pretty sen-

sitive to climate change. Even slight changes of climate

would induce change of permafrost, hence impacting water

recycling in the region. During recent years many envi-

ronmental issues have emerged, including degradation of

environment, decrease of available water resources and

acceleration of soil erosion due to significant climate

change and increasing pressure generated by economic
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development. Consequently, growing studies were reported

on climate change and impact research (e.g. Xu et al. 2009;

Zhang et al. 2009).

2.2 Data

Available observations at 11 meteorological stations

(Table 1), including daily precipitation, mean temperature,

sunshine duration, wind speed, relative humidity and pan

evaporation data (1961–2005), were collected from the

National Climate Center. The vegetation data used in this

study was obtained from the land cover classification map

of China from the Chinese Academy of Sciences. The

streamflow data for three hydrological stations (Jimai,

Maqu and Tangnaihai) and a digital elevation model were

from the Hydrological Bureau of Yellow River.

The 26 atmospheric variables as predictors were derived

from the following two datasets with a spatial resolution of

3.75� (longitude) 9 2.5� (latitude): (1) daily reanalysis

dataset of NCEP/NCAR for 1961–2003; (2) outputs of

scenarios A2 and B2 of HadCM3 during 1961–2099.

HadCM3 model shows relatively better performance in

96 E0 97 E0

98 E0 99 E0 100 E0 101 E0 102 E0 103 E0

32 N0

Outlet

Maduo

Zhongxinzhan

Dari

Jiuzhi

Xinghai

Tongde

Zeku

Henan

Maqu

Ruoergai

HongyuanLengend
Hydrological station

Meteorological station
Lake
Tributaries

Mainstream

100km 200km 300km

97 E096 E0 104 E0

33 N0

34 N0

35 N0

36 N0

32 N0

33 N0

34 N0

35 N0

36 N0

32 N0

98 E0 99 E0 100 E0 101 E0 102 E0 103 E097 E096 E0 104 E0

Longtitude (E)o

La
tit

ud
e 

(N
)

o

6021

2678
Elevation 
    (m)

Fig. 1 Map of the headwater catchment of Yellow River basin

Table 1 List of 11 meteorological gauges (1961–2005) in the headwater region of the Yellow River (Source of data: The National Center of

Climate, China)

Site name Site number Longitude Latitude Average annual

temperature (�C)
Average annual

precipitation (mm)

Xinghai 52,943 99.98�E 35.58�N 1.36 353.6

Tongde 52,957 100.65�E 35.27�N 0.38 429.7

Zeke 52,968 101.47�E 35.03�N -2.12 474.3

Maduo 56,033 98.22�E 34.92�N -3.72 308.2

Zhongxin zhan 56,041 99.20�E 34.27�N -3.79 459.3

Dari 56,046 99.65�E 33.75�N -0.88 543.3

Henan 56,065 101.60�E 34.73�N 0.31 580.4

Jiuzhi 56,067 101.48�E 33.43�N 0.61 762.2

Maqu 56,074 102.08�E 34.00�N 1.53 602.3

Ruoergai 56,079 102.97�E 33.58�N 1.11 647.6

Hongyuan 56,173 102.55�E 32.80�N 1.43 753.0
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modeling temperature and precipitation in the East Asian

regions (Xu et al. 2002), therefore the outputs of HadCM3

model after a quantile–quantile mapping transformation

(Boe et al. 2007; Themeßl et al. 2011) were corrected and

used in this study.

3 Methodology

3.1 Downscaling method

3.1.1 The statistical downscaling method (SDSM)

The SDSM, developed by Wilby et al. (2003), is a hybrid

of a stochastic weather generator and regression methods.

This method can apply a variety of data transformation

types (e.g. squares, cubes, fourth powers) to the predictor

and/or the predict and variables prior to calibration of

downscaling model, obtaining secondary data series of the

predict and and/or the predictor that have stronger corre-

lations than the original data series. In addition, lagged

predictor variables can be generated by means of shifting

data series forward or backward by any number of time

steps. As a consequence of its advantages over some other

downscaling methods (Diaz-Nieto and Wilby 2005),

SDSM is recommended as an effective tool for climate

impact studies in many regions worldwide (e.g. Kim et al.

2006; Hashmi et al. 2011; Tatsumi et al. 2014). Application

of HadCM3 and SDSM can also be found widely during

past years (e.g. Xu et al. 2009; Chu et al. 2010).

As a preliminary basis for this study, statistical down-

scaling of temperature and precipitation in headwater

catchment of Yellow River has been conducted by means

of SDSM statistical model from the HadCM3 GCM model

(Wang and Yang 2012). In the work, Nash–Sutcliffe effi-

ciency measure (NSE), root-mean-square error (RMSE)

and the ratio of standard deviation of the modeled and

observed indices (RS) are selected as criteria for perfor-

mance assessment. Results indicated that the model skills

for temperature extremes are satisfactory (average NSE

[0.95), while the performance in precipitation is weaker

but acceptable (average NSE[0.60). Details described in

Wang and Yang (2012) are not addressed in this article.

3.1.2 The artificial neural network methodology (ANN)

Since the first simple neural network is proposed by

McCulloch and Pitts (1943), many types of ANN have

been developed. The models are characterized by nonlinear

nature, which makes the ANNs more efficient in identify-

ing and representing relationships using noisy data (He-

witson and Crane 1996). The BP neural network model

applied in this study is the most commonly used ANN

model. A typical BP neural network model is composed of

an input layer, a hidden layer and an output layer. The

model adopts a feed-forward configuration and its learning

process is based on back propagation method (Wasserman

1989). This algorithm repeatedly runs through the training

data, comparing the simulated and the observed values of

the output variables. The back propagation learning algo-

rithm has two parameters: the learning rate (g), and the

momentum factor (a). In past years, ANN has been widely

used in downscaling precipitation where the highly non-

linear processes are involved that cannot be captured well

by other methods (e.g. Coulibaly et al. 2005; Schoof and

Pryor 2001). In present study, three indices (NSE, RMSE

and RS) are selected as criteria for performance assessment

of ANN in modeling climate variables.

3.2 Hydrological models

The river flow simulations performed in this study were

carried out with HBV model, XAJ model and TOPMO-

DEL, where both XAJ model and TOPMODEL are ex-

tended by adding snow accumulation and melt components

(see Sect. 3.2.4). Presently, only a 0.1 percentage of study

region area approximately is dominated by the glaciers

(e.g. YRCC (Yellow River Conservancy Commission)

2002). A number of previous studies (e.g. Xu et al. 2009;

Zhang et al. 2013b) concentrated on discharge change for

the headwater catchment of major rivers over the Tibetan

Plateau, finding minor difference in simulated monthly

discharge between VIC-glacier model and VIC model in

the headwater catchment of the Yellow River. Therefore,

the glaciermelt-induced streamflow has not been taken into

accounts in modeling the runoff processes in this study.

Calibrations of the three models are performed using the

method of Monte Carlo. For a given hydrological model,

three steps are done to obtain the most skillful parameter

set: (1) range for each parameter included in the Monte

Carlo simulation is specified (addressed in our previous

work, Chen et al. 2013). Next, each parameter value is

drawn uniformly and independently from the ranges by

means of Monte Carlo method (runs = 100,000). (2) The

created 100,000 parameter sets in conjunction with the

other model input data are used to drive the hydrological

model, thus 100,000 flow sequences are generated in ref-

erence period (the calibration or validation period). (3) The

most appropriate parameter set is acquired. In this step, if

the goodness of fitness between the ith simulated daily

streamflow series and observed values in reference period

is highest, the corresponding ith parameter set is regarded

as the most skillful one. In the study, 1961–1990 is used for

calibration; 1991–2005 is for validation.
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3.2.1 HBV model

The HBV model (Bergström 1995) is a precipitation-runoff

model, which has been developed at Swedish Meteoro-

logical and Hydrological Institute. In past years, it has been

successfully and widely applied to different countries all

over the world (Bergström 1995; Seibert 2003; Krysanova

et al. 1999). The HBV light version is used in this study. It

is normally run on daily data for precipitation, and air

temperature, and monthly potential evaporation estimated

by the Penman formula (Penman 1948). A spatial dis-

cretization was used in this region, where calculation was

conducted in 10 elevation zones. Three main modules in-

cluded in the model are snow accumulation and melt, soil

moisture routing, and river routing and response modules.

Snowmelt routine is simulated using a degree-day ap-

proach. More details about the model are available from

above mentioned references.

3.2.2 TOPMODEL

TOPMODEL (Beven and Kirby 1979) is a variable con-

tributing area conceptual model in which the topography of

the basin is one of predominant factors determining

streamflow generation. The model has been widely re-

ported across the world (e.g. Beven 1997; Huang and Jiang

2002). It was originally developed to simulate hydrological

processes in humid catchments (Quinn and Beven 1993;

Robson et al. 1993). Presently, TOPMODEL has been

extended to simulate hydrological processes in alpine re-

gions (e.g. Schild et al. 1998; Volk 2000). Detailed de-

scription of the model can be found in above mentioned

references, it is therefore not presented here.

3.2.3 XAJ model

XAJ model, developed by Zhao et al. (1980), is a well-

known lumped watershed model. The structure of the

model is available in many references (Li et al. 2009; Zhao

1992). The soil is considered as three vertical layers in

evapotranspiration module: an upper layer, a lower layer

and a deep layer (Jayawardena and Zhou 2000). With a

consideration of partial-area runoff generation, a parabolic

curve is utilized to express spatially heterogeneous distri-

butions of tension water storage capacity. Routing in

channel system is estimated by Muskingum routing

scheme. Recently, studies on projecting future scenarios of

runoff processes under climate change based on this model

have been reported for various worldwide regions (e.g.

Jiang et al. 2007; Ju et al. 2009).

3.2.4 Snow accumulation/melt models

Generally, TOPMODEL and XAJ model do not have snow

accumulation and melt simulation components. For this

study the two models are extended by adding the proce-

dures as follows. Snow accumulation is simulated from

precipitation by using atmospheric temperature records to

separate the precipitation into snow and rainfall (Davies

1997). The well-known degree-day approach is chosen for

estimating snowmelt; it has been successfully verified

word-wide over a range of catchments (e.g. Davies 1997).

The basic equation of the degree day method is:

M ¼ Cm T � Tmeltð Þ ð1Þ

where M is the daily snowmelt (mm/day), Cm is the melt

rate factor (mm/�C per day), T is the mean daily tem-

perature (�C), and Tmelt is the critical temperature for melt

to occur (�C). The degree–day factor is an empirical con-

stant that accounts for all the physical factors not included

in the model, which varies with the land cover.

3.2.5 Measures of model skills

For statistical measurements of hydrological model per-

formances, Nash–Sutcliffe efficiency (NSE, Nash and

Sutcliffe 1970), root-mean-square error (RMSE) and per-

cent bias (PBIAS, Gupta and Sorooshian 1999) were se-

lected to compare observed streamflow to the model

simulations.

The differences (residuals) between simulated values by

a model and the observed values can be measured by

RMSE, defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 ðOi � SiÞ2

n

s

ð2Þ

where n is the number of time-steps, Oi is the observation

at time step i, and Si is the simulation at time step i. A

smaller RMSE value indicates a better model performance.

The average tendency of the simulated data to be larger

or smaller than their observed counterparts measured by

PBIAS is simulated:

PBIAS ¼
Pn

i¼1 ðOi � SiÞ � 100
Pn

i¼1 Oi

� �

ð3Þ

The optimal PBIAS value is 0. A PBIAS value less than

0 indicates a model bias toward underestimation, whereas a

PBIAS value more than 0 indicates a bias toward

overestimation.

The dispersion degree of variables (RS, Hundecha and

Bardossy 2008) is applied to estimate downscaling model

efficiency:
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RS ¼ Ssim

Sobs
ð4Þ

in which Ssim, Sobs are the standard deviation of the mod-

eled and observed indices, respectively.

3.3 Flood estimation

In the section, we examine two features of flood: frequency

and magnitude. Following the approach of Gellens and

Roulin (1998), flood frequency denotes occurrence days of

high-flow exceeding the 5th percentile of the 1961–1990

baseline period. The flood magnitudes corresponding to T-

year return level are obtained by fitting appropriate prob-

ability distribution to annual maximum 7-day streamflow.

Six probability distributions are used to estimate T-year

return level floods by the L-moments method. The distri-

butions are screened to assess goodness of fit. The rec-

ommended goodness-of-fit criterion is the probability plot

correlation coefficient (PPCC, Looney and Gulledge 1985;

Vogel 1986, Eq. 5):

PPCC ¼
PN

i¼1 ðOi � OÞðSi � SÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 ðOi � OÞ2

PN
i¼1 ðSi � SÞ2

q ð5Þ

where N is the number of time-steps, Oi is the observed

discharge at time step i, and Si is the simulated discharge at

time step i. In addition, O and S are the means of Oi and Si,

respectively. In addition, RMSE (Eq. 2) is used collec-

tively as another measure.

3.4 Measure of uncertainty in flood quantile

estimation

Uncertainty in hydrological modelling for quantile estimate

is generally addressed by means of confidence interval

(Burn 2003). In this section, the method is used for esti-

mating confidence intervals for the annual maximum 7-day

streamflow. Firstly, the best distribution in fitting is

screened based on the method in Sect. 3.3. Flood quantiles

are estimated by means of the L-moments method. The

Monte Carlo simulations (runs = 2000 in this study) are

performed to construct confidence intervals for flood

quantiles. The details for this procedure can be found in the

references (Hosking and Wallis 1997; Yang et al. 2010).

The relative length of confidence interval (RL) is used to

measure the uncertainty in flood quantile estimation:

RL ¼ LimitUpper � LimitLower

S
ð6Þ

where LimitLower and LimitUpper are the lower and upper

boundary values of 90 % confidence interval correspond-

ing to flood quantile. S represents the estimated flood

quantile. High values of RL indicate remarkable uncer-

tainty in flood quantile estimation.

3.5 Construction of future flood scenarios

Future scenarios of rainfall, temperature and evaporation,

downscaled by SDSM and ANN from HadCM3 outputs in

three time periods: (2020s, 2050s and 2080s), force three

hydrological models (HBV, TOPMODEL, and XAJ) to

generate future flood scenarios. Uncertainties in estimating

flood magnitude and frequency by different hydrological

models under the current and future climate conditions are

intercompared.

4 Results and discussion

4.1 Calibration and validation

4.1.1 Validation of the artificial neural network

downscaling model (ANN)

The predictors for the ANN model have been presented in

our previous work (Wang and Yang 2012). The indices for

mean climate and extremes are listed in Table 2, where

three temperature indices, two evaporation indices and two

precipitation indices are included. Table 3 shows the per-

formance of the ANN downscaling method for the indices

of daily mean temperature, evaporation and precipitation in

the calibration (1961–1990) and validation (1991–2000)

periods. It can be seen that the method is perfect in re-

producing the temperature-related indices (NSE [0.95,

2.02 �CC RMSE C1.01 �C). The performance in modeling

precipitation and evaporation-related indices (NSE C0.65,

6.03 mmC RMSE C0.97 mm) is acceptable. Meanwhile,

Table 3 shows that ANN model can reproduce well the

temporal variability of the temperature indices (RS C0.95).

However, the variability of evaporation and precipitation

indices is lower (0.92C RS C0.75).

4.1.2 Inter-comparison of various hydrological models

in reproducing historical streamflow

(1) Hydrological models

This section presents performances of the three hydro-

logical models in simulating observed daily streamflow and

extremes during the period 1961–2005. Table 4 summa-

rizes the performance for three hydrological models in

simulating daily streamflow in the headwater catchment of

Yellow River. It is found that the models can reasonably

simulate daily streamflow at most stations during both the
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calibration and validation periods. Especially, the NSE is

higher than 0.70, and PBIAS is less than 4 % at Tangnaihai

station. There is a decrease in the model performances at

other stations, but the results are still acceptable.

Additionally, the performance of three hydrological

models in simulating floods at Tangnaihai station is slightly

lower than that for daily streamflow: NSE ranges from 0.62

to 0.82. However, the trends of floods are modeled quite

well. Figure 2 shows the trends of observed and simulated

annual Q5 during 1961–2005. The downward trend (sig-

nificant at 0.1 level) shown by the observed Q5 series

matches well with the simulations by three hydrological

models. In general, satisfactory statistical results are shown

in reproducing floods by these models, hence they can be

used in the climate impact study.

(2) Flood return level estimation with six different

probability distributions

Assessment of different return periods flood (maximum

7-day streamflow) is performed during the period

(1961–1990). Six well known probability distributions (i.e.

the Weibull, Gumbel, Generalized Extreme Value, Log

Pearson Type III, Log-Normal Distribution and Pearson

Type III distributions) are used in flood fitting. The results

are listed in Table 5. The similar high values of PPCCs for

these distributions suggest they have consistent good skills

in probability analysis of floods. However, low RMSEs

imply that the Generalized Extreme Value distribution is

appropriate (RMSE = 721.74 m3/s). Inter-comparisons

between simulations by three hydrological models and

observations are presented (Fig. 3). It shows the probability

Table 3 Performance assessment for the predictands in calibration

(during 1961–1990) and validation (during 1991–2000) using ANN

downscaling model

Predictands Calibration Validation

NSE RMSE RS NSE RMSE RS

Tmean 0.96 1.01 1.00 0.95 1.08 0.97

Tmax 0.96 1.29 0.98 0.96 1.59 0.97

Tmin 0.96 1.74 0.98 0.95 2.02 0.95

E 0.68 0.97 0.81 0.65 0.99 0.82

Emax 0.74 1.04 0.82 0.65 1.34 0.75

P 0.70 1.20 0.83 0.65 1.35 0.85

Px5d 0.92 6.03 0.92 0.88 4.08 0.91

Table 2 Statistical indices for mean temperature, evaporation and

precipitation

Temperature-related indices

Tmax Maximum of daily mean temperature in given period (�C)
Tmin Minimum of daily mean temperature in given period (�C)
Tmean Daily mean temperature (�C)

Evaporation-related indices

Emax Maximum of daily evaporation in given period (mm)

E Daily evaporation (mm)

Precipitation-related indices

P Daily precipitation (mm)

Px5d Maximum total precipitation from any consecutive 5 days

(mm)

The given period refers to month

Table 4 Skill scores for three

hydrological models in

calibration (1961–1990) and

validation (1991–2005)

Gauges Periods Measures of skill XAJ TOPMODEL HBV

Tangnaihai Calibration 1961–1990 RMSE 267.09 288.78 235.2

PBIAS (%) 2.01 1.14 2.50

NSE 0.80 0.76 0.85

Validation 1991–2005 RMSE 202.39 247.5 177.39

PBIAS (%) 3.95 -3.13 -1.41

NSE 0.78 0.70 0.82

Maqu Calibration 1961–1990 RMSE 195.49 259.01 202.74

PBIAS (%) 2.16 -7.84 5.03

NSE 0.79 0.65 0.80

Validation 1991–2005 RMSE 190.77 212.39 160.50

PBIAS (%) -16.83 -13.24 -4.60

NSE 0.68 0.61 0.78

Jimai Calibration 1961–1990 RMSE 95.10 108.05 80.31

PBIAS (%) 8.09 -9.90 4.97

NSE 0.62 0.50 0.76

Validation 1991–2005 RMSE 80.95 89.23 70.19

PBIAS (%) 13.63 -13.50 -7.61

NSE 0.51 0.49 0.61
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plots for floods corresponding to different return periods

(2–50 years). Figure 3 suggests the return levels of ob-

served high-flow are generally in agreement with simula-

tions. Therefore, the observations and simulations by XAJ,

TOPMODEL and HBV matched well with an overlap of

the confidence intervals (Fig. 3a–c).

4.2 Projected changes for future climate scenarios

4.2.1 Future scenarios of mean climate

Figure 4 shows the changes in seasonal precipitation,

evaporation and mean temperature between the control

period (1961–1990) and three future periods (2020s, 2050s,

2080s) using SDSM and ANN downscaling methods. It is

found that there are dissimilarities between projected

changes in seasonal precipitation. The precipitation is

increasing obviously in winter and spring. Maximum in-

creases occurring in 2080s were up to 41.8 % in spring and

90.4 % in winter. In summer, there was a consistent de-

crease in 2020s and 2050s. In 2080s, increases in summer

precipitation projected by ANN reach to 39.1 % under A2

scenario and 8.2 % under B2 scenario, while a decrease is

found for SDSM downscaling output. Besides, precipita-

tion in autumn is decreasing in 2020s and increasing in

2080s (Fig. 4a, d).

The change pattern in mean temperature (Tmean) is less

heterogeneous than that in seasonal precipitation. Increase

pattern can be found for Tmean in all seasons (Fig. 4c, f),

with more obvious changes in summer and autumn. Be-

sides, projections under different scenarios are different.

For instance, the growth in Tmean from SDSM down-

scaling output in 2080s (Fig. 4c) ranges from 4.6_C

(winter) to 7.2_C (autumn) under the A2 scenario, and
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Fig. 2 Observed and simulated

high-flow (Q5) by a XAJ;

b HBV; and c TOPMODEL at

Tangnaihai station. The linear

fitting curves indicate the trend

and the p values detect the

significance of the trend

Table 5 Skill scores for frequency analysis of high-flows with six different probability distribution models in baseline period (1961–1990)

Measures of skill Log-normal distribution Generalized extreme value (GEV) Pearson type III Gumbel Log Pearson type III Weibull

PPCC 0.983 0.985 0.981 0.983 0.984 0.980

RMSE 782.10 721.74 811.96 761.29 736.81 812.48
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from 3.5_C (winter) to 5.1_C (summer) under the B2

scenario. General increases in evaporation are also pre-

sented with an exception of SDSM downscaling output in

2020s (Fig. 4b, e). In 2080s, the increase was sensitive to

the choice of emissions scenarios, especially for ANN

downscaling outputs in autumn.

4.2.2 Future scenarios of extreme climate

The changes in monthly maximum consecutive 5 days total

precipitation (Px5d) in period (2010–2099) by two down-

scaling models are presented in Fig. 5. It shows a quite

similar pattern of Px5d in the wet season (i.e. June–Octo-

ber, Fig. 5a–c). Namely, Px5d in three future periods under

different scenarios is smaller than that in control period,

with an exception of ANN model outputs in July and

August in the 2080s (Fig. 5c). What’s more, decreases in

projections from SDSM model are more significant com-

pared with that from ANN model. In the dry period (i.e.

December–February), it shows a complex pattern of both

decreasing and increasing Px5d. It is uncertain to project

how Px5d in dry season will change in future. Similar re-

sults are obtained for monthly maximum evaporation

(Emax). The changes in Emax from different scenarios in

flood season (i.e. June–August) show a common increasing

trend (Fig. 5e, f) in 2050s and 2080s. The pattern is

identical for two downscaling models. The increase ranges

from 0.7 to 42.0 % in 2050s, and 1.1 to 60.6 % in 2080s.

However, no identical changes of Emax in dry period (i.e.

December–February) are found during three future periods.

4.3 Scenarios of flood under climate change

4.3.1 Changes in flood frequency

Figure 6 demonstrates the projected changes in flood fre-

quency (i.e. change in occurrence days of flood exceeds the

5th percentile) in SRES scenarios (A2 and B2) in three

future periods (2020s, 2050s, 2080s) minus the control

simulation (1961–1990) in the catchment. Figure 6a–d

generated by three hydrological models collectively sug-

gest the occurrence days of high-flow will decrease in fu-

ture under most climate scenarios. In detail, the projected

decrease in seasonal average occurrence days of high-flows

by various hydrological models ranges from 7.2 to 10.0 in

summer and from 6.2 to 10.7 in autumn in 2020s, from 6.2

to 9.2 in summer and from 5.8 to 10.9 in autumn in 2050s.

In 2080s, increases in seasonal average flood frequency are

found in HBV and XAJ projection driven by outputs of

ANN model (Fig. 6c, d), while a significant decrease is

observed in the other climate scenarios. In order to explain

these results, the climate changes over the headwater
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catchment of Yellow River should be taken into account.

As Figs. 4 and 5 show, precipitation will decrease in

summer under most future climate scenarios, and obvious

temperature and evaporation increase throughout the year.

These factors could collectively account for the remarkable

decrease in the flood frequency of occurrence in summer.

4.3.2 Changes in flood magnitude with different return

periods

We proceed now to a flood analysis using extreme value

distributions for various hydrological models, downscaling

methods and SRES scenarios in the headwater catchment

of Yellow River. In this section, we will examine flood

(maximum 7-day high flow) in the control and future pe-

riods corresponding to 2-, 5-, 10- and 50- year return

period. Changes in flood return periods and the 90 %

confidence bands are shown.

The 3-parameter generalized extreme value (GEV) dis-

tribution is used to fit the annual maximum 7-day high flow

(Table 5). The data of annual extreme are from daily

streamflow records (30 years) in the control and future

scenarios, therefore we do not estimate flood return period

more than 50 years to ensure the estimation reliability. In

addition, confidence intervals are estimated through Monte

Carlo simulation methods. The T-year return extremes

from the control and future scenario simulations are dis-

tinct if their 90 % confidence intervals do not overlap.

Percentage change in the maximum 7-day high-flow

corresponding to the T-year return period is shown in

Tables 6 and 7. Different models produce quite similar

results in the future maximum 7-day high-flow. Negative
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changes in flood for all return periods are found significant

in the 21st century, with an exception of XAJ and HBV

simulations in 2080s under A2 scenarios. In the projection,

decreases (29.45–57.21 % in 2020s, 24.62–56.28 % in

2050s) at the 5-year return period and decreases

(30.15–58.02 % in 2020s, 23.56–53.80 % in 2050s) at the

10-year return period are found. In 2080s, though no sig-

nificant changes are found in HBV and XAJ projection

under A2 scenarios, a significant decrease is observed in

the other model runs. Besides, decrease in 2080s will re-

duce compared with 2020s and 2050s under most climate

scenarios. For example, the reduction in maximum 7-day

high-flow corresponding to the 50-year return period is

around 25.63–56.88 % in 2020s, 16.27–51.83 % in 2050s,

and 14.62–41.00 % in 2080s respectively.

4.4 Uncertainty in flood quantile estimation

Relative length of confidence interval (RL) for T-year return

level extreme high-flow (T = 2, 5, 10, 50) are calculated

based on flood series by various hydrological models under

current and future climate scenarios. To investigate the effect

of selected hydrological model on RL, RLs are grouped by

hydrologicalmodel. Each group includesRLs corresponding

to T-year return level flood simulated by specific hydro-

logical model, driven by two downscaling methods outputs

in three future time slices (2020s, 2050s and 2080s) underA2

andB2 emission scenarios; hence the sample size is twelve in

each group. Figure 7a–c show box plots of RL for projected

flood quantile for different return periods by hydrological

models. RL increases with recurrence interval. This shows
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confidence in projected flood quantile decreases as the return

period increases. In addition, there is a significant difference

between RLmedians corresponding to 50-year return period

and shorter return period (\30 years), because 50 years is

beyond the size of window (30 years) used for fitting the

extreme distributions.

Similarly, changes in RL for extreme high-flows be-

tween future time slices and the control period are
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Fig. 6 Projected changes in high-flow frequency (change in occur-

rence days of high-flow exceeds the 5th percentile) in SRES scenarios

(A2 and B2) for three future periods (2020s, 2050s, 2080s) minus that

of control simulation (1961–1990) in a summer and b autumn, based

on SDSM downscaling outputs; in c summer and d autumn, based on

ANN downscaling outputs

Table 6 Changes (%) in projected maximum 7-day high-flow based on three hydrological models and SDSM downscaling outputs at different

return periods in three future periods (2020s, 2050s, 2080s) compared with the baseline period (1961–1990)

Projected period T-year

return period

A2 scenario B2 scenario

XAJ TOPMODEL HBV XAJ TOPMODEL HBV

2020s 2 -55.56* -51.23* -39.12* -52.84* -50.11* -32.48*

5 -55.23* -53.16* -39.30* -57.21* -54.16* -36.50*

10 -51.69* -52.42* -37.10* -58.02* -55.26* -37.82*

50 -35.43* -47.21* -28.79* -56.88* -55.54* -39.25*

2050s 2 -57.29* -52.99* -41.59* -51.35* -45.01* -32.00*

5 -56.28* -52.94* -41.74* -51.95* -44.09* -31.15*

10 -53.68* -52.07* -39.69* -50.39* -43.77* -28.76*

50 -43.88* -48.83* -31.99* -43.47* -40.34* -21.04*

2080s 2 -46.82* -32.62* -24.52* -53.86* -46.61* -33.96*

5 -46.37* -33.00* -24.00* -54.17* -47.97* -35.40*

10 -44.23* -33.31* -21.75* -51.39* -47.40* -33.89*

50 -36.19* -34.04* -14.31 -38.38* -39.84* -27.14*

* Shows the changes in high flows are statistically significant
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simulated and further grouped by hydrological model. Note

that sample size for each group is also twelve. Figure 7d–f

show percentage changes in RL for extreme high-flows at

different return levels. Results by three hydrological

models indicate changes in RL also increase with recur-

rence interval. In addition, medians for changes in RL for

50-year return level extreme high-flow are above zero

(Fig. 7d–f). Meanwhile positive change in RL for 10-year

return level extreme high-flow from XAJ and HBV can be

obtained under most future climate scenarios (Fig. 7d, f). It

suggests that the uncertainty in flood quantile estimation is

likely to become higher in future climate scenarios, even

though return period is below the size of window

(30 years) used for fitting the extreme distributions.

5 Conclusions

In the work, flood scenarios in the headwater catchment of

Yellow River basin during the 21st century are constructed

by means of a variety of hydrological models and statistical

downscaling outputs (SDSM and ANN) from the HadCM3

GCM model, under a range of emission scenarios. Mean-

while, the uncertainty for flood quantile estimation is

analyzed. The major points are summarized as following:

(1) Three hydrological models generate satisfied results

in daily streamflow at most station. Especially the

Nash–Sutcliffe efficiency of daily streamflow ex-

ceeds 0.7, and PBIAS is less than 4 % at Tangnaihai

station. In addition, the generalized extreme value

distribution is selected as the more appropriate one

to perform flood return level estimation, among six

well known probability distributions. Meanwhile,

flood magnitude, trend and frequency at Tangnaihai

station can be well reproduced by three hydrological

models.

(2) It is found that flood frequency will undergo a

significant reduction under most scenarios in the 21st

century. A possible explanation maybe the remark-

able increases of temperature and evaporation

throughout the year and precipitation decreases in

summer. Meanwhile, different models produce quite

similar results in future maximum 7-day high-flow.

Negative changes in floods corresponding to all

return periods are found significant under most

scenarios in the 21st century. The point could be

extended by using more RCMs in parallel with

downscaling methods from 1 GCM as well as

comparing with the results from various hydrological

models, to strictly check uncertainty related to

hydrological models.

(3) RL in projected flood quantile increases with recur-

rence interval as a consequence of the diminishing

number of events in the sample. The results are similar

for changes inRL for floods between future time slices

and the control period. Larger RLs for extreme flood

quantile in future climate scenarios will be likely to

present even if the return period is below the size of

window used for fitting the extreme distributions.

These results highlight the need of appropriate

treatment of the data sources uncertainties in extreme

Table 7 Changes (%) in projected maximum 7-day high-flow based on three hydrological models and ANN downscaling outputs at different

return periods in three future periods (2020s, 2050s, 2080s) compared with the baseline period (1961–1990)

Projected period T-year return

period (year)

A2 scenario B2 scenario

XAJ TOPMODEL HBV XAJ TOPMODEL HBV

2020s 2 -53.49* -51.30* -32.21* -47.61* -49.77* -25.36*

5 -53.24* -52.16* -32.45* -51.54* -51.79* -29.45*

10 -50.96* -52.35* -30.99* -52.58* -52.20* -30.15*

50 -41.70* -52.25* -25.63* -52.91* -51.84* -29.34*

2050s 2 -49.27* -52.78* -26.18* -46.64* -42.81* -21.14*

5 -49.91* -54.44* -27.50* -50.00* -47.65* -24.62*

10 -49.34* -53.80* -27.39* -49.60* -49.50* -23.56*

50 -46.73* -49.44* -26.05* -44.40* -51.83* -16.27*

2080s 2 6.67* -28.52* 15.52* -36.63* -42.65* -12.07*

5 4.74 -28.75* 9.76 -37.81* -48.86* -15.05*

10 2.63 -28.69* 8.47 -37.73* -46.01* -15.46*

50 -2.64 -28.26* 8.48 -36.44* -41.00* -14.62*

* Shows the changes in high flows are statistically significant
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flow quantile estimation, for sake of improving

reliability in extreme high-flow projection.
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Fig. 7 a–c Box plots of RL for projected extreme high-flow under

selected combinations of hydrological model and return period. d–
f Box plots of change in RL for T-year return level extreme high-flow

between future time slices and the control period. The horizontal lines

represent the median values; the interquartile range (25th–75th

quantiles) is represented by boxes; the whiskers indicate 10 %

quantile and 90 % quantile
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